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Coarctation of the aorta (CoA) is often considered a relatively simple disease, but long-term outcomes suggest
otherwise as life expectancies are decades less than in the average population and substantial morbidity often
exists. What follows is an expanded version of collective work conducted by the authors' and numerous
collaborators that was presented at the 1st International Conference on Computational Simulation in Congenital
Heart Disease pertaining to recent advances for CoA. The work begins by focusing onwhat is known about blood
flow, pressure and indices of wall shear stress (WSS) in patients with normal vascular anatomy fromboth clinical
imaging and the use of computational fluid dynamics (CFD) techniques. Hemodynamic alterations observed in
CFD studies from untreated CoA patients and those undergoing surgical or interventional treatment are
subsequently discussed. The impact of surgical approach, stent design and valve morphology are also presented
for these patient populations. Finally, recent work from a representative experimental animal model of CoA that
may offer insight into proposed mechanisms of long-term morbidity in CoA is presented.

© 2010 Elsevier Ireland Ltd. All rights reserved.

Coarctation of the aorta (CoA) accounts for 8 to 11% of congenital
heart defects resulting in between 3000 and 5000 patients annually in
the United States [1,7]. Current methods of treatment including
surgery and stenting can alleviate the blood pressure (BP) gradient
across a coarctation and are associated with low morbidity [3,11,21],
but long-term results are inconsistent with the putative notion of CoA
as a simple disease since life expectancies are decades less than in the
average population [3,24] and substantial morbidity exists in the form
of hypertension, early onset coronary artery disease, stroke and
aneurysm formation [5,10,13].

In 1971, O'Rourke and Cartmill suggested CoA-induced morbidity
could be explained on the basis of abnormal hemodynamics and
vascular biomechanics [19]. Recent clinical literature has lost sight of
this hemodynamic basis for the morbidity in CoA patients. At the
present time, most studies primarily compare pre- and postinterven-
tion BP gradients as well as rates of mortality, hypertension, aneurysm
formation and recoarctation to previous studies reporting the same or
similar outcomes [5,10,13] and a relatively small fraction of studies hint
that altered biomechanical properties may be present in CoA pts and
contribute to the persistent morbidity discussed above [18,23].

Further investigation into the hemodynamic and biomechanical
basis of morbidity and treatment outcomes for CoA patients is

particularly interesting when we consider recent advancements in
computational modeling tools [9,32,38]. Patient specific anatomy can
now be extracted, and geometrically representative computational
models of the vasculature can be created, using information obtained
during a routine clinical imaging session [22,27]. This anatomic data can
be usedwith phase-contrastmagnetic resonance imaging (PC-MRI) and
BP data to create 3D, patient-specific, time-varying representations of
hemodynamics that also consider biomechanical vascular properties
associated with the current patient state [8,39]. This approach has been
successfully applied to other congenital heart defects, specifically
malformations resulting in a single ventricle. In these patients,
computational fluid dynamics (CFD) simulations of the Fontan
procedure has led to widespread acceptance of several technical
modifications demonstrated to be hemodynamically superior to
previous surgical techniques [25]. If these techniques were applied to
CoA, similar studieswould likely provide greater understanding of long-
term morbidity, preoperative assessment of treatment options, and an
additional tool for evaluation of current treatment practices when
compared to comparable results from normal patients.

1. What is normal anyway?

To fully characterize hemodynamic alterations associated with
CoA, we must first understand related indices under normal
conditions. Hemodynamic and vascular biomechanics in the thoracic
aorta and its branches are complex, but particularly depend on several
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key factors that should be implemented when performing CFD
modeling for CoA patients. Importantly, consideration of these factors
allows for the replication of normal physiology and thoracic aortic
anatomy and likely the greatest chance for clinical impact from an
associated CFD study.

1. Blood flow patterns in the normal ascending and descending aorta
range from axial during the early portion of systole, to helical
during mid-to-late systole, and complex flow recirculation during
end systole and diastole [15]. The development of helical flow
patterns during peak to late systole is thought to occur in response
to the curvature of the ascending aorta and translational motion of
the aortic root caused by the beating heart. Equivalent studies are
currently lacking for CoA patients, likely as a result of the
heterogeneity and additional cardiac abnormalities often present
in this patient population. Nevertheless, simulation results should
replicate flow patterns revealed by the available clinical data in
order to draw reasonable conclusions.

2. The potential relationship between coarctation-related long-term
morbidity and altered hemodynamics in the ascending aorta and
its branches dictates that outflow boundary conditions must be
selected in these vessels to replicate physiologic blood flow and BP
distributions measured clinically. The reader is referred to several
recent thorough articles discussing the application of realistic
boundary conditions in computational models [30,31]. In addition
to replicating current patient state, these physiologic outlet
boundary conditions also facilitate the investigation of predictive
surgical or interventional treatment planning in cases where
outflow information is not clinically available such as determining
the acute response to theoretical stent implantation for the relief of
CoA, or changes occurring in response to exercise.

3. The hallmark of the ascending aorta is its unique ability to store
blood during systole and deliver it to the rest of the body during
diastole. This property is disrupted by CoA. Therefore, computa-
tional models for use in studying CoA should consider the
compliance of the aorta. This is complicated by differences in
tissue properties along the length [17] and within a given circum-
ferential region [6] of the aorta, as well as differences between the
aorta and its branches [37]. Although differences in these tissue
properties have been previously reported for normal vasculature
using experimental techniques, their estimation from non-invasive
imaging and computational implementation is not trivial. The
precise location and vascular influence of a particular treatment for
CoA such as patch aortoplasty or balloon angioplasty is also difficult
to decipher from medical imaging data. However, this information
is necessary for the physiologic assessment of disease severity.

4. The aorta and innominate, carotid and subclavian arteries contain
smaller branches with calibers near the detection limits of MR
imaging that may be of interest for computational modeling of CoA
patients. For example, the intercostal arteries are thought to take
between 7 and 11% of the flow from the level of the coarctation to
the level of the diaphragm under normal conditions, and are often
recruited to serve as collateral vessels in patients with native CoA
[26,28]. Including these vessels in a computational model (or
accounting for their impact) can likely provide more physiologic
results for indexes such as wall shear stress (WSS, defined as the
tangential force per unit area exerted on a blood vessel wall as a
result of flowing blood) throughout the descending thoracic aorta.
Similarly, luminal wall motion in the ascending and descending
aorta and their branches is curtailed by the presence of supporting
structures including the spine, connective tissue and the intrinsic
tension of arterial system that provides radial and axial tethering.

5. To be clinically applicable, the use of CFD for this application must
ultimately provide unique information that is not available by other
techniques. The ability of CFD to meet this criterion is somewhat
inherent as it provides information that would be difficult or

impossible to assess using experimental techniques. However,
simply using CFD to assess blood flow and BP distributions is
inadequate as current imaging and catheterization techniques are
routinely used for the same purpose. Instead investigators rely on
CFD to provide estimates for indices of WSS, vascular deformation
and strain and changes in these indices in response to virtual
treatments or under simulated exercise conditions.

Many of the factors discussed above can be implemented using
current CFD techniques while others await future progress, or are not
yet ubiquitously applied, with current imaging and computational
methods. Following the above review of CFD model considerations
that should be implemented to replicate normal thoracic flow features
and elucidate alterations in CoA patients, we now offer several
examples of results from CoA patients that underwent surgical or
interventional treatment.

2. Do previous and current treatments restore normalcy?

Traditionally surgery by resection with end-to-end anastomosis
has been the gold standard for repair of CoA.While CFD has been used
extensively to study possible morbidity due to altered flow conditions
in smaller blood vessels prone to atherosclerosis, the potentially
deleterious effects of alterations in blood flow patterns in the human
thoracic aorta have not been as widely studied.

Fig. 1 shows results from an ongoing investigation in which
patient-specific CFDmodeling was performed for control subjects and
corresponding age and gender matched CoA patients that underwent
surgical repair by resection with end-to-end anastomosis. Realistic
inflow and outflow boundary conditions derived from PC-MRI and BP
measurements were implemented to determine indices of WSS in the
thoracic aorta and arteries of the head and neck. Spatiotemporal
alterations in velocity streamlines, time-averaged WSS (TAWSS) and
oscillatory shear index (OSI, an index of directional changes in WSS,
low OSI indicates the WSS is oriented predominantly in the direction

Fig. 1. Spatial patterns of time-averaged WSS for an 11 yo female patient with CoA
treated surgically by resection with end-to-end anastomosis repair (right) and an age
and gender matched control subject (left).
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of blood flow, while a value of 0.5 is indicative of bidirectional WSS
with a time-average value of zero throughout the cardiac cycle [40])
were observed for CoA patients compared to the control subjects.
Axial and circumferential patterns of TAWSS and OSI for CoA patients
revealed significantly higher TAWSS between 1 and 3 descending
aortic diameters distal to the left subclavian artery and significantly
higher OSI between 3 and 5 diameters distal to the left subclavian
artery.

In a related study (Fig. 2), indices of WSS were also determined for
a group of CoA patients previously surgically treated by patch
aortoplasty and corresponding age- and gender-matched control
patients. Heterogeneity within this CoA group is particularly striking
and the presence of aneurysms in the region of ductal tissue, which is
common with this repair type, can be seen in patient shown in the
figure. This type of surgical correction is no longer implemented, but
CFD can still be useful for planning future interventions or deter-
mining the impact of local hemodynamics on the growth and
potential rupture of aneurismal corrections.

These results indicate that, in addition to any pre-existing
alterations in vascular function, locations involving the surgical
correction are often now those associated with potentially deleterious
alterations in indices of WSS. For the studies mentioned above, the
group of CoA patients undergoing surgical correction by resection and
end-to-end anastomosis were younger, and therefore closer to the
date of their surgical correction, than the patients from which the
Dacron patch CFD models were created. While it is possible that the
end-to-end repairs used for CFD modeling may undergo deleterious
geometric remodeling as has occurred for many of the Dacron patch
patients, the current results strongly suggest the end-to-end repair
results in more favorable results from a hemodynamic perspective.
Collectively these results facilitate greater understanding of the
effects of surgical repair on local hemodynamics in CoA patients by
providing quantifiable values throughout the entire aorta. This data
may be useful for clinicians when implementing future surgeries.

3. Local hemodynamics alterations after stenting for CoA

The invasive nature of surgical treatments combined with the
shorter hospitalization, reduced pain and decreased cost of catheter-
based therapies has led to stent implantation playing an increasing
role in the treatment of CoA. Although currently there are no FDA-
approved stents specifically designed for children, several stents are
commonly used off-label with CoA patients and recent studies have
documented some fundamental concerns regarding the use of these
stents in a manner other than that for which they were intended.
Among these concerns is the impact of different stent types on blood
flow patterns in the descending thoracic aorta. The following example
illustrates how CFD can be used to provide additional insight related
to this question.

A patient-specific model was created from CT and MRI data sets
obtained within several days of each other. A computational
representation of the implanted stent was then created and included
within the patient-specific CFD model using computer aided design
software. A computational version of a second stent also commonly
used in the treatment of CoA was also created and virtually implanted
for comparison of downstream flow disturbances (Fig. 3). The results
illustrated in Fig. 3 suggest there is a region of elevated TAWSS along
the posterior wall of the descending thoracic aorta distal to the stents
as well a difference in the amount of the anterior wall within this
region that is exposed to low TAWSS. Importantly, low TAWSS is
associated with the onset and progression of cardiovascular disease in
many vascular beds and TAWSS above a certain preferential value
may also be associated endothelial injury, plaque rupture, or
thrombogenesis [12,14]. The Numed CP stent appears to be associated
with a greater percentage of low TAWSS along the anterior wall and
accentuate values within the region of elevated WSS along the
posterior aorta, but this hypothesis remains to be tested in further
detail. Additional questions pertaining to potential for the stent to

Fig. 2. Spatial patterns of time-averaged WSS for a 26 yo male patient with CoA treated
surgically by Dacron patch aortoplasty (right) and an age and gender matched control
subject (left).

Fig. 3. Time-averagedWSS results obtained from CFDmodels containing computational
representations of two stents commonly used to treat CoA. The results reveal
differences in low time-averaged WSS along the anterior wall and regions of elevated
time-averaged WSS along the posterior wall of the descending thoracic aorta distal to
the stents.
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cause adverse changes in the stiffness and structural components of
the aorta [9], or impart residual stress on the left ventricle of the heart
[16] could similarly be examined through the use of CFD.

4. How does the aortic valve impact normal?

The prevalence of a bicuspid aortic valve (BAV) is ~2% in the
general population [33], but 50–80% of patients diagnosed with CoA
also have a BAV [33,34]. This is particularly concerning as reports have
documented a nine-fold increased risk of ascending aortic dissection
with BAV [33]. Imaging studies using Doppler ultrasound [2] and 4D
MRI flow measurements [35] have indicated BAV cause flow
disturbances in the ascending aorta and progressive ascending aortic
dilatation. Past studies have shown that some turbulence exists in the
aortic arch [4,15], but that diseases of the aortic valve are almost
always associated with more pronounced turbulence in the ascending
aorta [29]. Collectively these findings indicate the presence of a BAV in
CoA patients inevitably alters hemodynamics in the ascending aorta
that could lead to the progression of disease in this region and
contribute to observed long-term morbidity.

As an extension of the studies discussed above, Wendell et al. [36]
recently implemented idealized bicuspid and tricuspid valve mor-
phologies into CFD models of three arch types commonly developing
after surgical treatment for CoA by resection with end-to-end
anastomosis [20]. TAWSS, OSI, and turbulent kinetic energy (TKE)
values were compared with those from an assumed parabolic inlet
velocity profile. The influence of the aortic valve generally persisted
into the mid-transverse arch for WSS and TKE and throughout the
thoracic aorta for OSI, but varied due to features of each arch type
including arch orientation, curvature and length of the ascending
aortic segment. Deleterious indices of WSS (low time-averaged WSS
and elevated OSI) quantified in 3 mm circumferential bands were
generally more pronounced for the BAV inlet condition regardless of
arch type. One of the key findings from the study was that post-
surgical arch shape greatly impacts which portions of the luminal

surface will be exposed to potentially subnormal values of WSS
indices. Since contours for circumferential indices of WSS were
generally similar across inflow types, regions of varying susceptibility
resulting from surgical correction are established regardless of the
number of functioning valve leaflets, but can be mitigated or
worsened by valve morphology, particularly in the ascending aorta.

5. In vivo rabbit model of CoA

Despite notable efforts underway for the projects summarized
above, the precise cause of long-term morbidity for CoA patients is
difficult to assess due to the small number of patients at any institution,
and their heterogeneity. A modified rabbit coarctation model was
therefore created to assess hemodynamic indices including blood flow,
BP andWSS caused by CoA using a coupled imaging and CFD approach.
The experimental MRI protocol mirrors the protocol that was used to
obtain the human MRI data sets presented above in that rabbits with
surgically-induced CoA, or CoA that has been treated to mimic surgical
and stent corrections, undergo MRI. The MRI data is then used to create
a CFD model revealing changes in blood flow in the same manner as is
being performed with the human data. Additionally, the experimental
protocol provides histological results showing how changes in blood
flow, BP, vessel stiffness and WSS (Fig. 4) can be associated with local
structural changes in the vessel wall.

6. Summary

The examples discussed above show that computational simula-
tion is currently being used to address many of the questions that
persist related to treatment for CoA. Although larger studies are
necessary, these recent results support the hypothesis of O'Rourke
and Cartmill from nearly four decades ago. We anticipate that as the
severity of hemodynamic and vascular biomechanics alterations
continue to be elucidated through computational simulation, engi-
neers and clinicians will be able to work together to identify and

Fig. 4. Representative mean intensity projections obtained from MRI angiography of the thoracic aorta of rabbits under several experimental conditions (top) with examples of
corresponding CFD models (below). The experimental MRI protocol mirrors the protocol for obtaining the human MRI data used to create the CFD models shown above.
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alleviate regions of susceptibility and, with them, potential sources of
long-term morbidity for CoA patients.
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