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Design and Development of an Affordable 
Haptic Robot with Force-Feedback and 
Compliant Actuation to Improve Therapy  

for Patients with Severe Hemiparesis 
Andrew Theriault, Mark Nagurka, and Michelle J. Johnson, Member, IEEE

Abstract—The study describes the design and development of a single degree-of-freedom haptic robot, Haptic Theradrive, for 
post-stroke arm rehabilitation for in-home and clinical use. The robot overcomes many of the weaknesses of its predecessor, 
the TheraDrive system that used a Logitech steering wheel as the haptic interface for rehabilitation. Although the original 
TheraDrive system showed success in a pilot study, its wheel was not able to withstand the rigors of use. A new haptic robot 
was developed that functions as a drop-in replacement for the Logitech wheel. The new robot can apply larger forces in 
interacting with the patient, thereby extending the functionality of the system to accommodate low-functioning patients. A new 
software suite offers appreciably more options for tailored and tuned rehabilitation therapies. In addition to describing the design
of the hardware and software system, the paper presents the results of simulation and experimental case studies examining the 
system’s performance and usability.  
Index Terms—Haptic Applications, Haptics Technology, Force-Feedback, Rehabilitation  

——————————    —————————— 

1 INTRODUCTION
OBOTS have a long-term role to play in the rehabilita-
tion of stroke survivors [1], [2], [3]. One possible role 

is as a therapy assistant in areas away from hospitals and 
inpatient rehabilitation centers. By developing more af-
fordable robotic-haptic-mechatronic systems, nursing 
homes and adult daycare centers can benefit from the use 
of robot therapy systems. For this reason, there is a trend 
towards creating less expensive systems that can achieve 
functional treatment outcomes. Past examples of low-cost 
therapy systems highlight lessons learned that inform the 
development of effective low-cost solutions for 
neurorehabilitation.  

1.1 Lessons Learned from Low Cost, Therapy 
Systems 
Lesson 1: Game therapy with low-cost systems can reduce 
motor impairment. Palanca was an early mechatronic 
system that automated the rehabilitation process using a 
game [4]; it consists of a slider on a 1 m track, interfaced 
with a computer for use as a game controller. Four sub-
jects used Palanca to play Pong, 30 minutes per day, five 

days per week, for a total of 13 sessions; overall subjects 
showed significant functional improvements of the im-
paired arm.  

Lesson 2: Low-cost force-feedback robotic systems can 
be effective and elicit increased impaired arm use, espe-
cially in training higher functioning subjects with more 
strength. Driver's SEAT, developed by Johnson et al. [5], 
introduced a low-cost driving simulator interface for re-
habilitation robots. It uses a force-feedback split-steering 
wheel with a force sensor for each hand that enabled the 
robot to respond differently to force inputs from each 
hand. In this case, the robot resists forces applied by a 
stroke patient's unimpaired arm, forcing the patient to 
use the impaired arm to assist in the completion of steer-
ing tasks. Eight stroke subjects tested the system. Low 
functioning had the most difficulty learning from the 
force cues and tended to fight the wheel especially in 
wheel positions that required them to rotate against grav-
ity. 

Lesson 3: Commercial force-feedback systems can be 
used as meaningful assessment tools; performance met-
rics derived from their use are sensitive to motor function 
level. JavaTherapy ,the TheraJoy system and UniTherapy 
software were developed to investigate the use of com-
mercial force feedback gaming joysticks as therapy robots 
in an under-supervised environment [6], [7], [8]. In [7], 
Joysticks were used to perform positioning and tracking 
exercises with the UniTherapy software, a web-based 
interface that allows both the therapist and the patient to 
design and execute tracking exercises [8]. Force feedback 
was used to provide assistive or resistive forces to the 
patient during the execution of movements. Sixteen high- 
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and low-functioning stroke subjects and eight unimpaired 
subjects performed exercise with TheraJoy/UniTherapy. 
Subject performance on exercises with UniTherapy was 
calculated using root-mean-square tracking error, per-
centage of time on target, and mean time to target [8]. The 
system distinguished between functional levels.  

Lesson 4: Low-cost therapy systems suffer from several 
drawbacks. One challenge is posing interesting tasks in 
training stroke survivors. Another challenge is faced in 
training very low functioning subjects with severe hemi-
paresis. The inability to create adequate force-feedback to 
assist the impaired limb and the inability to adapt to the 
non-uniform strength needs across the task space limit 
the effectiveness for low-functioning stroke survivors.  

The next section details challenges encountered in the 
early use of TheraDrive, a low-cost computer-aided ro-
botic system for stroke therapy. The above lessons includ-
ing those learned from using Theradrive lead to design 
requirements for a low-cost, Haptic version of 
Theradrive.  

1.2 Lessons Learned from Low Cost, Force-
Feedback and Game Therapy with TheraDrive  

TheraDrive builds on the successes of Driver's SEAT 
and TheraJoy, using off-the-shelf force feedback steering 
wheels (Logitech Wingman) as therapy robots with a sin-
gle degree-of-freedom [7], [8], [9]. The steering wheel is 
mounted on a tilting frame (0-90 degrees) and then to a 
height adjustable frame (0.45m – 0.81m). By moving the 
robot from front to side and adjusting the angle of the 
wheel forces, the upper limb is used in different planes of 
motion. A crank handle, which the patient grips, is 

mounted to the wheel. Fig. 1 shows the Theradrive set-up 
where a subject is shown seated in the side drive mode. 

Rote or Fun therapy with TheraDrive is designed to in-
crease the range of motion (ROM) of the elbow in flex-
ion/extension and the shoulder in flexion/extension and 
internal/external rotation. For rote therapy, the patient is 
presented with a point-to-point positioning task or a tra-
jectory-following task by the UniTherapy software pro-

gram. The wheel is used to move a cursor to a specified 
point or to guide the cursor along a moving path. The 
therapist can select from a large array of point layouts 
and trajectory shapes to adjust the task difficulty to the 
ability of the patient. Fun (or Game) therapy involves 
having the patient play a computer game using the wheel 
as a controller. 

Assistive or resistive forces can be generated and the 
magnitude of these forces is set by the therapist before 
each exercise. This assistance/resistance usually takes the 
form of a virtual spring that attracts/repels the patient 
from the target position, but it can be changed to emulate 
a mass, a damper, or random perturbations. 

The TheraDrive system was evaluated with 10 sub-
jects, who underwent 24 one-hour training sessions over 
six to eight weeks [9]. Subjects were divided into two 
groups: rote therapy only and game therapy only. Sub-
jects were evaluated using metrics including the Fugl-
Meyer scale and the Ashworth test for spasticity. Both 
groups showed improvements in motor function and de-
creases in spasticity, but the sample size was too small to 
determine statistical significance. The game-based thera-
pies enhanced the motivation and engagement of patients 
and resulted in a slight increase in functionality gain over 
simple tracking and positioning exercises. However, sev-
eral limitations were observed. 

Some subjects needed more assistance to complete 
tasks than the system could provide. One stroke survivor 
in the pilot study was unable to use his hand for grasping 
and had very little arm movement. He relied on a support 
sling for his forearm and upper arm to perform the exer-
cises. This underscored the need to improve the wheel 
interface to provide better support for low-functioning 
stroke survivors who have difficulty with hand open-
ing/closing and difficulty supporting the forearm against 
gravity. 

The game controllers used in the TheraDrive system 
do not perform as desired. The maximum force-feedback 
moment produced by the wheel is not sufficient and can 
be overcome by some patients. The small brushed DC 
motor driving the wheel is underpowered, supplying 1.5 
N-m of torque at the end-effector [5]. This means that the 
wheel cannot be used to build strength in all patients or 
to emulate a rigid constraint. Another difficulty with the 
wheel is its inability to withstand off-axis forces and mo-
ments. Uncoordinated patients often exert lifting or bend-
ing forces on the wheel. 

The wheel uses plastic-on-plastic bushings (not roller 
bearings), shortening its already short wear life even fur-
ther due to increased loading on its surfaces. The sliding 
surfaces produce a significant amount of wear debris, 
which embeds itself between the teeth, causing damage to 
the molded plastic gears. The gears have considerable 
backlash and compliance, both of which increase with 
wear. The backlash creates a dead zone where the force 
feedback does not influence the wheel's motion. Several 
Logitech wheels wore out over the course of the pilot 
study as a result of the large forces exerted in the normal 

 

 
Fig.1. Original TheraDrive uses commercial force-feedback steering
wheel from LogitechTM.
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and tangential directions.  
Patient-specific adaptive control is an important fea-

ture that the TheraDrive system lacks. Patients experience 
differing levels of impairment at different points in their 
range of motion, and ideally the controller would account 
for this to deliver personalized therapy. The current con-
troller is only able to simulate a constant stiffness linear 
spring. This means that during an exercise, patients can 
move the wheel with great difficulty at some points along 
its travel and with relative ease at other points. A control-
ler that adapts to each patient's impairment, based upon 
range of motion, torque, and speed is needed. 

 
1.3 Requirements for the Haptic TheraDrive 
To circumvent the limitations of the TheraDrive system, a 
new Theradrive robot, called Haptic Theradrive (Fig. 2), 
has been developed. The new system functions as a more 
powerful “drop-in replacement” for the Logitech wheel 
that can safely exert larger forces on the patient during 
therapy. It thus extends its functionality to accommodate 
low-functioning patients. Key design requirements in-
clude: 

1. The “drop-in replacement” is a computer-
controlled force-feedback robot that must fit into 
the existing Theradrive system and be able to 
mount to the adjustable frame in front and on the 
sides, allowing exercises to be performed in differ-
ent planes.  

2. The robot must be low-cost to maintain the afford-
able theme (less than $3000 USD). 

3. The robot must support torques on the crank larg-
er than 25 N-m (220 in-lb). This value was deter-
mined from preliminary work with Driver’s SEAT 
[5] where it was found that low functioning sub-
jects could, with trunk involvement, overpower a 
tangential resistance force of 50 N. 

4. The controller must be patient-specific and adapt 
to forces at the crank to accommodate a variety of 
stroke patients, especially low-functioning patients 
with motor weakness and poor coordination. 

5. The robot must be backdrivable and operate safely 
(that is, be torque limited). 

6. The forces on the crank arm of the robot must be 
measurable. 

Requirements 3-6 represent key advancements over the 
original Theradrive system. Due to stronger actuation, 
higher force assistance/resistance forces can be applied 
and done so safely using a new compliant torque limiter. 
A new crank handle measures tangential and normal 
forces (using a custom force sensor) during steering and 
allows for a wider range of motion. Adaptive control al-
gorithms afford more responsive to the level of impair-
ment and motor performance.  

The Haptic Theradrive system (Fig. 2) trains subjects in 
similar ways as the earlier Theradrive. The therapy goal is 
to improve range of motion and strength in the elbow and 
shoulder by having subjects practice tracking tasks with 
the robot in different configurations resulting from ad-

justing the height of the frame, angle of the robot, and the 
level and strategy of force-feedback.  

1.4 Achieving High-Forces and Compliance 

Other haptic robot systems have been proposed for the 
stroke therapy which are able to generate higher forces 
during training to support more impaired stroke survi-
vors [10], [11], [12] . However, the issue of ensuring that 
the human-subject interaction is compliant and safe de-
spite high forces is a matter for research.  

Achieving high forces and safe human-robot interac-
tions with impaired subjects is not trivial. Collisions be-
tween a stiff robot and a human can cause injury to the 
human and potentially damage the robot. To ensure safe 
human-machine interaction, robot actuators must have 
some amount of compliance. Compliant actuation is a 
sharp departure from that used in industrial robotics, 
where robots and actuators are made with near infinite 
stiffness. Van Ham et al. describe several strategies of 
producing a compliant actuator [14]. The simplest sug-
gested method is a series elastic actuator (SEA), consisting 
of a stiff actuator in series with a compliant element such 
as a spring. The performance of this actuator is limited 
because the stiffness cannot be adapted to different oper-
ating conditions without increasing the complexity of the 
control law. With variable stiffness, the compliant ele-
ment of a SEA is no longer passive as the actuator stiff-
ness is partially governed by the controller.  

Variable-stiffness (VS) actuators overcome this limita-
tion by introducing a second degree-of-freedom that con-
trols the stiffness of the joint. One method uses mechani-
cally-controlled stiffness, where the actuator stiffness is 
adjusted by moving the compliant element. The VS joint 
developed by the DLR in Germany is an example [15]. It 
consists of rollers pressed against a cam by a set of 
springs. The position and stiffness of the joint are con-
trolled independently by a drive motor and a smaller mo-
tor that adjusts the preload in the spring. When the joint 
is deflected, the rollers are pushed up by the cam, com-
pressing the spring. The spring restoring force pushes the 
rollers back towards the equilibrium position. Changing 

 

 
Fig. 2. Haptic TheraDrive uses custom force-feedback crank and 
fits into the TheraDrive frame to allow use of the crank in front drive 
or side drive configurations. 
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the shape of the cam allows for different spring types to 
be emulated, with progressive, degressive, or linear stiff-
ness.  

In order for the new haptic Theradrive robot to apply 
large forces to the patient safely, a torque limiter is added 
to the robot's transmission. The transmission is also made 
to be compliant to protect the patient from impact loads 
during a sudden reversal of the motor or during an acci-
dental collision between patient and robot. Both of these 
requirements are met using a single transmission ele-
ment, a compliant torque limiter that is essentially a cross 
between a drill clutch and the VS Joint. Due to this trans-
mission element in concert with the motor, gear, sensors, 
and custom force sensor etc., the new Haptic TheraDrive 
can support a low functioning subject.  

 
1.5 Achieving Force-Feedback & Adaptive Control 
Force-feedback is used to define a training environment 
that is appropriate for subjects at different functioning 
levels. Since safety is of utmost concern, developing a 
stable controller is highest priority. The goal is to mini-
mize the risk of human injury from large unexpected ro-
bot movements. The design of the system must balance 
transparency and stability to achieve a stable system with 
a small effective inertia.  

Closed-loop control of a force feedback system can be 
implemented using an impedance or admittance ap-
proach. The strategy of coupling force-feedback with 
adaptive control is frequently used in rehabilitation robot-
ics to permit robots to kinematically and dynamically 
adjust to function level and motor performance. For ex-
ample, one is an assist-as-needed approach [16] where the 
robot gives as little assistance as possible to get the pa-
tient as close to a desired trajectory as possible. This ap-
proach can be viewed as an optimization problem with an 
objective function,  

 
,  (1) 

 
that is minimized, reflecting a weighted sum of patient 
error e and assistive force F. Solving this optimization 
problem yields the desired assist-as-needed control law. 
However, solving this problem requires a priori 
knowledge of the relationship between assistance and 
error. For this reason, this strategy may work best with 
model-based controllers. This minimization strategy was 
used by Reiner et al. in an assisted gait study. By adap-
tively scaling the reference leg trajectory, a new com-
manded leg trajectory was created that fit within each 
subject's walking speed and range of motion and had the 
same shape as a healthy gait trajectory [17]. 

Adaptive control can also be used to alter the difficulty 
of an exercise based on subject performance. Several 
strategies exist from tuning the tracking task variability to 
tuning the field strength based on the subject’s spatial or 
temporal performance error. For example, the Wrist-

Robot developed by Masia and colleagues implemented 
this adaptive strategy to tune the difficulty level along-
side a nonadaptive assist-as-needed controller [12]. With 
this robot subjects tracked oscillating trajectories in the 
three rotational degrees-of-freedom of the wrist. The as-
sistive controller created a virtual quadratic spring that 
attracted the subjects to the desired wrist orientation. Af-
ter each period of oscillation, the adaptive controller in-
cremented the oscillation frequency while simultaneously 
decrementing the frequency by an amount proportional 
to the mean absolute tracking error over the previous pe-
riod of oscillation.  

A slightly different strategy was adopted by Columbo 
et al. [18]. Here the level of assistance during reaching 
tasks was modified based on a priori training task per-
formance and decisions of the therapist based on difficul-
ty levels during the training. An adaptive strategy emu-
lated the decision-making process of a trained physical 
therapist, allowing the robot to select tasks with a subject 
specific level of assistance.  

Vergaro et al. and Casadio et al. [19], [20] directly mod-
ified the assistive field for a planar robot based on track-
ing error and movement time. The tracking exercises con-
sist of following a continuous path divided into segments. 
An assistive force field is rendered to attract subjects to 
the path, but it does not impose any constraint on velocity 
along the path. The subject's tracking error and move-
ment duration for completed segments along the path are 
measured. If both of these performance metrics are less 
than pre-defined thresholds, the magnitude of the assis-
tive force field is decremented. This implements “assist-as 
needed” control by gradually eliminating assistance that 
is not necessary.  

In our study, we focus on developing an adaptive 
strategy that improves upon the a priori tuning of spring 
resistance or assistance employed in TheraDrive. The 
original TheraDrive used impedance control (in which 
force is a function of position and its derivatives). Imped-
ance control is also used in the new Haptic Theradrive in 
conjunction with an adaptive control strategy to enable 
the the controller to respond to the subject’s functional 
level and control effort during tracking.  

The following sections describe the following [21]: 1) 
the mechanical, electrical, and software design of the new 
Haptic Theradrive system meeting the above require-
ments, and 2) simulation and actual experiments with 
two human subjects (1 able-bodied and 1 low-
functioning) to evaluate the feasibility of the system. The 
potential benefits of this new design for home therapy are 
also discussed.  

2 HAPTIC THERADRIVE DESIGN FEATURES
2.1 Achieving Increased Forces with a Low-cost 

Mechanical and Electrical Design 
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An actuator that can output mechanical power of the 
same order of magnitude as the human arm would fulfill 
the first specific aim and provide patients with large sup-
portive forces. Due to budget and weight constraints, the 
motor selected was an aftermarket treadmill motor 
(Turdan Industry C9J06J). It is a 2-pole brushed DC motor 
rated at 2175 W (2.9 HP) at 70% duty cycle with a maxi-
mum speed of 8000 rpm and with windings rated for 130 
V. Motor constants are back emf constant, ke = 0.155 
V/rad/s, and torque constant, kT = 0.155 N-m/A. Alt-
hough the motor is rated for rotation in one direction on-
ly, its windings and commutator are symmetrical, so it 
achieves the same performance in both directions. The 
motor is overpowered for this application, but through 
the servo amplifier's voltage/current limiters and a cus-
tom mechanical torque limiter, the maximum mechanical 
power delivered to the patient is 950W (1.27 HP, that is, 
400 in-lb at 200 rpm). A maximum output torque of 45 N-
m (400 in-lb) translates to a linear force at the end effector 
of 222 N (50 lb), a value on the same order of magnitude 
as the linear output force of the human arm at the hand.  

Coupling the motor to the end effector is a planetary 
gearbox (Anaheim Automation GBPH0602-NP040) with a 
40:1 gear reduction ratio. This reduces the maximum end 
effector linear velocity to 4.3 m/s (14 ft/s), about triple 
the speed of a normal reaching movement. A planetary 
gearbox was selected over a harmonic drive because the 
planetary gearbox is more easily backdriven, allowing for 
smoother haptic interaction. A flexible spider coupling 
was added between the motor's output shaft and the 
gearbox to reduce shock loads on the gearbox and length-
en the expected life of the gears.  

Driving the motor is a plug-in analog PWM servo am-
plifier (Advanced Motion Control, model 30A 20AC) in-
terfaced with a DAQ system. Built-in voltage and current 
limiters allow the amplifier to limit the maximum velocity 
and torque of the motor. A 1000-line hollow-shaft rotary 
optical encoder (Red Lion, model ZPJ1000A) was mount-
ed directly to the output shaft of the robot. With x4 de-
coding (four counts per quadrature cycle), the resolution 
of measured end effector position is 32 counts per cm (80 
counts per in.). The index of the encoder is aligned with 
the center of the robot workspace, where the crank arm is 
vertical, corresponding to the starting position of every 
exercise trajectory. Encoder signals are filtered digitally 
by the encoder DAQ board (Measurement Computing, 
QUAD-04). 

The motor and gearbox are mounted to an aluminum 
chassis. The chassis mounts to the same frame as the orig-
inal TheraDrive using two clamps. The robot in the ther-
apy environment is pictured in Fig. 2. Like the original 
TheraDrive, the Haptic TheraDrive robot can be reconfig-
ured on the TheraDrive mounting frame. By adjusting the 
height of the frame and the position of the robot, the sys-
tem can be fitted to each patient. The workspace of the 
robot is a 270-degree circular arc, with a radius of 200 mm 
(8 in), corresponding to the path of the crank. Mechanical 
stops prevent the crank from making multiple revolutions 

to avoid damage to the wiring. Compared to the Logitech 
wheel, the haptic robot has double the workspace radius 
and 50% more angular travel. Motions targeted by thera-
py with the system are elbow flexion/extension, shoulder 
flexion/extension, and internal/external shoulder rota-
tion. 

2.2 Custom Compliant Torque Limiter 
The custom mechanical compliant torque limiter consists 
of a crown cam, splined to the input shaft, and a cam fol-
lower keyed to the output shaft, see Fig. 3. The cam is 
held against the follower by a spring, but it is free to slide 
along the spline of the input shaft. Thrust bearings are 
placed on both sides of the limiter to take thrust loads off 
of the bearings in the gearbox and output shaft. Deflect-
ing the output shaft causes the cam to compress the 
spring, generating a restoring torque. This creates a tor-
sional spring from a linear spring, and the stiffness profile 
of the torsional spring can be altered by changing the 
shape of the cam surface. In an overload condition, the 
cam leaves the followers, disengaging the output shaft. 

For an angular deflection of , the restoring torque 
T( ) is defined by the relationship  
 

(2) 
 

where z( ) defines the shape of the cam surface,  is the 
cam radius, k is the linear spring stiffness, and  is the 
preload in the spring. The preload in the spring is adjust-
ed manually using a telescoping shaft collar to compress 
the spring. The torque limits are determined in part by 
the depth and slope of the cam profile and can be adjust-
ed by varying the preload in the spring. The cam shape 
chosen for this robot is parabolic. With a parabolic cam 
path, increasing the preload in the spring increases the 
torsional stiffness. When the spring preload is low, this 
provides patients who cannot handle large interaction 
forces a softer robot to reduce discomfort.When the 
spring preload is high, the robot is able to exert larger 
forces at the end effector without excessive output shaft 

 
Fig. 3. A close up of the robot internal components showing a cus-
tom compliant torque limiter (top). The compliant torque limiter is 
shown in three stages in the CAD drawing: Equilibrium, Transmitting 
torque and Over-torque (from left to right). The line indicates where 
the component appears. 
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deflection. The equation for restoring torque with a para-
bolic cam path of  becomes  

 
.        (3) 

 
The cam motion is assumed to be quasi-static, as the 
spring force is much greater than the inertia of the mov-
ing parts. This assumption holds true except when the 
cam leaves the overloaded condition, moving from the 
flat surface to the steep parabolic surface. This is accepta-
ble because exercises with the robot are aborted if the 
torque limiter is overloaded (Fig 3b). 

To size the cam to a chosen spring, five parameters 
must be known: the minimum torque limit, Tmin; the max-
imum torque limit, Tmax; the spring stiffness, k; the spring 
force at maximum compression, Fmax; and the desired cam 
radius, rc. The cam profile is parabolic, defined as of 

, and the profile depth is zmax. 
The maximum angular deflection before the follower 

leaves the cam then becomes  
 

   (4) 
 

and the cam slope at this point is  
 

.   (5) 
 
The minimum torque limit is realized when there is zero 
preload in the spring, giving the equation  
 

  (6) 
 
The maximum torque limit is realized when the spring is 
at full compression when the follower leaves the cam, 
giving the equation 

 
.  (7) 

         
This creates a system of two equations which can be 
solved for  and zmax to determine the cam shape. A final 
check must be done to verify that the determined cam 
shape will fit the allotted space without overlapping itself 
or creating thin features that would fail under load. If this 
check is failed, a different spring must be chosen. 

The spring for the torque limiter has a stiffness of 144 
N/cm (82 lb/in) and a load of 609 N (137 lb) at full com-
pression. Minimum and maximum torque limits were 
chosen as Tmin = 9 N-m (80 in-lb) and Tmax = 45 N-m (400 
in-lb), respectively, and the cam radius was chosen to be 
3.8 cm (1.5 in). With a crank arm radius of 20 cm (8 in), 
these torque limits correspond to 44 and 222 N (10 and 50 
lb) of tangential force at the end effector, respectively. 
Solving the above equations yields a cam profile of  = 
14.8 cm (5.81  in) with a depth of zmax = 10.6 mm (0.418 
in). Since the center of the cam follower must trace this 
profile, the physical cam surface is offset normal to the 

cam profile by the radius of the follower, 6.4 mm (0.25 in) 
in this case. The cam profile is repeated four times around 
the cam circumference in order to quadruple the mechan-
ical strength of the torque limiter by using four cam fol-
lowers and to balance the distribution of the spring force. 

The minimum and maximum torque limits were tested 
by hanging barbells from the end effector with the crank 
arm below the horizontal position. The motor shaft was 
turned manually until either the crank arm rose past the 
horizontal position or the torque limiter disengaged. If 
the torque limiter did not disengage, the torque limit was 
not exceeded. With the torque limiter set to its minimum 
limit, the crank was able to lift a weight of 44 N (10 lb) but 
not a weight of 66 N (15 lb). With the torque limiter at its 
maximum limit, the crank was able to support a weight of 
200 N (45 lb) but not a weight of 222 N (50 lb). 

This showed good agreement with the theoretical val-
ues of 10lb (44N) at the minimum limit and 50lb (222N) at 
the maximum limit. Table 1 summarizes the Cam param-
eters. 

2.3 Custom Force Sensor in Crank Handle 
To measure the human-robot interaction forces, a load 
cell was built into the crank handle. These interaction 
forces are needed to close the impedance control loop and 
for data collection during experiments/exercises. The 
compliant element of the drivetrain could not be used to 
measure torque because its stiffness is variable and non-
linear, and thus a load cell is used. The load cell is com-
posed of a cantilever beam with eight strain gauges 
(Vishay Micro-Measurements, 062LW) mounted to the 
crank arm. The beam has a circular cross-section and a 
conical taper, narrowing towards the free end, to maxim-
ize strain in areas under low load. This, in turn, increases 
the sensitivity of the load cell by maximizing the strain 
experienced by each strain gauge. The handle grip is fit-
ted around the load cell and rotates freely on bearings. 
Fixing the load cell to the arm rather than the grip allows 
forces to be measured in the radial-tangential coordinate 
system of the crank arm and simplifies the conversion of 
interaction forces to joint-space torque. Strain gauges are 
mounted around the circumference of the beam at 90-
degree intervals at two points along its length, as shown 
by the alignment marks drawn in Fig. 4a. Diametrically 
opposed gauges are wired in a half-bridge configuration 
and measure bending strains at two points due to mo-
ments about the radial and tangential axes, for a total of 
four measured strains. The half-bridge configuration pro-
vides temperature compensation. 

TABLE 1: CAM DESIGN PARAMETERS

Parameter IPS Value SI Value 
k 82 lb/in 144 N/cm 

Fmax 137 lb 609 N 
rc 1.5 in 3.8 cm 

Tmin 80 in-lb 9 N-m 
Tmax 400 in-lb 45 N-m 

a 5.81 in/rad/rad 14.8 cm/rad/rad 
zmax 0.418 in 1.06 cm 
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The strain gauge bridge amplifier is designed around 
the Burr-Brown INA125 instrumentation amplifier with 
precision voltage reference, a chip designed to power 
strain gauges and amplify strain gauge signals. Four 
strain gauge half-bridges in the load cell produce four 
voltage signals proportional to strain along specific axes 
at specific points.  

The four strains are used to calculate bending stresses, 
bending moments, and shear and moment reactions at the 
fixed end of the beam. The interaction force is converted 
to joint-space torque by multiplying the tangential shear 
reaction force by the crank arm radius, and this is used as 
the feedback to the impedance controller. The other three 
reactions are used only for clinical data collection. Calcu-
lation of the shear and moment reactions at the fixed end 
of the beam can be illustrated with a moment diagram 
(bending moment plotted as a function of position along 
the beam, as in Fig. 4b. Measured strains at the tangential 
gauge bridges are converted to bending moments using 
Hooke's Law and bending stress equations. A straight 
line is drawn through these two points, and the slope of 
the line is equal to the shear reaction, and the value of the 
line at the fixed end is the moment reaction. This proce-
dure is repeated for the radial gauges. 

The load cell was calibrated by clamping the fixed end 
to a workbench and hanging weights (8.9N to 53.4N) 
from points along the length of the beam (25 to 200 mm 
from end) and then recording the voltage outputs of the 
strain gauge bridge amplifier. From the value of the 
weight and its distance from the fixed end of the beam, 
the shear and moment reactions could be calculated. 

Least-squares planar regressions were performed to find 
the shear and moment reactions, each as a function of the 
two amplifier outputs after offset nulling. The correlation 
squared was greater than 0.99, indicating a very good fit 
of the plane to the data. The reactions for the tangential 
direction are 

 
      (8) 

 
,   (9) 

 
where V and M are the shear and moment reactions, re-
spectively, and Ep and Ed are the voltage outputs of the 
amplifier from the bridges proximal and distal to the 
fixed end of the beam. Force and moment data for loads 
exceeding 12 lb (53.4N) must be extrapolated from this 
data. This was deemed acceptable because strain gauges 
are highly linear force sensors when mounted to linear 
elastic materials, and the beam was designed not to un-
dergo plastic deformation until 445 N (100 lb) was ap-
plied to the tip. 

2.4 Software Design 
2.4.1 Control Design 
The Haptic Theradrive robot is controlled using a dedi-
cated computer running Mathworks Simulink xPC Target 
OS for real-time control and data acquisition. This PC is 
fitted with two DAQ boards to read sensors and com-
municate with the servo amp: an encoder board from 
Measurement Computing (PCI-QUAD04) and a multi-
purpose board from National Instruments (NI PCI-6251). 
A host computer running Matlab interfaces with the tar-
get computer through an ethernet connection to upload 
executable binaries and display the patient interface. 

Control of the robot is achieved through three loops, 
all running at a sample rate of 1000 Hz to allow for 
smooth controller response. The control architecture is 
illustrated in Fig. 5. The innermost control loop is the im-
pedance proportional-integral-derivative (PID) controller. 
This controller was designed and tuned in simulation 
using Matlab's Control System Toolbox. The topology of 
the impedance controller is PID with feedforward, taking 
a force command and force feedback at the input and 
producing a motor current signal at the output. The 
feedforward path consists of a constant multiplied by the 
signum of the end effector velocity in order to cancel the 
effects of Coulomb friction. After tuning in simulation, 
the PID controller gains found were used as a starting 
point for manual tuning of the impedance controller on 
the real robot. The PID controller gains used, in current 
output per force error, are kp=0.0760 A/N, ki=0.645 A/N-
s, and kd=0.000897 A-s/N. The feedforward term is 0.616 
A. Stability of the controller was analyzed using root loci. 
The z-domain poles of this controller lie within the unit 
circle, so the controller is stable, and the impedance loop 
as a whole is stable because the mechanical plant (mass-
spring-mass) is inherently also stable.

The intermediate loop is the assistive/resistive control-
ler, which renders a force field in the robot's workspace. 

 

a.  

b.  
Fig. 4a. Custom crank handle with strain gauge mounting at the
cross line and 4b. Illustration of how shear and moment reactions
at the end of the beam are related to the moments measured at
the gauges. 
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The controller divides the workspace into 17 regions, 
spaced 1/16th of a revolution apart. Each region has a 
value assigned to it to define the assistive/resistive stiff-
ness of the robot at that location, with negative stiffnesses 
being assistive and positive stiffnesses being resistive. It is 
necessary to implement position-dependent stiffness be-

cause stroke patients usually have inconsistent abilities in 
the range of motion of their impaired arm. The stiffnesses 
between regions are interpolated to produce smooth tran-
sitions between regions of different stiffnesses. Assistive 
stiffness is rendered as a linear spring pulling the patient 
towards the target end effector position with a small 
damper added to reduce overshoot. Resistive stiffness is 
rendered as a linear spring that repels the patient from 
the target position, creating an unstable system that the 
patient must stabilize. For patients requiring assistance, 
the stiffnesses are either zero or negative so the patient 
only receives assistance. The opposite is true for patients 
requiring resistance. 

The outermost control loop is the adaptive controller. 
It uses a strategy similar to that [12] and [18] but runs 
continuously instead of in discrete steps. The controller 
evaluates patient performance in real-time and continu-
ously adapts the stiffness of the robot to the patient's abil-
ity. Since patient performance depends in part upon the 
amount of assistive/resistive stiffness, altering the stiff-
ness will cause a change in patient performance. Patient 
performance is quantified as the root-mean-square (RMS) 
trajectory tracking error over the past three seconds, a 
metric chosen because it was used to quantify subject per-
formance in the original TheraDrive. This error is com-
pared to a desired error of 0.25 rad (2 in or 51 mm of arc 
length), a value corresponding to the width of the target 
that the patient tracks. A nonzero tracking error is desired 
because this maintains difficulty of exercises. If the de-
sired tracking error were zero, the robot would always 
provide maximum assistance to every patient, and if the 
desired tracking error were too large, the robot would 
maximum resistance to patients. Stiffness values in a 
quadrant centered around the end effector are adjusted 
proportionally to the difference between actual and de-
sired tracking error, essentially establishing a proportion-
al control loop around the gains of the assistive/resistive 
controller. Over time, the adaptive controller shapes the 
stiffness profile to suit the patient's ability level, ensuring 
that exercises will be difficult but doable and that the pa-

tient will not be assisted more than is necessary. ``Diffi-
cult but doable'' means that patients should be presented 
with a challenge sufficient to maintain motivation and a 
moderate degree of exertion, but the challenge should not 
be so great as to cause patients to become frustrated or to 
fail to complete exercises. 

For testing purposes, the adaptive controller has sever-
al operating modes that disable some or all of its features, 
allowing for specific variables to be isolated in experi-
ments. Zero impedance mode disables all assistance and 
resistance and makes the end effector behave as if it were 
rotating freely. Static assist/resist modes disable the 
adaptive controller and provide a fixed stiffness. These 
first two modes emulate the behavior of the original 
TheraDrive system with the wheel rotating freely or with 
spring assist/resist, respectively, allowing for a direct 
comparison of the two systems in testing. Plain adaptive 
mode provides adaptive stiffness but disables position-
dependent stiffness. Position-dependent adaptive mode 
enables all features of the adaptive controller. Table 2 
summarizes the mode. 

 
2.4.2 Task Software 
The task software on the host computer is made to emu-
late the appearance of UniTherapy to the patient, allow-
ing it to satisfy the first specific aim of creating a drop-in 
replacement. The interface presents the patient with an 
arrow cursor that follows the position of the end effector, 
seen in Fig. 6. The cursor is situated at the bottom of the 
screen, and the desired trajectory scrolls down the screen 
towards the cursor, presenting a blue box at the current 
target location. The cursor changes from red to green 
while it is within the target box. The framerate of this task 
display is approximately 33 Hz, the same as that of 
UniTherapy. 

The operator interface uses Matlab scripts to automate 
random trajectory generation and data uploading to the 
robot. Most functions can be performed with a single 
command at the Matlab command line. Data is automati-
cally streamed via Universal Datagram Protocol (UDP) 
from the robot to the host computer during exercises and 
saved to the Matlab workspace. The streamed data pack-
ets contain a timestamp, commanded and actual position, 
commanded and actual haptic interaction force, off-axis 
forces, and controller gains. After an exercise is complete, 
the data can be saved to a file for later analysis. 

 
Fig. 5. Control Flow Chart 

TABLE 2: CONTROL FEATURES

Mode Assist/Resist Adaptive 
Crank 

Position 
Dependent 

Zero-
impedance No No No 

Constant 
Spring Yes No No 

Adaptive 
Spring Yes Yes No 

Position Adap-
tive Yes Yes Yes 
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3 SIMULATION AND HUMAN SUBJECT CASES 
A simulation model was created based upon the charac-
teristics of the real system, and care was taken to ensure 
the model had good fidelity to the real hardware. It mod-
els all of the major mechanical components of the robot as 
well as the robot controllers described in Table 2. A simu-
lated human arm from another project was added to 
model the interaction between human and robot. This 
model was used for the initial tuning of the impedance 
PID controller and for the first experiments with the 
adaptive controller, discussed in the following.  

 
3.1 Simulation Design 
A model of the robot and human patient was written in 
Mathworks Matlab, Simulink, and SimMechanics to aid 
in controller design and testing without risk of injury. The 
crank and human arm were modeled as a four-bar link-
age, with the motor coupled to the crank through a non-
linear spring. Parameters for the model robot, such as link 
inertia and motor torque constant, were found through 
characterization of the motor and through analysis of 3D 
part drawings in SolidWorks. Equations of motion were 
created and solved numerically within SimMechanics 
based upon the mechanical model. Using SimMechanics, 
all nonlinearities in the system, such as encoder quantiza-
tion and Coulomb friction, could be modeled easily, and a 
more accurate model of the system than a linearized ana-
lytic model was produced. The human arm model was 
ported from another computational model created by 
Formica et al. for use with the MIT-Manus robot [22]. 

This model simulates the dynamics and control of the 
human arm with or without stroke impairment. It is a 
planar model consisting of a forearm/wrist segment, an 
elbow joint, an upper arm segment, and a fixed shoulder 
joint. The forearm/wrist segment is 35cm long with a 
mass of 1.54 kg, and the upper arm is 25cm long with a 
mass of 1.96kg, corresponding to metrics of a human of 
average height and weight. The simulation model is 
shown graphically in Fig. 7. A trajectory planner and 
joint-space proportional-derivative (PD) controller are 
used to model human control of the arm. 

The PD controller is of the form  

 

 (11) 

 
where u is the position error vector in rad in joint space 
and T is the joint torque output vector in N-m. The PD 
controller gains are based on the stiffness and viscoelas-
ticity of the average human arm. The resulting controller 
gains have cross-coupling terms that reflect mono- and bi-
articular muscle control. The gains in (12) are Pee=8.67 
Nm/rad, Pse =2.83 Nm/rad, Dee = 0.76 Nm/rad/s, Dse = 
0.18 Nm/rad/s, Pes=2.51 Nm/rad, Pss =10.8 Nm/rad, Des 
= 0.18 Nm/rad/s and Dss = 0.63 Nm/rad/s.  

The MIT-Manus arm model also contains a trajectory 
planner that simulates human trajectory planning in 
point-to-point movements, but this part of the model was 
not used because exercises consist of trajectory tracking 
rather than point-to-point movements, and trajectories are 
already defined in trajectory tracking tasks. Stroke im-
pairment is simulated in the Manus model by perturbing 
the desired arm trajectory with a triangle function, creat-
ing a new trajectory that deviates from the ideal trajectory 
to simulate the disjointed piecewise trajectories taken by a 
stroke-impaired arm. For example, if the ideal trajectory 
were defined as (t), the perturbed trajectory, p(t), would 
be defined as  

 
                (12) 

 
where a and b define the amplitude and period of devia-
tion, setting the severity of the simulated impairment. The 
mod operator gives the remainder of the devision. The 
arm then attempts to follow this perturbed trajectory, 
while the robot tries to follow the unperturbed trajectory. 
The trajectories used in exercises are a sum of four sine 
waves of different frequency and phase that create a 
pseudorandom smooth path. 
 
3.2 Experiment Design and Hypothesis 
To verify that the adaptive controller was able to adapt 
properly to patients with varying levels of impairment, 
simulations of the system were run with the MIT-

 
Fig. 6. GUI of Tracking Task 

 
Fig.7. Simulated Model is a graphical representation of the simula-
tion model. The crank arm is on the left and the human forearm and 
upper arm is on the right. For the moderate subject in (13): a=0.25 
and b=1 
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MANUS human arm model [22]. The first simulation was 
run with the unimpaired arm model to verify that the 
adaptive controller was stable, i.e., the resistive stiffness 
would settle to a steady-state. An exercise was run for ten 
minutes of simulation time, in position-dependent adap-
tive mode starting with assistive/resistive gains of zero, 
and the controller was allowed to adapt to the arm's per-
formance. The average assistive/resistive gain as a func-
tion of time was recorded for the duration of the simula-
tion. This procedure was then repeated for a simulated 
stroke patient to verify that the adaptive controller would 
be stable when adapting to a stroke-impaired subject. It 
was expected that the controller gain would show a first-
order decay towards a steady-state value, with the con-
troller providing resistance to the unimpaired and assis-
tance to the impaired arm model. A first-order response 
from the adaptive controller was expected because it is a 
simple proportional controller with a first-order transfer 
function. 

To verify that the position-dependent aspect of the 
adaptive controller functioned properly, the stroke arm 
model was used [22]. The perturbation function used to 
simulate impairment was set such that the maximum per-
turbation would occur at ±1 rad, where an angular posi-
tion of 0~rad corresponds to the crank pointing straight 
up. A simulated exercise was run for ten minutes of simu-
lation time, starting with an assistive/resistive gain of 
zero, and the controller was allowed to adapt to the arm's 
performance. Assistive/resistive gain as a function of end 
effector position was recorded after the simulation was 
completed. The plot of gain versus position was expected 
to show peaks in assistive gain at ±1 rad, where the track-
ing error of the arm was highest. 

To compare simulation results to real tracking, two 
subjects were asked to use the system. One able-bodied 
subject without neurological injury and another stroke 
subject with a low to moderate function as defined by a 
upper limb Fugl-meyer score of 29 [23]. Subjects were 
seated at the Haptic TheraDrive and were asked to track a 
sinusoid in the zero-impedance mode and the position 
dependent adaptive mode (Table 2). The sinusiod was a 
sum of four sinusoids, centered about the vertical crank 
position, of amplitude 0.5 rad and frequencies of 0.5, 1.0, 
1.5 and 2.0 rad/s (Fig. 6). The relative phases of the sinus-
oids were randomized for each exercise to reduce learn-
ing effects. RMS error was used as the comparison metric 
to examine accuracy compared to the simulation study. 

4 RESULTS 
4.1 Simulated Healthy Versus Stroke Subjects 
The baseline performance of the healthy and stroke pa-
tient models in a sine tracking exercise is displayed in Fig. 
8a. Both models tracked the trajectory with the robot con-
troller running in zero-impedance mode. The healthy 
model tracks the trajectory with little error, but the stroke 
model has large errors at the points where the spatial per-
turbation is at a maximum. 

Figure 8b shows the adaptive controller responding to 

the performance of a simulated healthy patient. A sine 
tracking exercise was run for ten minutes of simulation 
time, and the resistive stiffness, averaged over the work-
space, was plotted versus time. The controller response is 
approximately first-order with a time constant of 90 se-
conds, showing oscillations at steady state. Steady-state 
oscillations have the same period of oscillation as the si-
nusoidal trajectory.This was confirmed by cross correla-
tion analysis. 

The performance of a simulated healthy patient before 
and after controller adaptation is shown in Figure 8c. The 
baseline performance of the patient with zero resistance 
had RMS tracking error well below the target level of 0.25 
rad, so the adaptive controller added resistance to the 
exercise until the target error was achieved. With the re-
sistive gain adapted, the patient was still able to track the 
reference trajectory, but with an increase in error from 
0.058 rad at baseline to 0.230 rad with resistance. This 
increase in tracking error is apparent in Figure 8c. 

The response of the adaptive controller to a simulated 

stroke patient is shown in Figure 8d. The assistive gain is 
plotted over time during a ten-minute sine tracking exer-

a.

 

b. 

 
Fig.8a. Simulated Tracking Task with Healthy Model and Stroke 
Model and 8b. Rendered Stiffness being adapted to healthy sub-
ject performance. 
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cise. The controller response shows first-order decay with 
a 90 second time constant and oscillations at steady state 
with the same period as the tracked trajectory (12.6 se-
conds). RMS tracking error decreases from 0.307 rad over 
the first 30 seconds to 0.265 rad over the last 30 seconds. 

Figures 8b and 8d show the adaptive controller modi-
fying the stiffness of the robot to suit the ability levels of a 
simulated healthy subject and simulated stroke subject. 
With zero resistance, the healthy subject tracks the trajec-
tory very closely, but after the adaptive controller adds 
resistance, the RMS tracking error increases to the desired 
level of 0.25 rad. The tracking error of the stroke subject 
decreased until it reached the desired level as the control-
ler gains were adapted. This demonstrates the ability of 
the adaptive controller in simulation to adjust the stiff-
ness of the robot to achieve a desired level of performance 
from a subject.  

Oscillations in controller gains, plotted in Figures 8b 
and 8d, are caused by the shape of the trajectories the pa-
tients are tracking. This is because there are slight varia-
tions of difficulty in the motions that compose the trajec-
tory. For example, tracking fast movements is more diffi-
cult than tracking slow movements, so changes in the 
trajectory velocity will perturb the gains of the adaptive 
controller. 

Performance of the position-dependent adaptive con-
troller with a simulated stroke subject is displayed in Fig-
ure 9. The triangle perturbation function used to simulate 
impairment was defined to have peaks at ±1 rad, causing 
maximum perturbation of the trajectory at the aforemen-
tioned peaks. A sine tracking exercise was run until the 
adaptive controller reached steady state, and the resulting 
gains were plotted. This graph shows two peaks where 
the assistive gain is larger (more negative): one large peak 
at 1rad and a smaller, wider peak at -1.3 rad. These peaks 
correspond roughly to the locations where perturbation 
of the trajectory to simulate stroke was largest (±1 rad). 

Position-dependent assistive gain is important for 
therapy exercises with stroke patients, as they have vary-
ing levels of ability throughout the robot's workspace. 
Figure 8e shows the assistive gain of the simulated robot 
plotted against end effector position. The peaks in the 
gain correspond roughly with the locations of peak trajec-
tory perturbation in the stroke subject model. The peaks 
are of different magnitudes due to the differing mechani-
cal advantage of the arm at these points. At -1.3 rad, the 
arm is extended and has little mechanical advantage over 
the robot, and less assistance is required to correct track-
ing errors. However, at 1 rad, the arm is close to the body, 
giving the patient a large mechanical advantage, so more 
assistance is required to correct the trajectory. 

Mechanical advantage is also the reason the peak at -
1.3 rad was shifted from the expected position of -1 rad. 
The mechanical advantage of the patient is lower at the 
angle of -1 rad than at -1.3 rad because around -1 rad, 
there is a point where the tangent to the path of the elbow 
intersects with the axis of the crank, creating a singularity 
in the kinematics. At this point, the shoulder joint has 

zero mechanical advantage over the crank because it can-
not exert any moment on it, putting the arm's overall me-

chanical advantage at a minimum. The arm has more me-
chanical advantage at -1.3 rad, so more assistance is re-
quired at this point to correct the arm's trajectory than is 
required at -1 rad. 

 
4.2 Case Studies 
Stroke subject is shown tracking a trajectory with zero-
impedance and the position dependent adaptive mode in 
Figure 10. The stroke subject was less able to track the 
sinusoid than the healthy subject. This was reflected in 
their level of accuracy where RMS error for stroke survi-
vor was greater (0.62 versus 0.2040). The position adap-
tive controller was representative of our adaptive mode; 
the controller further reduced the RMS error to 0.346. This 
indicates that the subject was given the assistance needed 
to enable tracking (Figure 10b). The adaptive controller 
slightly increased the tracking error of the healthy subject 
from 0.2040 to 0.287. This is because the controller will 
work to provide more resistance to increase tracking chal-
lenge if the subject tracking error was less than 0.2. Fig. 
10c depicts the baseline RMS tracking error of a stroke 
subject during exercises in zero-impedance mode. Super-
imposed on this data is the position-dependent adaptive 

c.

 

d.

 
Fig. 8c. Simulated Healthy patient’s performance before and after 
gains are being adapted. 8d. Rendered stiffness adapting to simu-
lated stroke patient over time. More negative values indicate more 
assistive gains 
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controller gain after it had reached steady state. Com-
pared to the simulation data shown in Fig. 9, the real data 
in Fig. 10c displays the same trend. At the points at which 
the subject has the greatest tracking error, the adaptive 
controller provides a greater amount of assistance. This is 
shown by the two peaks in the plot of RMS tracking error, 
which is reflected in the shape of the plot of adaptive con-
troller gain. The peaks in adaptive gain are wider due to 
the use of a spatial smoothing window in the adaptive 
algorithm (this smoothing caused the two peaks to merge 

together partially). 

5 DISCUSSION

5.1 Design 
The hardware developed for the haptic robot satisfies the 
first goal of being a drop-in replacement for the Logitech 
wheel by mounting to the same frame and interfacing 
physically with human subjects in the same manner. The 
second specific aim is fulfilled by the robot's high force 
output, which enables the robot to provide assistance to 
subjects who are too weak or too uncoordinated to use 
the Logitech wheel. By emulating the main features of the 
UniTherapy software, the haptic robot's software presents 
subjects with an interface that has the same look and feel 
of UniTherapy, fulfilling the first specific aim. The adap-
tive control software provides more flexibility than 
UniTherapy in the way assistance/resistance is applied to 
the human subject, which allows therapy to be personal-
ized to each subject; this fulfills the second specific aim of 
extending accommodations to low-functioning subjects. 

The biggest shortcoming of the haptic robot is the per-
formance of its motor. The treadmill motor is designed to 
spin in one direction at a constant speed, not to provide 
smooth motion at near-stall speeds. Because of this, the 
motor has a low number of windings on the armature, 
which leads to noticeable cogging effects at slow speeds. 
The low number of windings also causes the torque con-
stant of the motor to be position-dependent, leading to 
inconsistent performance of the impedance controller. A 
motor designed specifically as a servo would offer supe-

rior performance, but budget and weight constraints did 
not permit such a motor to be used. Because the robot 
lacks a “dead-man” switch on the crank handle, it has no 
means to sense whether a user is in contact with the end-
effector. The handle grip spins freely, so a switch cannot 
be installed in it without risk of damage to the wiring. 
This creates a safety concern because the impedance con-
troller is unstable if there is nothing in contact with the 
end effector. Due to this concern, subjects wear a grasp-
assist glove that prevents them from releasing the handle, 
and perform exercises under close supervision. These 
safety measures are not an ideal solution as the glove 
does not fit all people. It is recommended that the handle 
be modified to accept a “dead-man” switch or similar 
device in order to enhance the current safety measures.  

5.2 Evaluation  
The adaptive controller simulation experiments were suc-
cessful in that the data recorded supports both hypothe-
ses. The plots of gain over time in Figures 8b and 8d both 
show a general first-order trend, neglecting the oscilla-
tions, and Figure 9 shows the position-dependent adap-
tive controller assigning the highest gains to regions with 
the highest tracking errors. The controller also shows sen-
sitivity to impairment level, as seen by the difference in 
steady-state gain between the healthy arm in Figure 8a 
and the stroke-impaired arm is Figure 8c. 

The first-order trend of controller gain is similar to the 
results seen in the Wrist-Robot experiment and other ro-
bot controllers [18]. Subjects tracked oscillating trajecto-
ries using the robot, and the adaptive controller increased 
the oscillation frequency proportional to the subject's per-
formance. Because of this relationship between perfor-
mance and frequency, oscillation frequency for the Wrist-
Robot is an analog to rendered spring stiffness in the hap-
tic TheraDrive robot, as both these parameters modulate 
exercise difficulty. Wrist oscillation frequency with the 
Wrist-Robot showed the same first-order response charac-
teristic in each of the eleven exercises. 

A weakness in the simulation's adaptive controller is 
that the assistive/resisitive gain oscillates at steady state. 
These oscillations are stable, as they do not grow expo-
nentially as the exercises progress, and they are a phe-
nomenon caused by the shape of the exercise trajectory, 
as the two have the same period (12.6 seconds in Figure 
8d). A similar phenomenon was mentioned by Vergaro et 
al. as a frequent occurrence in continuously-adapted con-
trollers [18]. Methods of removing these oscillations in-
clude increasing the length of the window used to calcu-
late RMS tracking error and decreasing the adaptation 
gain. However, both these methods slow the rate of adap-
tation and make the controller less responsive to sudden 
spikes in tracking error that occur when, for example, a 
stroke subject becomes stuck in one position. Ultimately, 
the oscillations are inseparably linked to the trajectory, 
and eliminating them would cause an unacceptable loss 
of controller performance. 

However, the oscillation is small enough that it is im-
perceptible to patients, as the exercises themselves pre-

Fig. 9. Position dependent gains adapting to simulated stroke pa-
tient’s performance. 
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sent variations of force of much greater magnitude and 
speed than those caused by small variations of stiffness. 

Position-dependent gains developed as hypothesized. 
The largest assistive gains were seen in the positions 

where the simulated subject's tracking error was at a max-
imum, which in turn correspond loosely to the points 
where the trajectory perturbation to simulate stroke was 
largest. Figures 9 and 10c shows that the position-
dependent adaptive controller fits the ``assist as needed'' 
paradigm; it is able to provide extra assistance only where 
it is necessary to maintain subject performance. 

Although it was modified to work in the haptic robot 
simulations, the MIT-Manus arm model still behaved as it 
did in simulations discussed by Formica et al [20]. The 
tracking error of the arm model showed sensitivity both 
to the level of assistance provided and to the level of im-
pairment modeled. 

The simulated stroke subject model in Figure 8a be-
haves nothing like the real stroke subject in Figure 10ab 
when tracking trajectories in zero-impedance mode. The 
real stroke shows a limited range of motion and a notice-
able delay of movement. Spatially, the trajectory the real 
stroke subject follows is very similar to the commanded 
trajectory when inside the subject's limited range of mo-
tion; none of the perturbations present in the simulated 
stroke model appear in the real subject. These differences 
stem from the fact that the MIT-Manus arm model was 
intended to simulate stroke subjects performing point-to-
point movements on a tabletop. The Manus simulation 
model imitated the zig-zag paths that real stroke subjects 
took during movements between points [21]. Using this 
model with a crank constraint and a pre-defined trajecto-
ry did not produce behavior seen in real stroke subjects 
because the model was not being used for its intended 
purpose.  The simulation had utility in validation and 
proof of method. There is a need to improve the model. 

6 CONCLUSION
A haptic therapy robot, Haptic Theradrive, was designed 
to accommodate stroke survivors with a wide range of 
functional ability and assist them safely. A novel compli-
ant torque limiter was implemented to allow the system 
to be used safely despite its large torque capacity. The 
torque limiter would be preset for the patient before the 
system could be used independently. An adaptive con-
troller adds the ability to keep the tracking tasks challeng-
ing yet doable. Low functioning stroke survivors are now 
able to benefit from the system. 

Human subject pilot studies are being conducted to as-
sess the utility of the various control schemes in provid-
ing a challenging and engaging therapy environment. 
From these studies, the Haptic TheraDrive will be com-
pared to the original system.  
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