Machine Design Experiments using Gears to Foster Discovery Learning

Jonathon Slightam, MS Mark Nagurka, PhD, PE

Dept. of Mechanical Engineering Marquette University Milwaukee, Wisconsin, USA

June 16, 2015

3

Marquette University

Slightam & Nagurka, Marquette University (ASEE 2015)

Marquette University

Engineering Hall, Marquette

Discovery Learning

- Students posed with a challenge "discover" solutions with limited guidance.
- Student-centered pedagogical methods include active, cooperative, collaborative, project-based, and inductive learning.

Slightam & Nagurka, Marquette University (ASEE 2015)

Student-Centered Learning

- Advantages
 - Short-term mastery
 - Long-term retention
 - Depth of understanding
 - Critical thinking
 - Creative problem-solving skills

Slightam & Nagurka, Marquette University (ASEE 2015)

Machine Design Laboratory

Machine Design Labs

- <u>Emphasis</u>: hands-on experiences, discovery learning, design challenges
- Two hour lab sessions, max of 12 students
- Teams of two to three students
- Multiple stations
- In-lab and post-lab deliverables

Laboratory Experiments

- Lab 1: Introduction to Machine Systems & Elements
- Lab 2: Stress Measurements and Concentrations
- Lab 3: Press and Shrink Fits
- Lab 4: Flexible Components
- Lab 5: Design of Systems with Flexible Components
- Lab 6: Gears & Design of Gear Systems
- Lab 7: Bearings
- Lab 8: Springs
- Lab 9: Bolts and Fasteners
- Lab 10: Bicycles

Slightam & Nagurka, Marquette University (ASEE 2015)

9

First Week Gear Lab Activities

• Station 1: Gear Identification & Applications.

- <u>Station 2</u>: Automotive HVAC Baffle Gear Motor: measurement, gear train analysis, results.
- <u>Station 3</u>: KitchenAid Mixer: disassembly, assembly, design concept questions.
- <u>Station 4</u>: Gear Clock Design Challenge

Slightam & Nagurka, Marquette University (ASEE 2015)

Gear Nomenclature

RV Leveler

RV Leveler

Slightam & Nagurka, Marquette University (ASEE 2015)

13

15

Buell Blast Transmission

Slightam & Nagurka, Marquette University (ASEE 2015)

Buell Blast Transmission

Electric Gear Motor

Slightam & Nagurka, Marquette University (ASEE 2015)

Electric Gear Motor

Slightam & Nagurka, Marquette University (ASEE 2015)

Falk Gearbox

Falk Gearbox Components

Falk Gearbox Disassembled

Falk Gearbox Assembly

Falk Gearbox Assembly

Falk Gearbox Assembly

First Week Gear Lab Activities

- <u>Station 1</u>: Gear Identification & Applications.
- <u>Station 2</u>: Automotive HVAC Baffle Gear Motor: measurement, gear train analysis, results.
- <u>Station 3</u>: KitchenAid Mixer: disassembly, assembly, design concept questions.
- <u>Station 4</u>: Gear Clock Design Challenge

HVAC Baffle Gear Motor

Slightam & Nagurka, Marquette University (ASEE 2015)

HVAC Baffle Gear Motor

Slightam & Nagurka, Marquette University (ASEE 2015)

HVAC Baffle Gear Motor

Slightam & Nagurka, Marquette University (ASEE 2015)

27

25

HVAC Baffle Gear Motor

Slightam & Nagurka, Marquette University (ASEE 2015)

HVAC Baffle Gear Motor

HVAC Baffle Gear Motor

HVAC Baffle Gear Motor

HVAC Baffle Gear Motor

Slightam & Nagurka, Marquette University (ASEE 2015)

HVAC Baffle Gear Motor

Slightam & Nagurka, Marquette University (ASEE 2015)

33

35

First Week Gear Lab Activities

- <u>Station 1</u>: Gear Identification & Applications.
- <u>Station 2</u>: Automotive HVAC Baffle Gear Motor: measurement, gear train analysis, results.
- <u>Station 3</u>: KitchenAid Mixer: design concept questions, disassembly, assembly.
- <u>Station 4</u>: Gear Clock Design Challenge

Slightam & Nagurka, Marquette University (ASEE 2015)

KitchenAid Mixer

Slightam & Nagurka, Marquette University (ASEE 2015)

KitchenAid Mixer

KitchenAid Mixer

KitchenAid Mixer

Mixer Disassembly

Slightam & Nagurka, Marquette University (ASEE 2015)

Mixer Disassembly

Slightam & Nagurka, Marquette University (ASEE 2015)

Mixer Disassembly

Mixer Disassembly

Slightam & Nagurka, Marquette University (ASEE 2015)

All Those Mixers and No Cake?

43

41

Mixer Re-assembly

First Week Gear Lab Activities

- Station 1: Gear Identification & Applications.
- <u>Station 2</u>: Automotive HVAC Baffle Gearmotor: measurement, gear train analysis, results.
- <u>Station 3</u>: KitchenAid Mixer: disassembly, assembly, design concept questions.
- <u>Station 4</u>: Gear Clock Design Challenge

Slightam & Nagurka, Marquette University (ASEE 2015)

45

47

Gear Clock Challenge

Second Week Lab Activities

Gear Clock Layout

Gear Clock Layout

Drill Holes in Mounting Plate

Slightam & Nagurka, Marquette University (ASEE 2015)

Drill Holes in Mounting Plate

51

Gear Clock Testing

Slightam & Nagurka, Marquette University (ASEE 2015)

<section-header><section-header><image><image>

Gear Clock – Zoomed in

Gear Clock Testing

What Did Students Learn?

- Discovery Learning activities give students pragmatic hands-on experiences that teach
 - Multiple acceptable design solutions
 - Successful prototypes require proper components, e.g., gears with involute tooth profiles
 - Assembly issues are real, e.g., center-to-center distances in gear trains must be accurate

What Did We Learn?

- Machine Design course needs a balance of theory and hands-on activities.
 - Laboratory component of course essential.
 - Some students struggled with gear train analysis and had 'eureka' moments in lab.
- Design challenges where students build and test hardware are fun and promote learning.
- Past students want to improve labs and create new discovery learning experiences.

Slightam & Nagurka, Marquette University (ASEE 2015)

Closing

- Experiments were designed to give students discovery learning experiences with gears used in mechanical systems.
- Experiments fostered student-centered learning in a Machine Design course by
 - hands-on learning with real hardware
 - machine design challenges, and
 - team work.

57

59

Slightam & Nagurka, Marquette University (ASEE 2015)

58

Future Opportunities

- Extend clock design challenge to include accuracy and ...
 - Cost, Weight, Size, Manufacturability/Assemblability
- Add torque measurement, shearing of teeth
- Generalize to other components (escapement mechanisms) used in clocks
- Conduct detailed assessment

Slightam & Nagurka, Marquette University (ASEE 2015)

Thanks to: Rexnord, Bodine Electric, Milwaukee Tool, Industrial Advisory Board, and Marquette University College of Engineering (many talented students, Tom Silman)

Prof. Mark Nagurka mark.nagurka@marquette.edu

+1-414-288-3513