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ABSTRACT
An experiment is conducted in which a free-standing bicycle

wheel is given an initial angular speed and then allowed to slow
down to rest. Measurements of the wheel speed, using a ma
netic sensor, during the decay are compared to predictions fro
a model accounting for a combination of viscous and dry friction
at the wheel bearing. The time history data indicate two dynami
regimes:(i) a higher speed phase corresponding to the first pa
of the motion for which a simple viscous friction model applies,
and(ii) a slower speed phase corresponding to low speed to sto
behavior for which a model involving both viscous and dry fric-
tion is proposed. A method is presented for finding the viscou
and dry friction coefficients of the two phases.

1 INTRODUCTION

Anyone who has spun a bicycle wheel, with the wheel off
the ground, can attest to the fact that the slowly decaying beha
ior has an almost mesmerizing effect. Wheel inertia keeps th
wheel rotating for a long time, making the reduction in speed al
most imperceptibly detectable. But, over time, the wheel spee
decreases and eventually the wheel comes to rest. If the whe
is well balanced and/or if there is enough bearing friction, the
wheel smoothly stops rotating. However, if the wheel is not wel
balanced and there is minor bearing friction, the wheel may ex
hibit an oscillatory tendency near the end of the motion. Prio
to coming to rest, the wheel may rotate back and forth, oscillat
ing like a pendulum, after losing most but not all of its rotational
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The rotational motion of a bicycle wheel about its spin axis,
where the wheel has been imparted with an initial angular veloc
ity, is an interesting and educational subject. We have introduce
an experiment on bicycle wheel speed decay in course “MEEN
120: Mechanical Measurements and Instrumentation” at Mar
quette University. The laboratory experience requires students
study the dynamics of a free-spinning wheel using a non-contac
magnetic speed sensor and a data acquisition system. The im
petus for the experiment was a similar experiment introduced a
the University of Washington (Seattle, WA) by Professors Josep
Garbini and William Murray, and reported in [1].

The physical system of a freely rotating bicycle wheel can
be represented by a relatively simple model involving a rotationa
inertia and a rotational viscous damper. This linear model ca
be solved and predicts an exponentially decaying speed startin
from the initial speed. The model can also be used to introduc
the concept of time constant, which can be found experimentally
(It is the negative slope of the plotted line in a graph of the loga
rithm of angular speed versus time.) With the time constant, an
with knowledge of, or an estimate of, the wheel rotational inertia
the value of the viscous damping coefficient can be determined

In theory, this first-order model predicts that the wheel con-
tinues to rotate ad infinitum. A more advanced model can be
posited including both viscous damping and dry friction, where
the latter is introduced to ensure that the wheel stops in finit
time. One challenge of this model is that there are two friction
parameters that must be determined.
Copyright c© 2003 by ASME



Figure 1. Lumped parameter model of bicycle wheel.

1.1 Scope
In this paper, the rotational speed decay of a free-standi

bicycle wheel is investigated and an appropriate dynamic mod
that accounts for frictional losses is developed. The model pr
sented includes both viscous damping and Coulombic dry fri
tion effects. The results of simulation and experimental studie
are presented.

2 DYNAMIC MODEL

Consider a bicycle wheel in a vertical plane spinning freel
about its axis. It is assumed that the wheel is balanced (wi
its mass center at the wheel’s geometric center). A dynam
model is proposed involving wheel inertia and two retarding e
fects of viscous and dry friction at the wheel bearing, as depicte
schematically in Figure 1. The viscous friction torque is linearl
related to the angular velocity, and the dry friction is constan
(according to Coloumb’s law).

The equation of motion is:

Jω̇+Bω+Tc = 0, (1)

with initial condition

ω(0) = ω0 (2)

whereJ is the moment inertia of the wheel,B is the viscous
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damping coefficient andTc is the friction torque (assumed con-
stant). Solving gives

ω(t) =
(

ω0 +
Tc

B

)
e−

t
τ − Tc

B
(3)

where the time constant,τ, is

τ =
J
B

. (4)

The model has a physical inconsistency in that Eq. (3) is
not a solution for allt ∈ [0,∞]. The predicted terminal speed
is ω(t → ∞) = −Tc/B , which is not physically consistent for a
nonzeroTc.

It is possible to determine the timet∗ when the wheel comes
to rest. By settingω(t∗) = 0 in (3),

(
ω0 +

Tc

B

)
e−

t∗
τ − Tc

B
= 0, (5)

and solving yields:

t∗ =−τ ln

(
Tc

Bω0 +Tc

)
.

Introducing

λ =
Tc

B
, (6)

t∗ can be written as:

t∗ =−τ ln

(
λ

ω0 +λ

)
. (7)

Equation (3) applies only fort ≤ t∗. For t ≥ t∗, Tc = 0 and
ω(t)≡ 0. Thus, the motion of the wheel can be described by:

ω(t) =
{

(ω0 +λ)e−
t
τ −λ ...if t ≤ t∗

0 ...if t > t∗
(8)

The model is characterized by two parameters,τ andλ. τ
indicates the influence of viscous friction whereasλ is the ratio
of dry friction torque to viscous friction damping. From knowl-
edge of these two parameters and a known inertiaJ, the viscous
damping coefficient and the dry friction torque can be obtained.
Copyright c© 2003 by ASME
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For ω0� λ, then Eq. (3) can be approximated by:

ω(t)≈ ω0e−
t
τ (9)

which is suitable for an appropriate range oft < t∗. However, for
t less than but closer tot∗, the termλ cannot be neglected.

2.1 Two Phase Model
Based on the above, a two phase model is proposed. At

higher speeds, dry friction (indicated byλ) is neglected, and the
angular speed of the wheel is written in the form of Eq. (9):

ω(t) = ω0e−
t
τ . (10)

At lower speeds, dry friction must be taken into account, and the
angular speed of the wheel has the form of Eq. (3):

ω(t) = (ω0 +λ)e−
t
τ −λ. (11)

Let tc is the “critical” (or “boundary”) time switching be-
tween the two phases. Noting that att = tc the angular speed
must be continuous, the speed can be written:

ω(t) =


ω0e−

t
τ ...for t ≤ tc(

ω0e−
tc
τ +λ

)
e−

t−tc
τ −λ ...for tc≤ t ≤ t∗

0 ...for t > t∗
(12)

Another possible model accounts for the possibility thatτ
in Eqs. (10) and (11) may not necessarily be the same. To dis-
tinguish between the two, they are denoted byτ1 andτ2 corre-
sponding to the time constant in the higher speed and lower spee
phases, respectively. Thus, the angular speed can be written:

ω(t) =


ω0e

− t
τ1 ...for t ≤ tc(

ω0e
− tc

τ1 +λ
)

e
− t−tc

τ2 −λ ...for tc≤ t ≤ t∗

0 ...for t > t∗
(13)

3 METHOD

3.1 Optimization to Determine Parameters

In order to determine the parameters, eitherτ, λ andtc for
Eq. (12) orτ1, τ2, λ andtc for Eq. (13), an optimization approach
is suggested. The proposed objective function,F , is:

F =
n

∑
i=1

[ω(ti)−ωi ]
2 (14)
3
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Figure 2. Experimental setup showing bicycle wheel on front
fork clamped to laboratory bench and data acquisition system.

whereti andωi correspond to the time and angular speed, respe
tively, at thei-th data point obtained from an experiment,n is the
total number of data points, andω(t) is defined by Eq. (12) or
(13).

The optimization problem is to minimizeF subject toτi > 0,
λ > 0 and 0< tc < t∗, wheret∗ is given by Eq. (7). The initial
point for the optimization can be chosen arbitrarily forτi0 > 0,
λ0 > 0 andtc0 < τi0 ln( λ0

ω0+λ0
). The first speed in the time history

data is the initial speedω0 for both models (12) and (13). The op-
timization stops when a set of parameters(τi ,λ, tc) that minimize
F is found. The optimization was performed using MATLAB
and its Optimization Toolbox.

3.2 Experimental Setup

The front fork of a bicycle was clamped to a laboratory table
as shown in Figure 2. (A 27 inch wheel on a front fork assembl
from a street bicycle was used in the test.) A non-contact ma
netic speed sensor (CAT EYE Velo 2) was mounted to one le
of the fork. It provides a single voltage pulse as a small mag
net mounted to a spoke passes, giving one pulse per revolut
during the experiment. Data acquisition was accomplished usi
LabVIEW. The wheel was spun manually, and speed versus tim
data were collected.

4 RESULTS

Figure 3 compares the angular speed versus time data for
experiment with an initial angular velocity ofω0 = 15.140 rad/s
to the predicted speed from the viscous model of Eq. (10). In th
Copyright c© 2003 by ASME
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Figure 3. Angular speedω vs. timet. Experimental data shown
in blue. Viscous model of Eq. (10) shown in red.

experiment, the wheel speed decayed for approximately 6 m
utes. The wheel used was not perfectly balanced, and oscilla
slightly prior to coming to rest. The data presented in Figure 3
for the wheel angular speed prior to this oscillation.

Figure 4 presents the same angular speed history data
terms of the natural logarithm of the speed versus time. Als
shown in the figure is a comparison to the viscous model bas
on the best-fit line over the time period 0< t < 150 s. Theτ corre-
sponding to this best-fit line was found to be 121 s, and this valu
was used to determine the viscous model prediction in Figure

The comparison of the experimental data to the viscou
model of Eq. (10) with this value ofτ indicates a close match for
all but the slowest speeds. The viscous model is a very reaso
able approximation for the higher speeds. Figure 4 illustrates t
excellent fit of the data to a straight line, with the slope of−1/τ,
corresponding to the log of the functionω(t) of Eq. (10). The de-
viation from the straight line at the slowest speeds suggests t
the viscous model alone does not capture the full behavior. It
suggested below that the influence ofλ cannot be neglected as
the wheel comes to rest.

For the experimental data illustrated in Figures 3 and 4, th
parameters resulting from the optimization were obtained as fo
lows. For the two phase model with same viscous coefficient, i.e
the model described by Eq. (12), the parameters from the op
mization are:τ = 117.85 s,λ = 1.515 rad/s, andtc = 198.00 s.
For the two phase model with different viscous coefficients, i.e
the model described by Eq. (13), the parameters from the op
mization are:τ1 = 106.04 s,τ2 = 159.37 s,λ = 1.480 rad/s, and
tc = 42.486 s.
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Figure 4. Natural logarithm ofω vs. timet. Experimental data
shown in blue. Viscous model of Eq. (10) shown in red.
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Figure 5. Angular speed time history for two phase model with
same viscous coefficient. Experimental data shown in blue.
Model of Eq. (12) with optimized parameters shown in red.

Figures 5 and 6 show theω(t) curves with the above param-
eters for the two models, respectively, where the comparisons
the experimental data are also illustrated. The results sugge
close match in both cases, especially for the model with differe
viscous coefficients. It is possible to quantify how well the differ
ent models match the data by calculating the value of the obje
Copyright c© 2003 by ASME
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Figure 6. Angular speed time history for two phase model with
different viscous coefficients. Experimental data shown in blue.
Model of Eq. (13) with optimized parameters shown in red.

tive function of Eq. (14). For the one phase viscous model of E
(10), the value of the objective function isF = 18.44 (rad/s)2. In
comparison, for the two phase models the results areF = 11.83
(rad/s)2 for the model of Eq. (12) andF = 1.94 (rad/s)2 for the
model of Eq. (13). The closest match is for the more advanc
two phase model with different time constants.

5 CLOSING

This paper presents a multi-parameter model for beari
friction accounting for viscous damping and Coulomb friction
that is useful in investigating the dynamics during free-spin slo
down of a bicycle wheel. Measurements of the wheel speed d
ing the decay are compared with predictions of a model accou
ing for a combination of viscous and dry friction at the whee
bearing. The time history data indicate two dynamic regime
i.e., a higher speed regime corresponding to the first part of t
motion for which a simple viscous friction model applies, and
slower speed regime corresponding to low speed to stop behav
for which a model involving both viscous and dry friction seem
appropriate. The experiment fosters creative thinking about t
modelling of a basic dynamics problem. It is well suited for un
dergraduate courses in “dynamics” and in “measurement and
strumentation.”
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