Publications

T. G. Schmidt, R. F. Barber, E. Y. Sidky, “A Spectral CT Method to Directly Estimate Basis Material Maps From Experimental Photon-Counting Data,,” IEEE Transactions on Medical Imaging, 36 (9), pp. 1808-1819, (2017). 10.1109/TMI.2017.2696338


J. A. Cross, B. D. McHenry, R. Molthen, E. Exten, T. G. Schmidt, G. F. Harris, “Biplane fluoroscopy for hindfoot motion analysis during gait: A model-based evaluation,” Medical Engineering & Physics, 43 (5), pp. 118-123, (2017). DOI:10.1016/j.medengphy.2017.02.009


T. G. Schmidt, A. S. Wang, B. Haas, T. Coradi, J. Star-Lack, “Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm,” Journal of Medical Imaging, 3 (4), pp. 043502 (2016). DOI:10.1117/1.JMI.3.4.043502


R. F. Barber, E. Y. Sidky, T. G. Schmidt, X. Pan, “An algorithm for constrained one-step inversion of spectral CT data,” Physics in Medicine and Biology, 61 (10), pp. 3784-3818 (2016). DOI:10.1088/0031-9155/61/10/3784


D. Stassi, S. Dutta, H. Ma, A. Soderman, D. Pazzani, E. Gros, D. Okerlund, T. G. Schmidt, “Automated selection of the optimal cardiac phase for single-beat coronary CT angiography reconstruction,” Medical Physics, 43, (1), pp. 324-335 (2016). DOI:10.1118/1.4938265


J. A. Cross, B. McHenry, T. G. Schmidt, “Quantifying cross-scatter contamination in biplane fluoroscopy motion analysis systems,” Journal of Medical Imaging, 2 (4), pp. 043503, (2015). DOI:10.1117/1.JMI.2.4.043503


D. Gandhi, D. J. Crotty, G. M. Stevens, T. G. Schmidt, “Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography organ-based tube current modulation technique,” Medical Physics, 42 (11), pp. 6572–6578, (2015). DOI:10.1118/1.4933197


K. C. Zimmerman and T. G. Schmidt, “Experimental comparison of empirical material decomposition methods for spectral CT,” Physics in Medicine and Biology, 60 (8), pp. 3175–3191, (2015). DOI:10.1088/0031-9155/60/8/3175


T. G. Schmidt, K. C. Zimmerman, E. Y. Sidky, “The effects of extending the spectral information acquired by a photon-counting detector for spectral CT,” Physics in Medicine and Biology, 60 (4), pp. 1583–1600, (2015). DOI:10.1088/0031-9155/60/4/1583. Featured Article designation


M. E. Hoppe, D. Gandhi, G. M. Stevens, W. D. Foley, T. G. Schmidt, “The effects of gantry tilt on breast dose and image noise in cardiac CT,” Medical Physics, 40, pp. 121905:1–8, (2013). DOI:10.1118/1.4829521. Editor's Pick designation


P. A. Wolf, J. S. Jorgensen, T. G. Schmidt, E. Y. Sidky, “Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model,” Physics in Medicine and Biology, 58 (16), pp. 5629–5652, (2013).


F. Rupcich, A. Badal, L. M. Popescu, I Kyprianou, T. G. Schmidt, “Reducing the radiation dose to the female breast during CT coronary angiography: A simulation study comparing breast shielding, angular tube current modulation, reduced kV, and partial angle protocols using an unknown-location signal detectability metric,” Medical Physics, 40 (8), pp. 081921, (2013).


D. Ma, P. A. Wolf, A. V. Clough, T. G. Schmidt, “The Performance of MLEM for Dynamic Imaging From Simulated Few-View, Multi-Pinhole SPECT,” IEEE Tran.Nuc. Sci., 60 (1),pp. 115–123, (2013).


F. Rupcich, A. Badal, I. Kyprianou, T. G. Schmidt, “A database for estimating organ dose for coronary angiography and brain perfusion CT scans for arbitrary spectra and angular tube current modulation,” Medical Physics, 39 (9), pp. 5336–5346, (2012).


M. E. Hoppe, T. G. Schmidt, “Estimation of organ and effective dose due to Compton backscatter security scans,” Medical Physics, 39 (6), pp. 3396–3403, (2012).


B. Kalinosky, J. M. Sabol, B. Heckel, K. Piacsek, T. G. Schmidt, “Quantifying the tibiofemoral joint space using x-ray tomosynthesis,” Medical Physics, 38 (12), pp. 6672–6682, (2011).


T. G. Schmidt, F. Pektas, “Region-of-interest material decomposition from truncated energy-resolved CT,” Medical Physics, 38 (10), pp. 5657–5666, (2011).


T. G. Schmidt, “What is inverse-geometry CT?” Journal of Cardiovascular Computed Tomography, 5 (3), pp. 145–148, (2011).


T. G. Schmidt, “Breast CT: Current Status and New Directions,” Current Medical Imaging Reviews, 6 (2), pp. 61–71, (2010).


T. G. Schmidt, “CT energy weighting in the presence of scatter and limited energy resolution,” Medical Physics, 37 (3), pp. 1056–1067, (2010).


T. G. Schmidt, “Optimal image-based weighting for energy-resolved CT,” Medical Physics, 36 (6), pp. 3018–3027, (2009).


R. A. Bhagtani, T. G. Schmidt, “Simulated scatter performance of an inverse-geometry dedicated breast CT system,” Medical Physics, 36 (3), pp. 788–796, (2009).


T. G. Schmidt, N. R. Bennett, S. R. Mazin, J. Star-Lack, E. G. Solomon, R. Fahrig, N. J. Pelc, “A prototype table-top inverse-geometry volumetric CT system,” Medical Physics, 33 (6), pp. 1867–1878, (2006).


T. G. Schmidt, R. Fahrig, N. J. Pelc, “A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system,” Medical Physics, 32 (11) , pp. 3234–3245, (2005).


T. G. Schmidt, R. Fahrig, E. G. Solomon, N. J. Pelc, “An inverse-geometry volumetric CT system with a large-area scanned source: A feasibility study,” Medical Physics, 31 (9), pp. 2623–2627, (2004).