A Mass-Spring-Damper Model of a Bouncing Ball
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Abstract—The mechanical properties of a vertically

dropped ball, represented by an equivalent mass-spring-

damper model, are related to the coefficient of restitution kc Impact g

and the time of contact of the ball during one bounce k c

with the impacting surface. In addition, it is shown that Deformation  Restitution

the coefficient of restitution and contact time of a single X

bounce are related to the total number of bounces and the h l h

total time elapsing between dropping the ball and the ball 1

coming to rest. For a ball with significant bounce, approximate kf He Fme * ¢

expressions for model parameters, i.e., stiffness and damping =

or equivalently natural frequency and damping ratio, are 1 /[ /] T /]

developed. Experimentally-based results for a bouncing ping- c lni!;i_?l CIQ:':ZIct I'\D";Tg;llg?] czlr?tzlct '\F/'QZEZTS:]’;‘

ondaition

pong ball are presented. (Dropped (After First

From Rest) Bounce)

I. INTRODUCTION

The bouncing behavior of a dropped ball is a classic ) ) o
problem studied in depth [1]-[5]. The topic is treated in;gf.ir; béu?éat:s-sprlng-damper model of a ball showing phases in impact
virtually all textbooks of physics and dynamics that address
the subject of impact. These books also present, but in a
separate section, the concept of mass, stiffness, and dampinigial conditions arez(0) = ho and £(0) = 0 for a ball
as the three elemental properties of a mechanical systeraleased from rest from height. The solution of this sim-

To the authors’ knowledge, the textbooks and references gte problem appears in physics and mechanics textbooks,
not make a connection between the mechanical “primitivedeading to the classical results of vertical projectile motion.
of mass, stiffness and damping and the coefficient of resti- When the ball is in contact with the ground, deformation
tution, presented as part of the subject of impact. This papand restitution occur. The equation of motion is then,
develops this connection for a particular system, namely a
bouncing ball, represented by a linear mass-spring-damper
model. It is shown that the properties of the ball modelith the initial conditions ofz(0) = 0 and #(0) = —wvy
can be related to the coefficient of restitution and bounoghere v, is the velocity of the ball just prior to contact
contact time. Furthermore, for the vertically dropped ballith the ground. Integrating eq. (2) gives

problem it is shown that the total number of bounces and the

mi + ct + kx = —mg (2)

. . . cg — 2kvo . mg
total bounce time, two parameters that are readily available z = Ear TR sin wqt + = coswgt| X
experimentally, can be related to the stiffness and damping. Wa c m
The analytical findings are tested to predict model properties exp (—Q—t) — Tg 3)
m

of a ping-pong ball. )
where the damped natural frequengy, is
Il. MASS-SPRING-DAMPER MODEL

1
To study the behavior of a vertically dropped ball, con- wq = 5/ 4km — e )

sider the model illustrated in Figure 1, where the ball igqyation (3) gives the motion of the ball during contact with

re_presented by its mass, viscous dampmg?, and linear he ground and applies only when< 0. Bounce behav-

stiffnessk. When the ball is not in contact with the ground,jqr involving deformation, restitution, and then rebound,

the equation of motion, assuming no aerodynamic drag, C#8quires an underdamped solution for which > 0 or

be written simply as (4km — ¢2) > 0.

1) The “steady” or rest solution, applying after the bounces
have died out, can be obtained by setting: co in eq. (3).

where z is measured vertically up to the ball's center ofThe equilibrium position is

mass withx = 0 corresponding to initial contact, i.e., when mg

*

the ball just contacts the ground with no deformation. The =T (5)

mi = —mg,



and when|z| < |z*| there will be no further bounces. It B. Stiffness and Damping

follows that the number of bounces is finite. The ball propertiesk ande, can be determined from the

contact time AT, and the coefficient of restitution, where
x’(AT)‘

The time of contactAT, for the first bounce, shown in (0)
exaggerated view in Figure 2, is the time from when thghe genominator of eq. (10) is simply the velocity of the
ball reaches: = 0 after being dropped to the time it first pay prior to contacty,, and the numerator is the rebound or
comes back tar = 0. Mathematically, the contact time is hotimpact velocity of the ball; . The latter can be found
_the first _f|r_1|te solution of the e_quatmn(AT) =0, i.e, it by differentiating eq. (7) and imposing the assumption
is the minimum non-zero solution of =2 < 1 or alternatively differentiating eq. (8) directly to

A. Time of Contact

(10)

9k give an expression for the velocity,
& — M sin(wgAT) + mg cos(wgAT)| x
2kwq k b= s exp (<5t sinwat
= P SIN Wy
cAT mg _, 5 2mwgq 2m
P\ )T T ©) —g exp (—it) coswgqt , (11)
2m
which in general has multiple solutions. and then substituting = AT with eq. (9) to give the
rebound velocity,
Bounce v1 = &(AT) = vy exp <— =l ) . (12)
h0< ! 2mwd
% hy = v=0 Thus, from eq. (10), the coefficient of restitution can be
2 written simply as
cm
| = — ) 13
. vl’- W e eXp( Qmwd) (13)

Time By manipulating egs. (4), (9), and (13), the stiffness and
viscous damping can be written, respectively, as,

Fig. 2. Height versus time and exaggerated view at first bounce.

__m 2 2
k= (AT)? [7* + (Ine)?] (14)
Although eq. (6) is difficult to solve analytically, it can be
solved numerically. Alternatively, an approximate solution o= 727m1n6 (15)
can be obtained. Start by writing eq. (3) in the rearranged AT '
form, Assumingk, ¢ and e are constant (independent of the
o c ' mg velocity vg), AT will be constant for each contact sineg
r = Ty exp (*TRt) sinwgt + & x depends only on the system parameters andm.

C C
[eXp (*%t) (COS wqt + CY— Sinwdt> - 1} . (7) C. Natural Frequency and Damping Ratio

The undamped natural frequeney, = /k/m, can be
Assuming ¢ < 1, which is reasonable for a bouncing expressed from eq. (14) as

ball such as a ping-pong ball, the second term on the right- 1

hand side in (7) can be neglected andan be approximated Wn = X7 [72 + (Ine)?] (16)
as
The damping ratiog,
Vo C .
r=——exp (,775) sinwgt . (8)
Wy 2m ¢ . wWq? c
The contact time,AT, can be found as the minimum wa?  2vkm

nonzero solution of eq. (8) set equal to zero giving can be found by substituting egs. (14) and (15) giving

AT — s ’ 9 _ Ine
wd © ¢ w2 + (lne)? (47

wherewy, is specified by eq. (4). Equation (9) represents akqg. (17) indicates that the damping ratio depends solely on
approximate solution for the contact time at the first bouncéhe coefficient of restitution.



D. Coefficient of Restitution and Time of Contact assuming the contact times at the bounces are identical.

For a given ball, the mass is readily available whereas Noting that the flight time for théth bounce can be written
the parameters; and ¢ or, alternatively,w, and ¢ are aSTi = eT;—y fori>2andT, = eTp, the total flight time
generally unknown. From\T' and e, which are also un- for the number of bounces can be calculated using eq.
known (but can be found experimentally),and ¢ can be (22):
determined from eqgs. (14) and (15), oy, and ¢ can be
determined from eqgs. (16) and (17).

The total number of bounces of the ball, and the total

1
Tflight = §TO + Tl +-+ Tn

1
= 71—‘()+T1(1+e+...+671—1)

time, Tyota1, that elapses from when the ball is dropped until 2

it comes to rest are two parameters that can be determined B lT T 1—ent
readily in an experiment. They are indicated in the bounce = glotdoe{ 74—
history diagram of Figure 3. In the following, it is shown 1 14+e—2e
that withn andT},:,; assumed knownAT ande, and thus = §T0 (1_6> .

k andc, can be determined under the assumption of constant
AT ande for all bounces and neglecting aerodynamic dragSince T, = 2 % the total flight time for the number of

bounces: can be expressed as,

He|ght First Second Third n-th
Bounce Bounce Bounce Bounce n
i=1 i=2 i=3 i=n Tjright = QhO(M) . (24)
hy v=0 1 : ! ! g 1—e¢
h \\ ' v="0 i i i Substituting egs. (20), (23), and (24) into (21) gives
o\ a i e
hy \i / \ i i i Tiotar = @ X
Fall Y Rise| Fal Y Rise Fal\!/ Rige ! 9
: 1+e—2e"
il 1 Vl‘ s 2l . Oeesa [\/5 (—i—lee) + ne™y/72 4 (In 6)2:| . (25)
l— 14T —| JENEN . — €
Ao Y Time . ) )
T | Eq.(25) can be viewed as a single equation for unknewn

in terms ofT;.:q;, n, andhg. The latter three quantities can

Fig. 3. Bounce history showing height versus time. readily be determined experimentally.

E. Approximations

It is possible to develop simplified approximate relation-
h; = e*'hy (18) ships for the case dflne) /x| < 1, which for a ratio of 0.1

or smaller corresponds @73 < e < 1. This case would

be representative of a ball with significant bounce, such as
' a ping-pong ball.

For thei-th bounce, the height the ball can reach is

wherehy is the height when the ball is dropped singe=
ev,_1 = e'vg andv; = +/2gh;. For the ball to come to rest

h, = eX"hy < mg (19) For this case, eq. (14) can be approximated as
n — kj - 9
where the upper limit is given by the equilibrium position k=m (E) ; (26)

of (5). Substituting eq. (14) into the equality of (19) and ,. , . . L
rearranging gives an expression for the contact tih@&, which itself is an approximation of eq. (9),

in terms of unknowre: AT~ T , 27)
wTL
AT = " ho [72 + (Ine)?] (20) i.e., the contact time at a single bounce is simplyimes
g

the inverse of the undamped natural frequency. The contact
The total time is the sum of the total flight tim@&;;;,,,, time can also be approximated, from eq. (20), as

and the total contact timé,.,,;qcts 3
AT = ey [ 22 28
Ttotal = Tflight + Tcontact (21) en g ( )
where From eq. (17), it is also possible to write the damping
1 n ratio for the case of higher values ofas
Tt1ight = iTo + ZTz (22) lne
i=1 (2 —— (29)
™

and providing a simple direct connection between the damping

Teontact = NAT (23) ratio and the coefficient of restitution.



Simplification of eq. (25) gives value is slightly higher than that determined ferat the

first bounce based on pre- and post-impact velocities from
Thotal = 2ho (1+e (30) the high-speed digital video images (i.e., by applying eq.
o g \l—e (10)).

It is also possible to determine the coefficient of restitu-
tion from the approximate equation (30). From this equa-
tion, for Ty,1a1 = 7.5 s, the coefficient of restitution is
e =0.94.

for largern ande. Eq. (30) does not depend en and can
be rearranged to find a simple equation éom terms of

Ttotal-

IIl. NUMERICAL AND EXPERIMENTAL STUDIES

A ping-pong ball (Harvard, one-star) was dropped fron?" Predicted Contact Time
rest from a measured initial height of 30.5 cm onto a The contact time at a single bounce can be found from
(butcher-block top) laboratory bench. The acoustic signakq- (20) or the approximation of eq. (28). These relations
accompanying the ball-table impacts were recorded usinga§e shown graphically in Figure 5, from which the contact
microphone attached to the sound card of a PC. The methedn be determined by inspection given the total number of
follows the procedure described in [6]. bouncesy, and the coefficient of restitutior, Forn = 70

From the temporal history of the bounce sounds onde = 0.93, the predicted contact timaAT = 3.4 ms.
successive impacts, the total number of bounces was dEhis value exceeds the contact time Aff" = 1.0 ms for
termined to ben = 70 and the total bounce time was the first bounce measured by the high-speed digital video
determined to b&}ytq = 7.5 S. system.

The mass of the ball used in the experiment was measured
to bem = 2.50g. (The ball used was an older official ball.
The rules of the International Table Tennis Federation were 45}
changed in September 2000 and now mandate a 2.7 g ball.)

In addition to the acoustic measurement, a high-speed
digital video (using a Redlake Imaging MotionScope) wasg3-5

ul

taken. £ 3t
g

A. Predicted Coefficient of Restitution E2.5t

The coefficient of restitution can be found from eq. (25)g 5|

given known initial heighthg, total timeT;,;4;, and number §15_

of bounces,n. The relationship is shown in Figure 4 for
the case ofiy = 30.5 cm and indicates that the total time  1f
is not significantly dependent on the number of bounces, 45|
especially for a large number of bounces.

%O 5‘5 7‘5 80

60 65
Number of Bounces, n

12 T T T T T T T

Fig. 5. Contact time at a single bounce as a function of number of bounces
€=0.950 and coefficient of restitution from eq. (20) and from approximation of eq.
10f

(28) for a drop height of 30.5 cm.

0 i C. Predicted Stiffness and Damping
qg’ 6 0925 Values of the linear stiffness and the viscous damping
g 0.900 coefficient of an equivalent mass-spring-damper model of a
e j! 0875 ball can be de_termmed. . o .
0.850 An expression for the stiffness is given in eq. (14)
and in simplified approximate form in eq. (26). Figure 6
2 graphically depicts these relationships in termsgfn for
e=0.700 the range of coefficient of restitution40 < e < 0.95 for
95 5 2 = o - = 5 Too several v_alues of contact time. The_ gpproximate equation
Number of Bounces, n (26) provides a highly accurate prediction of the result from

Fig. 4. Total time as a function of number of bounces and coefficient g¢d- (14), Showing only slight deviation at smaller values of

restitution from eq. (25) for a drop height of 30.5 cm. €.
For the case of the ping-pong ball dropped from an initial
Figure 4 provides a means to identify by inspection théeight of 30.5 cm and withAT' determined to be 3.4 ms,
coefficient of restitution. In particular, fof..q; = 7.5 s k/m = 8.5 x 10°> s? and is not a function ot. For m =
andn = 70, the coefficient of restitution is = 0.93. This  2.5g, then the stiffnesd = 2.1 N/mm (or kPa). As indicated



For the case oAT = 1.0 ms ande = 0.93, w, = 3100
rad/s or500 Hz.

From eq. (17) or the approximation of eq. (29) it is
. [Dashed Line = Approximation] - - possible to predict the damping ratio. Fer= 0.93, the
damping ratiol = 0.023. The small value of damping ratio

indicates a very lightly underdamped system.

IV. DISCUSSION

The total time from the when the ball is dropped until
when it comes to rest is comprised of two phases: flight
times and contact times. Although the total contact time
summed for all bounces is a small fraction of the total flight
time (approximately 3 percent), it is included in the model.

The analytical development assumes constant mass-
10 i i i ; ; ; ; ; ; . spring-damper model parametens, k, andc, and constant
04 045 05 035 06 085 R%;titu(%ié%, L8 085 09 coefficient of restitutione. A consequence of assuming that
Fig. 6. Stiffness divided by mass as a function of coefficient of restitutiorghese parameters are constant Is a constant contact time,
and cbntact time from eq. (14) and for approximation from eq. (26). AT, at each t_)ounce' ) .

The analysis neglects aerodynamic effects, which occur
in reality. By not accounting for aerodynamic drag of the
above AT was measured to be 1.0 ms from the high-spedohll during flight, the approach gives a higher coefficient of
digital video. With this valuek/m = 1.0 x 107 s> and the restitution than otherwise would be predicted.
stiffnessk = 25 N/mm (or kPa). The approach predicts a contact time three times greater

An equation for the damping coefficieatvas developed than that found by an independent method (3.4 ms vs 1.0
in eg. (15), and is plotted in Figure 7 agm as a function ms using high-speed digital video). Reconciling this large
of both e and AT, showing clear dependence on both. difference requires further study into the errors resulting

Fore =0.93 and AT = 3.4 ms,c¢/m = 43 s~! and for from the underlying assumptions, namely, neglecting aero-
m = 2.5g then the damping coefficient= 0.11 N-s/m. For dynamic drag and adopting a linear, fixed mass-spring-
the case ok = 0.93 and AT = 1.0 ms,¢/m = 145 s~ damper model.
andc = 0.36 N-s/m. It is noted that the equivalent damping Several observations can be mad#: the larger the
is predicated on knowledge efand the value of the contact contact timeAT, the smaller the stiffnesk and the larger

k/m (32)

5|

time AT. the damping:, (ii) the larger the coefficient of restitutian
the smaller the damping (iii) the coefficient of restitution

1000 ' ' ' ' e does not strongly influence the stiffnelss(iv) the larger
900f . the coefficient of restitutiom, the larger the total time, and

(v) the number of bounces (assumingn > 20) does not

800f . h
strongly influence the total time.

700F

V. CLOSING
600F

This paper examines relationships bridging linear equiv-
alent model parameters, namely the mass, stiffness, and
damping of a bouncing ball, with the classical concept of
coefficient of restitution and time of contact between a ball
and a surface. Under the assumption of no aerodynamic
drag and constant coefficient of restitution for all bounces,
the derivation shows that the stiffness and damping, or al-
. . ternatively the natural frequency and damping ratio, can be
Coeffitent of Restiiuton, e 09 expressed explicitly in terms of the coefficient of restitution
Fig. 7. Damping coefficient divided by mass as a function of coefficien?md _tlme of contact. T,he forml“!latlon, also, considers the
of restitution and contact time from eq. (15). special case for bouncing balls involving higher values of

the coefficient of restitution for which simple approximate
) ) ) expressions can be derived for parameters of the ball model.
D. Predicted Natural Frequency and Damping Ratio The results of an experimental test are used to provide

From eq. (16) or the approximation from a rearrangememredictions of the equivalent stiffness and damping, as well
of eq. (27) it is possible to find the natural frequency. Foas natural frequency and damping ratio, and coefficient of
AT = 3.4 ms ande = 0.93, w, = 920 rad/s or150 Hz. restitution for a bouncing ping-pong ball.

500F
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