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Development of linear quadratic control laws via control
parametrization

MARK L. NAGURKATY and VINCENT YEN{

A control parametrization approach for determining the near optimal solution of
linear quadratic (L.Q) problems is developed. By assuming each control variable
to be piecewise continuous, the proposed approach converts an LQ problem into
an unconstrained quadratic programming problem. The near optimal control
response can then be determined by solving a system of linear algebraic
equations. The control parametrization approach can eliminate the major repe-
titive computations in designing an LQ control law, a process that often involves
multiple adjustments of different weighting matrices. This feature makes the pro-
posed approach a computationally attractive tool for LQ controller design. Simu-
lation studies show that the control parametrization approach is particularly well
suited for large scale systems that possess a small control/state dimension ratio.

1. Introduction

The idea of converting optimal control problems into mathematical program-
ming {MP) problems via trajectory parametrization is not new. For example, Hicks
and Ray (1971) and Goh and Teo (1988) proposed casting optimal control problems
as MP problems using control parametrization methods. Sirisena and Chou (1981)
and Nagurka and Yen (1990) suggested using state parametrization approaches for
converting optimal control problems into MP problems. Neuman and Sen (1973)
and Vlassenbroeck and Van Dooren (1988) parametrized both state and control
variables to convert optimal control problems into MP problems.

The advantages of using trajectory parametrization are most evident in solving
non-linear and/or constrained optimal control problems. The solutions of these
optimal control problems are often impractical to obtain using traditional methods
such as variational techniques. In general, the difficulties can be overcome by draw-
ing upon the power of non-linear programming solution algorithms. As a result,
most previous trajectory parametrization approaches have been developed for non-
linear and/or constrained optimal control problems.

This paper concentrates on the application of a control parametrization
approach for solving the unconstrained linear quadratic (L.Q) problem. The study of
such a fundamental problem is valuable for several reasons. First, the LQ problem
represents one of the most important problems of linear optimal control, and its
solution serves as the basis for linear feedback system design. Second, by using a
technique such as quasi-linearization, an unconstrained non-linear optimal control
problem can be converted into a sequence of LQ problems (e.g., see Bashein and
Enns 1972). An efficient solution method for LQ problems can thus reduce the
computational cost in solving unconstrained non-linear optimal control problems.
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Third, unlike non-linear and/or constrained LQ problems, traditional methods
for solving unconstrained LQ problems are very well developed. It is thus interesting
to see whether trajectory parametrization holds any advantage over traditional
methods in solving unconstrained LQ problems.

This paper is organized as follows. The basic methodology of converting an LQ
problem into an unconstrained quadratic programming problem is described in §2;
§ 3 illustrates the application of the proposed approach for solving LQ problems with
varying performance index weightings; the advantages and drawbacks of the pro-
posed approach are addressed in §4; conclusions are drawn in § 5.

2. Basic methodology
The behaviour of a linear, time-invariant dynamical system is governed by the
state-space model

x(t) = Ax(t) + Bu(s) . (n

with initial condition ‘
x(0) = x, (2)
where X is an N x 1 state vector, U is an L x 1 control vector, A is an N x N system
matrix, and B is an N x L control influence matrix. The design goal is to find the

optimal control u(¢) and the corresponding state x(¢) in the interval [0,7] that
minimizes the quadratic performance index

m:f@mm+ﬂwm+fmmt 3)

Here, H and Q are real, symmetric, positive-semidefinite matrices and R is a real,
symmetric, positive-definite matrix. It is assumed that the state and control vectors
are not bounded, the terminal time 7 is fixed, and the terminal state x(7) is free.

The first step of the control parametrization approach is to divide the interval
[0, 7] into J equal intervals [ty, t1], [t1, 2], ..., [¢7_1, ts], where fy =0 and ¢; = 7. It is
assumed that each of the L control variables has a single value in each interval
[t-1,4), j=1,...,J, and is piecewise continuous in [0, 7]. The system can thus be
converted into the following discrete-time model:

x(j+1) = x(j) +yu(j) forj=0,...,J—1 @
where the state transition matrix ¢ and the control influence matrix - of the discrete
model are

At
¢=exp(AA, y= Jo exp (Ar)dtB (5a,b)

Here, the interval length is written as Af and, for the sake of simplicity, x(¢;) and
u(¢;) are denoted by x(j) and u( ), respectively. Multiple applications of (4) lead to
the following equation:

, Vil S
X(j) = ¢/%x(0) + ) ¢’ u(i) (6)
i=0

Based on (6), the relationship between the state and control trajectories can be
established as

X = ©x(0) + U (7)



LQ control laws via control parametrization 2127

where
[ x(1) u(0)
2 1

X = x(_) , U= u(') (84,5)
| X(J) ] svxi u(J — 1) | s
6 ~ 0
¢* oy ¥ 0 ... ... 0

¢ = ) r= . . . (9a7b)
[ &7 | wen ¢’y ¢y 1 avxir

The adjoining subscripts represent the dimensions of the matrices. By linking the
control and the state, (7) can be used to convert the performance index into a
function of control parameter vector U.

The control integral part of the performance index can be rewritten as

r J
J u™Ru]dt = 3" uT(/)Ru()) At (10)
Note that due to the assumed unit-step nature of the control variables, (10) is not an

approximation. By employing Simpson’s rule, the terminal state and state integral
part of the performance index can be approximated by

- J
xX"()Hx(J) + | X"Qx]dr~ S xT(7)Q;x(j)At (11)
0 Y
Jj=0
where the matrices Q; are defined as
1q, forj=0
iQ forj=2,4,...,0J -2
= E ] [t ’ 12
9 1Q, forj=1,3,...,0—-1 (12)

lQ+H, forj=J

with J assumed to be an even number. Note that the exact value of this part of the
performance index can be computed as a finite sum of the state vector values (e.g.
Dorato and Levis 1971). Simpson’s rule is adopted due to its satisfactory accuracy
and simplicity.

By combining (10) and (11), the performance index PI can now be approximated
by PI*:

PI' = % (UTR'U + X"Q"X + x"(0)Qyx(0)) (13)
where
R 0 @ °
Q,
R* = , Q* — (14 a, b)
0 Rl s

0 QJ JNxJN
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By substituting (7) into (13), the converted performance index can be rewritten as

PI* = % (UTAU + UTQx, + xJ Wx,) (15)
where
A=R +r'Q'T, Q=r'Qs, v=qQ,+¢'Q'¢ (16 a—c)
The necessary condition for minimum PI* is
d(:; ) =0 (17
which leads to
(A + AU = 2AU = —Qx, (18)

Equation (18) represents a system of linear algebraic equations from which U can be
determined. In (18), only the right-hand side vector depends on the initial condition.
As a result, LQ problems involving the same system and the same performance index
but different initial conditions can be handled efficiently by using matrix inverse
based routines, such as LU decomposition.

An important characteristic of (18) is that its dimension (L x J} is not a function
of the system order. As a result, the computational cost of solving (18) is pro-
portional to O(L3J?) and is independent of the number of state variables. Conse-
quently, this control parametrization approach can efficiently handle high order LQ
problems that have a few control variables provided that the number of time inter-
vals J is not too large. The following example investigates the efficiency and accuracy
of the proposed approach, with special attention given to the influence of the number
of control variables.

Example 1
Consider a class of 10th order systems defined as
0o 1 0
0 0 1 0
x=|: X+ Bjg.u, forL=1,...,10 (19)
0 0 1
-1 -1 ... =1 —=1]0x10

with initial condition
x(0)=1 1 ... 1° (20)

Note that the number of control variables L of these systems ranges from 1 to 10.
The corresponding control influence matrix B has dimension 10 x L and contains
the first L columns of a 10 x 10 identity matrix. The objective is to generate the
optimal state and control vectors at ¢t = 0-1,0-2,...,1-0 with the performance index
specified as

1
Pl = %J [x"x + uTu] at (21)
0

These problems were solved using the control parametrization approach and a
transition matrix approach. The basic idea of the transition matrix approach is to
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derive the necessary condition of optimality of an LQ problem as a linear two-point
boundary-value problem (TPBVP). By evaluating the transition matrix of the corre-
sponding system matrix, the TPBVP is converted into a standard initial value
problem that can be readily solved. For more information on the transition matrix
method, readers are referred to Speyer (1986).

The computer programs used in this and the next example were written in the C
language and compiled with a Turbo C compiler (Version 2.0). Efforts were made
to optimize the speed of the computer codes. The simulations were executed on a
25 MHz 386 PC with an 80387 coprocessor. To verify the accuracy of the approach,
the value of the performance index from the control parametrization approach was
compared to the value obtained from the transition matrix method. The execution
time (in seconds) was recorded for each simulation and is used as an index of
computational efficiency. The results are summarized in Table 1.

The control variable histories from the transition matrix method and the control
parametrization approach for the case of L = 1 are plotted in Fig. 1. In this figure,
the quantized curve refers to the control parametrization solution. The continuous
(smooth) curve refers to the transition matrix solution. Figure 1 shows that the
control response generated from the control parametrization approach represents
a good approximation of the true optimal solution obtained by the transition matrix
method.

Several conclusions can be drawn from the results of Table 1. First, the
inaccuracy of the control parametrization approach increases with the number of
control variables, although it provides satisfactory engineering accuracy (less than
1% error in performance index value) in all cases. Second, the computational cost
of the transition matrix approach seems to be insensitive to the number of control
variables, whereas the execution time of the control parametrization approach
increases as the number of control variables grows. In particular, the execution time
of the control parametrization approach is reduced in solving problems where the

Transition Control
matrix parametrization Comparison
L PI Time PI Time % Errort % Time}
1 21-6956 58 21-6983 2-3 0-01 39-66
2 19-6023 5-8 19-6089 27 0-03 46-55
3 17-5887 58 17-5989 32 0-06 55-17
4 157297 5-8 157427 40 0-08 68-97
5 14-0128 58 14-0282 49 0-11 84-48
6 12-4330 58 12-4503 61 0-14 105-17
7 11-0336 59 11-0525 7-6 0-17 128-81
8 10-0080 59 10-0281 93 0-20 157-63
9 9-6834 60 9-7061 11-4 0-23 190-00
10 9-3877 60 9-4103 14-3 0-24 238-33

T Percentage difference of performance index of control parametrization approach relative
to performance index value of transition-matrix approach.

1 Percentage of execution time of control parametrization approach relative to execution
time of transition-matrix approach.

Table 1. Summary of simulation results of Example 1.
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Figure 1. Control variable history for Example 1.

number of control variables is less than or equal to half the number of state vari-
ables. This result is expected since, as mentioned earlier, the computational cost for
solving (18) decreases with the number of control variables. This characteristic
makes the control parametrization approach a very attractive tool for handling
‘real-world’ high order LQ problems. In many practical large scale engineering
systems, the dimension of the control vector is only a small fraction of the dimen-
sion of the state vector.

As shown in Table 1, the control parametrization approach becomes less efficient
as the dimension of the control vector approaches the system order. This may
suggest that the proposed approach is best suited for systems whose control/state
dimension ratio is small. In the following section, additional features of the control
parametrization approach are explored. It is shown that the control parametrization
approach can be used for efficient design of LQ control laws for systems with any
control/state dimension ratio.

3. Designing LQ control laws with different weighting matrices

In the synthesis of an LQ controller, the elements of the weighting matrices need
to be determined. Unfortunately, general methods for selecting Q and R do not seem
to exist. As a consequence, weighting matrices are typically determined by trial-and-
error methods, generally requiring many iterations. In practice, computationally
efficient ‘open-loop’ approaches such as the transition matrix method are often used
in this iterative design process. For example, a computer simulation of an open-loop
method is conducted to determine the state and control histories for different test sets
of Q and R. The state and control trajectories are then inspected by design engineers
and this process is repeated until weighting matrices are identified that give satis-
factory performance (e.g. speed of response) without saturation of the control
variables. Once the desired @ and R have been found, a computationally more
intensive ‘closed-loop’ approach such as a Riccati equation-based method is used
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for implementation. In summary, an open-loop approach such as a transition matrix
method is often employed in the early stages of LQ controller design. Given a
satisfactory design, a closed-loop approach is then implemented.

In this section, the possibility of reducing the computational cost of the control
parametrization approach is investigated. By eliminating the repetitive part of the
computations, the control parametrization approach can achieve higher efficiency in
the iterative process of LQ control law development. In the following subsection,
modifications of the state weighting matrix are investigated.

3.1. Change of state weighting matrix

It is assumed that the LQ problem defined in § 1 has been solved at least once for
a given set of Q and R. The goal of this subsection is to develop a method to
accelerate the generation of new near optimal state and control trajectories when
Q is subsequently modified.

The discrete time model defined by (4) is not a function of the weighting matrices.
Equations (5)—(9) are also independent of the weighting matrices. Consequently, the
results of these equations, once obtained, need not be recomputed if changes are
made only to the weighting matrices. The next step is to analyse the structure of
the approximating performance index PI* defined by (15). The purpose is to elim-
inate redundant computations associated with the construction of the approximate
performance index. It can be shown that (15) can be decomposed into the following
form:

PI* = PI + PI} + PIj (22)
where
. IJ=1 T _y .
PI; =53 x"(0)("YQ#/x(0) (23)
j=0
L ) UM ST P 29
’ 251= ’
1=1y=1y-1 T T N ik
P = u' ()" (") 7 Qe (k) (25)
j=0 i=0 k=0

In (23), the square matrix associated with the quadratic term of the initial state
vector x(0) has the following property:

vee ((¢")/Qi¢’) = ((¢7) ® (¢7)/) vec (Q)) (26)

where the vector valued function vec and the Kronecker product ® are defined,
respectively, as

dy E
vee(©) = | |, DoE=]| " (274,b)
C, dplE - dpqE

In (27 a), n is the row number of matrix C and ¢; is the ith column vector of matrix C
fori=1,...,n In (275), matrix D has dimension p x ¢. For further details on the
properties of the Kronecker product, readers are referred to Brewer (1978).
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The advantage of reformulating (23) as (26) is that it decouples the state
weighting matrix from the system parameters. In particular, the term associated with
transition matrix ¢ can be stored in computer memory and retrieved later when the
state weighting matrix Q is changed. The number of variables that need to be stored
is JN*. The same technique can be applied to (24) and (25) to further reduce the
repetitive parts of the computations. In particular, (24) and (25) can be reformulated
as

vec (7' (¢7) 7' Q) = ((87) ® [v" (¢7)/ 7)) vee (Q)) (28)

and
vee (7 (¢TY Q¢ Y ) = (070N e (@Y T vee (@) (29)

From (28) and (29), the number of variables that need to be stored in computer
memory is LJ2N? and JEL2N?, respectively. Hence, the memory requirement for
such a method is quite large and the improvement in computational speed can only
be achieved when sufficient storage is available.

3.2. Change of control weighting matrix

This subsection considers the situation in which only the control weighting
matrix R is changed. In this case, the performance index (15) and the necessary
condition of optimality (18) can be updated easily provided that the state weighting
part of the performance index in (16) has been stored. The number of variables that
need to be retained in memory is L*J? + LIN + N%. The computer storage require-
ment is much less than the requirement for the technique developed in §3.1.

After the updating process, the necessary condition of optimality must be solved
again to regenerate the optimal solution. The following part of this subsection
investigates the possibility of circumventing the complete repetition of the process
of solving (18). In particular, LDL matrix factorization and a matrix inverse updat-
ing technique are suggested.

Attention is first given to LDL factorization. It can be shown that the matrix A,
defined by (164), is a positive-definite matrix and thus can be written as

2A = LDLT (30)

where L is a lower-triangular matrix with unit diagonals and D is a diagonal matrix.
The computational requirement of this LDL factorization process is of order 0(n3/ 3)
(see e.g. Golub and Van Loan 1989) where » is the dimension of matrix A. In
comparison, solving U from the factorized equation (18) requires only O(n?) float-
ing point steps. Therefore, the LDL factorization process represents the pre-
dominant part of the computational cost for solving a system of linear algebraic
equations. Note that LDL factorization is essentially a matrix inverse scheme. This is
because a system of linear algebraic equations can also be solved in O(n2 ) floating
steps when its matrix inverse is known.

The LDL matrix factorization method has two distinct advantages in our appli-
cation. First, it can solve the necessary condition of optimality more efficiently than
other standard linear algebraic equation solvers. Second, the LDL factorization
provides an efficient means for updating factorized matrix L and D when the matrix
of interest is modified via a single or a series of rank-one changes. This LDL
factorization-based matrix inverse updating technique and its application to the
proposed optimal control approach are addressed next.
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Suppose that (18) has been factorized and is now of the following form:
2AU = (LDLTU = —0x, (31)

It is further assumed that a rank-one change is applied to matrix A so that the new
matrix A* can be represented as

2A* =2A + ayy" = L*'D*L*T (32)

where Yy is a column vector and « is a real scalar variable. It is assumed that the
modified matrix A* remains positive-definite. For any given y, it can be shown that
there exists a column vector g that satisfies the following equation:

Lg=y (33)
Substituting (33) into (32) gives
2A* = L(D + agg")LT (34)
The middle term of (34) can be factorized as
D+agg” = LBLT (35)

From (32) and (35), the following results can be obtained
L*=LL, D*=D (364, b)

Note that such an updating operation has the same effect as updating the matrix
inverse. Due to the special structure of LDL factorization, the new L* and D* of A*
can thus be generated with only a computational cost of order O(nz). The compu-
tational requirement can be further reduced when the leading rows of y are zeros.
The detailed algorithm for this LDL factorization-based matrix inverse updating
scheme can be found in Gill et al. (1974) and Gill and Murray (1977). The next
question is how to apply this matrix inverse updating technique to the solution of the
LQ problem.

Assuming that the control weighting matrix is diagonal and is changed from R
into P, then matrix A of (18) can be modified using a series of rank-one changes.
Specifically, the modification can be represented as

L J
=A+>D (pi~r)Yhyy (37)

i=1 j=1

where r; and p; are the ith diagonal elements of matrices R and P, respectively. The
term y; is a column vector with the only non-zero element being unity in row
-1 J+j.

In designing an LQ controller, the welghtlng on each of the control variables is
frequently scaled one at a time. If this is the case, the above transformation can be
simplified to

=A+ Z(p, — 1YY (38)

Here, it is assumed that only the ith diagonal term of R is changed. The following
example will address the comparative efficiency of the proposed LDL factorization-
based updating method in solving LQ problems with varying control weighting.
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Example 2

The specifications of the system and performance index used in this example
are identical with those of Example 1. The emphasis here is to study the relative
computational efficiency in solving LQ problems with varying control weighting.

Three control parametrization strategies were tested. In the first approach, the
general control weighting updating method is employed to eliminate the compu-
tations associated with (4)—(14). This method does not use the LDL-based matrix
inverse updating technique. As a result, the complete process for solving (18) has to
be repeated. The advantage of this approach is that the control weighting R can be
changed in an arbitrary manner provided that it remains positive-definite. The
second and third techniques are applicable only when changes are made to the
diagonal terms of R. In the second case, the diagonal control weighting updating
method permits changes to all or part of the diagonal terms of R. The necessary
condition of optimality can be modified using (37). In the last method, the single
control weighting updating method, only one control variable weighting is changed
at a time. Consequently, (38) is used to update the necessary condition of optimality.
Additionally, the last two methods use the matrix inverse updating method described
above to speed up the solution of (18).

The benchmark results are summarized in Table 2. The results show that the
computational cost of the three control parametrization strategies increases with the
number of control variables. However, the optimal solutions are generated more
slowly via the transition matrix method when changes are made to the control
weighting matrix. Only in the case of the general control weighting updating method
(i.e. the first method) with L = 10 is the execution time faster for the transition
matrix method.

In comparing the three strategies, the results show that the general control

Control weighting updating
methods of control
parametrization approach

Transition

L matrix Generalf Diagonal} Single§
1 5-8 0-04 0-04 0-04
2 5-8 0-12 013 0-11
3 5-8 0-29 0-28 0-21
4 58 0-56 054 0-33
5 58 1-00 0-95 0-51
6 58 1-60 1-49 0-71
7 59 2:45 2-24 095
8 59 3-52 3-16 1-21
9 6-0 4-89 4-37 1-54

10 60 6-85 5-84 1-90

1 Execution time of control parametrization approach when control weighting matrix is
arbitrarily changed.

1 Execution time of control parametrization approach when all or part of the diagonal
terms of control weighting matrix are changed.

§ Execution time of control parametrization approach when only one diagonal term of
control weighting matrix is changed.

Table 2. Summary of execution time of Example 2.
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weighting updating method is the slowest. The computational efficiency can be
improved by employing the diagonal control weighting method if changes are made
only to the diagonal terms. The single control weighting updating method, involving
changes to only one of the diagonal terms of R, is the fastest. Table 2 shows that for
the case of L = 1, the three control parametrization strategies run two orders of
magnitude faster than the transition matrix approach. Moreover, this order of saving
in computational time is maintained up to L = 5 for the single control weighting
updating method. These results suggest a particularly efficient strategy for handling
problems whose number of control variables is significantly less than the system
order.

In this and the previous example, the final time 7 and the number of time
intervals J have been assumed to be fixed. However, it may be necessary to increase
J as 7 grows larger in order to maintain the accuracy of the control parametrization
approach. In the following example, the influence of final time 7 is investigated.

Example 3

The system and performance index in this example are the same as those of
Example 1 with the following exceptions: (i) the final time 7 is no longer fixed,
and (ii) only the case of L =1 is considered. The computer programs used in this
example were written in the C language and compiled with a Turbo C++ compiler.
The simulations were executed on a 25 MHz 486 PC.

To investigate the influence of final time, problems with 7 = 1,2, 3,4, and 5 were
solved by both transition matrix and control parametrization approaches. The
number of control parameters was chosen to be 10 in all five cases. The percentage
difference of performance index values of the control parametrization approach
relative to the transition matrix approach and the relative percent execution time
are summarized in Table 3. It shows that the computational efficiency of the control
parametrization approach improves slightly with the increase of 7. However, the
error of the proposed approach increases significantly as the final time 7 grows.

To study the accuracy of the control parametrization approach, simulations for
the case of 7 =15 were conducted using J =10, 20, 30, 40 and 50. The results
are summarized in Table 4. They confirm that improvement in accuracy of the
proposed approach can be achieved by increasing the number of control par-
ameters. Table 4 also shows that this improvement is achieved at the expense of
increased computational cost. In particular, the proposed approach becomes less
efficient than the transition matrix approach when J is equal to or larger than 30.

T % Errorf % Time}
1 0-01 37-8
2 0-03 360
3 0-15 350
4 1-18 333
5 4-52 329

T Percentage difference of performance index of control parametrization approach relative
to performance index value of transition-matrix approach.

1 Percentage of execution time of control parametrization approach relative to execution
time of transition-matrix approach.

Table 3. Summary of simulation results of Example 3 for problems with different 7.
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Number of control

parameters J % Errort % Time}
10 4-52 329
20 1-15 654
30 0:51 115:0
40 0-29 171-8
50 0-18 250-9

t Percentage difference of performance index of control parametrization approach relative
to performance index value of transition-matrix approach.

{ Percentage of execution time of control parametrization approach relative to execution
time of transition-matrix approach.

Table 4. Summary of simulation results of Example 3 for problems with different number of
control parameters.

Results from Tables 3 and 4 suggest that the proposed approach may not be suitable
for problems with large final time.

While problems with long final times may require a large number of control
parameters in order to achieve high accuracy, it should be noted that the accuracy
of the proposed approach may not necessarily be critical. The control parametriza-
tion approach is promoted as a simulation tool for predicting the system responses
efficiently and thus useful for assisting designers in selecting appropriate weighting
matrices. With the completion of the design stage, approaches such as a Riccati
equation solver can be adopted for closed-loop implementation. It is at this imple-
mentation stage that the accuracy of the LQ control law is determined. Hence, the
solution obtained from the control parametrization approach can be considered
satisfactory provided that it predicts the general trend of the true optimal solution.

Table 3 indicates that for the final times investigated, the case of 7 =15 and
J =10 has the largest error (4:-52%) in performance index value. For this case,
the control variable history of the parametrization solution is compared to the
optimal control variable history in Fig. 2. In addition, the time histories of the state
variable x|y obtained by the transition matrix approach and the proposed approach
are compared in Fig. 3. These figures demonstrate that the control parametrization
approach successfully predicts the pattern of the optimal control # and optimal state
variable x;5. Although not presented, simulation results for the other nine state
variables show a similar match of the proposed approach to the optimal solution.

4. Discussion

The computational requirements of control parametrization can be divided into
three parts. The first part is related to the conversion from the continuous time
model to a discrete time model (i.e. (4)). This process requires the evaluation of
the transition matrix. The second part of the computational cost involves the con-
struction of the performance index PI* (defined by (15)) and the corresponding
necessary condition of optimality (defined by (18)). In particular, the terms defined
in (16) have to be evaluated. The last part of the computation cost is incurred in
solving the necessary condition of optimality.

The development of an optimal LQ control law typically involves adjustments of
the state and control weighting matrices. In the standard approach, changing the
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Figure 2. Control variable history for Example 3.

elements of the state and/or control weighting matrices requires a complete rep-
etition of the solution process. These multiple solutions in the LQ design process
can be partially avoided by control parametrization. In particular, the first and
second part of the computations (described in the previous paragraph) can be
eliminated. Consequently, the computational requirement for constructing the per-
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Figure 3. State variable x4 history for Example 3.
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formance index PI* and the necessary condition of optimality can be reduced. In
addition, when changes are made only to the diagonal terms of the control weighting
matrix, the matrix inverse updating technique can be used to minimize the compu-
tational cost.

The simulation results show that control parametrization is a very competitive
methodology in terms of computational efficiency when compared to the standard
approach while maintaining satisfactory accuracy. The results demonstrate
especially impressive efficiency in handling problems with small control/state dimen-
sion ratios. The practical payoff promises to be substantial since the number of control
variables in most real, large-scale systems is only a small fraction of the system order.
For such problems, the proposed approach would be a very useful tool.

One potential problem of the proposed approach is related to the selection of
the number of control parameters. Clearly, the accuracy of the control approach
increases with the number of control parameters. Unfortunately, since the optimal
values of the control parameters are solved from a system of linear algebraic
equations, the computational cost increases (cubically) with the dimension of the
control parameter vector. As a result, the accuracy and the computational cost
become competing (trade-off) factors in applying control parametrization. This
conflict is particularly important for problems with large final time. However, as
suggested in Example 3, the accuracy of the control parametrization is not critical
provided that the proposed approach successfully predicts the general trend of the
optimal solution.

A possible future direction of this work is to develop a more sophisticated
parametrization scheme. For example, cubic splines could possibly provide a better
approximation than the unit step function based parametrization method adopted in
this paper. If so, the number of control parameters could be reduced without
sacrificing accuracy. Another possible future direction is to generalize this approach
for closed-loop systems. Currently, this possibility is under investigation and once
developed will be compared with solution approaches for closed-loop LQ problems
based on the Riccati equation.

5. Conclusion

This paper develops a control parametrization approach for solving LQ prob-
lems. Using control parametrization, the LQ problem is cast as a quadratic program-
ming problem from which the necessary condition of optimality is derived as a
system of linear algebraic equations.

As demonstrated by simulation results, the control parametrization approach
achieves high accuracy and is particularly efficient in handling high order problems
with small numbers of control variables. By minimizing the repetitive part of the
computations, the approach can very efficiently solve a series of LQ problems with
differences only in weighting matrices. Hence, the proposed approach promises to be
an effective design tool for optimal LQ control law development.
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