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ABSTRACT energy.

An experiment is conducted in which a free-standing bicycle
wheel is given an initial angular speed and then allowed to slow
down to rest. Measurements of the wheel speed, using a mag-
netic sensor, during the decay are compared to predictions from
a model accounting for a combination of viscous and dry friction
at the wheel bearing. The time history data indicate two dynamic
regimes:(i) a higher speed phase corresponding to the first part
of the motion for which a simple viscous friction model applies,
and(ii) a slower speed phase corresponding to low speed to stop
behavior for which a model involving both viscous and dry fric-
tion is proposed. A method is presented for finding the viscous
and dry friction coefficients of the two phases.

The rotational motion of a bicycle wheel about its spin axis,
where the wheel has been imparted with an initial angular veloc-
ity, is an interesting and educational subject. We have introduced
an experiment on bicycle wheel speed decay in course “MEEN
120: Mechanical Measurements and Instrumentation” at Mar-
guette University. The laboratory experience requires students to
study the dynamics of a free-spinning wheel using a non-contact
magnetic speed sensor and a data acquisition system. The im-
petus for the experiment was a similar experiment introduced at
the University of Washington (Seattle, WA) by Professors Joseph
Garbini and William Murray, and reported in [1].

The physical system of a freely rotating bicycle wheel can
be represented by a relatively simple model involving a rotational
inertia and a rotational viscous damper. This linear model can
be solved and predicts an exponentially decaying speed starting
from the initial speed. The model can also be used to introduce
the concept of time constant, which can be found experimentally.
(It is the negative slope of the plotted line in a graph of the loga-
rithm of angular speed versus time.) With the time constant, and
with knowledge of, or an estimate of, the wheel rotational inertia,
the value of the viscous damping coefficient can be determined.

1 INTRODUCTION

Anyone who has spun a bicycle wheel, with the wheel off
the ground, can attest to the fact that the slowly decaying behav-
ior has an almost mesmerizing effect. Wheel inertia keeps the
wheel rotating for a long time, making the reduction in speed al-
most imperceptibly detectable. But, over time, the wheel speed
decreases and eventually the wheel comes to rest. If the wheel
is well balanced and/or if there is enough bearing friction, the In theory, this first-order model predicts that the wheel con-
wheel smoothly stops rotating. However, if the wheel is not well tinues to rotate ad infinitum. A more advanced model can be
balanced and there is minor bearing friction, the wheel may ex- posited including both viscous damping and dry friction, where
hibit an oscillatory tendency near the end of the motion. Prior the latter is introduced to ensure that the wheel stops in finite
to coming to rest, the wheel may rotate back and forth, oscillat- time. One challenge of this model is that there are two friction
ing like a pendulum, after losing most but not all of its rotational parameters that must be determined.
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damping coefficient and is the friction torque (assumed con-

J Q stant). Solving gives
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The model has a physical inconsistency in that Eq. (3) is
not a solution for alt € [0,0]. The predicted terminal speed
is w(t — ) = —T./B, which is not physically consistent for a
nonzerol,.

Itis possible to determine the tinhéwhen the wheel comes
to rest. By settingo(t*) = 0 in (3),
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Figure 1. Lumped parameter model of bicycle wheel. o + B e T - B =0, (5)

1.1 Scope and solving yields:

In this paper, the rotational speed decay of a free-standing
bicycle wheel is investigated and an appropriate dynamic model t*— _1ln ( Te )
that accounts for frictional losses is developed. The model pre- Bwo + Te
sented includes both viscous damping and Coulombic dry fric-
tion effects. The results of simulation and experimental studies |ntroducing
are presented.

. ©)
2 DYNAMIC MODEL B

Consider a bicycle wheel in a vertical plane spinning freely -
about its axis. It is assumed that the wheel is balanced (with
its mass center at the wheel's geometric center). A dynamic N
model is proposed involving wheel inertia and two retarding ef- t* = —1In () . (7
fects of viscous and dry friction at the wheel bearing, as depicted o +A
schematically in Figure 1. The viscous friction torque is linearly

can be written as:

related to the angular velocity, and the dry friction is constant Equation (3) applies only far<t*. Fort >t*, T, = 0 and
(according to Coloumb’s law). w(t) = 0. Thus, the motion of the wheel can be described by:
The equation of motion is:
t
, _J(wp+N)e T —A.ift <t
Jo+Bw+ T =0, @) wt) = {o Lift>t ®)

with initial condition The model is characterized by two parameterandA. 1

indicates the influence of viscous friction wher@ais the ratio
w(0) = wo @) of dry friction torque to viscous friction damping. From knowl-
edge of these two parameters and a known inértthe viscous
whereJ is the moment inertia of the whedB is the viscous damping coefficient and the dry friction torque can be obtained.
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Forwyp > A, then Eq. (3) can be approximated by:

w(t) ~ wpe T 9)

which is suitable for an appropriate rangd ef t*. However, for
t less than but closer td, the termA cannot be neglected.

2.1 Two Phase Model

Based on the above, a two phase model is proposed. At
higher speeds, dry friction (indicated Ay is neglected, and the
angular speed of the wheel is written in the form of Eq. (9):

w(t) = ope T (10)

At lower speeds, dry friction must be taken into account, and the  Figure 2. Experimental setup showing bicycle wheel on front
angular speed of the wheel has the form of Eq. (3): fork clamped to laboratory bench and data acquisition system.

w(t) = (p+A)e T —A. (11)
wheret; andwy correspond to the time and angular speed, respec-
Let t. is the “critical” (or “boundary”) time switching be- tively, at thei-th data poir_1t obtained from an experimemts the
tween the two phases. Noting thattat t. the angular speed  total number of data points, andt) is defined by Eq. (12) or

must be continuous, the speed can be written: (13).
The optimization problem is to minimiZe subject tor; > 0,

A > 0 and 0< t; < t*, wheret* is given by Eq. (7). The initial

_t
o€ iLC . for t<te point for the optimization can be chosen arbitrarily far > 0,
w(t) = (‘*)Oe t +)‘) e T —A forte<t<tr (12) Ao > 0 anditg < TigIn( ). The first speed in the time history
0 fort >t* data is the initial speego for both models (12) and (13). The op-

timization stops when a set of paramet@isA, t¢) that minimize
Another possible model accounts for the possibility that ~ F is found. The optimization was performed using MATLAB
in Egs. (10) and (11) may not necessarily be the same. To dis- and its Optimization Toolbox.
tinguish between the two, they are denotedtbhyndt, corre-
sponding to the time constant in the higher speed and lower speed
phases, respectively. Thus, the angular speed can be written: 3.2 Experimental Setup

The front fork of a bicycle was clamped to a laboratory table,

moefﬁ Cfor t <t as shown in Figure 2. (A 27 inch wheel on a front fork assembly
w(t) = (woef% +)\> e,% A forte<t<tr (13) from a street bicycle was used in the test.) A non-contact mag-
netic speed sensor (CAT EYE Velo 2) was mounted to one leg
0 .fort >t* : :
of the fork. It provides a single voltage pulse as a small mag-
net mounted to a spoke passes, giving one pulse per revolution
3 METHOD during the experiment. Data acquisition was accomplished using
LabVIEW. The wheel was spun manually, and speed versus time
3.1 Optimization to Determine Parameters data were collected.
In order to determine the parameters, eithek andt; for
Eq. (12) orty, T2, A andt; for Eq. (13), an optimization approach
is suggested. The proposed objective functns: 4 RESULTS

Figure 3 compares the angular speed versus time data for an
F=S (o) — wi]z (14) experiment with an initial angular velocity of = 15.140 rad/s
' to the predicted speed from the viscous model of Eq. (10). In this
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viscous model of Eqg. (10)

experimeéntal data
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Figure 3. Angular speedo vs. timet. Experimental data shown
in blue. Viscous model of Eq. (10) shown in red.
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Figure 4. Natural logarithm ofw vs. timet. Experimental data
shown in blue. Viscous model of Eq. (10) shown in red.

experiment, the wheel speed decayed for approximately 6 min
utes. The wheel used was not perfectly balanced, and oscillate
slightly prior to coming to rest. The data presented in Figure 3 is
for the wheel angular speed prior to this oscillation.

Figure 4 presents the same angular speed history data i
terms of the natural logarithm of the speed versus time. Also
shown in the figure is a comparison to the viscous model base:
on the best-fit line over the time period < 150s. Tha corre-
sponding to this best-fit line was found to be 121 s, and this value
was used to determine the viscous model prediction in Figure 3.

The comparison of the experimental data to the viscous
model of Eq. (10) with this value afindicates a close match for
all but the slowest speeds. The viscous model is a very reasor
able approximation for the higher speeds. Figure 4 illustrates the
excellent fit of the data to a straight line, with the slope-df/T,
corresponding to the log of the functiostt) of Eq. (10). The de-
viation from the straight line at the slowest speeds suggests thau
the viscous model alone does not capture the full behavior. It is
suggested below that the influencerotannot be neglected as
the wheel comes to rest.

For the experimental data illustrated in Figures 3 and 4, the
parameters resulting from the optimization were obtained as fol-
lows. For the two phase model with same viscous coefficient, i.e.,
the model described by Eq. (12), the parameters from the opti-
mization are:1 = 117.85s,A = 1.515rad/s, and. = 19800s.

two phase model with same ©

experimental data
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Figure 5. Angular speed time history for two phase model with
same viscous coefficient. Experimental data shown in blue.
Model of Eq. (12) with optimized parameters shown in red.

Figures 5 and 6 show the(t) curves with the above param-

eters for the two models, respectively, where the comparisons to

For the two phase model with different viscous coefficients, i.e., the experimental data are also illustrated. The results suggest a
the model described by Eq. (13), the parameters from the opti- close match in both cases, especially for the model with different

mization are:T; = 10604 s,1, = 15937 s,A = 1.480rad/s, and
tc = 42.486s.

viscous coefficients. Itis possible to quantify how well the differ-
ent models match the data by calculating the value of the objec-
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two phase model with T; and T,

experimental data
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Figure 6. Angular speed time history for two phase model with
different viscous coefficients. Experimental data shown in blue.
Model of Eq. (13) with optimized parameters shown in red.

tive function of Eq. (14). For the one phase viscous model of Eq.
(10), the value of the objective functionfis= 18.44 (rad/s§. In
comparison, for the two phase models the result$-aze11.83
(rad/s¥ for the model of Eq. (12) anB = 1.94 (rad/s§ for the
model of Eq. (13). The closest match is for the more advanced
two phase model with different time constants.

5 CLOSING

This paper presents a multi-parameter model for bearing
friction accounting for viscous damping and Coulomb friction
that is useful in investigating the dynamics during free-spin slow
down of a bicycle wheel. Measurements of the wheel speed dur-
ing the decay are compared with predictions of a model account-
ing for a combination of viscous and dry friction at the wheel
bearing. The time history data indicate two dynamic regimes,
i.e., a higher speed regime corresponding to the first part of the
motion for which a simple viscous friction model applies, and a
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slower speed regime corresponding to low speed to stop behavior

for which a model involving both viscous and dry friction seems
appropriate. The experiment fosters creative thinking about the
modelling of a basic dynamics problem. It is well suited for un-
dergraduate courses in “dynamics” and in “measurement and in-
strumentation.”
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