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ABSTRACT
The inherent compliance, high power-density, and muscle-

like properties of soft actuators are especially attractive and use-
ful in many applications, including robotics. In comparison to
classical/modern control approaches, model-based control tech-
niques, e.g., sliding mode control (SMC), applied to flexible flu-
idic actuators (FFAs) offer significant performance advantages
and are considered to be state-of-the-art. Improvements in po-
sition tracking are possible using nonlinear control approaches
that offer enhanced performance for common applications such
as tracking of sinusoidal trajectories at high frequencies.

This paper introduces a SMC approach that increases the
tracking capabilities of prolate flexible pneumatic actuators (PF-
PAs). A model-based proportional, integral, derivative sliding
mode control (PIDSMC) approach designed for position control
of PFPAs is proposed. SMC and PIDSMC systems are imple-
mented on low-cost open-source controls hardware and tested
for tracking sinusoidal trajectories at frequencies of 0.5 Hz and
1.0 Hz with an amplitude of 8.255 mm and an offset of 12.7
mm. The PIDSMC approach reduced the maximum tracking er-
ror by 20.0%, mean error by 18.6%, and root-mean-square error
by 10.5% for a 1 Hz sinusoidal trajectory and by 8.7%, 14.7%,
and 3.8%, respectively, for a 0.5 Hz sinusoidal trajectory. These
reductions in tracking errors demonstrate performance advan-
tages of the PIDSMC over conventional sliding mode position
controllers.

INTRODUCTION
A prolate flexible pneumatic actuator (PFPA) is a tube

of hyperelastic material within a sleeve of braided poly-
mer. When pressurized with compressed air, the compos-

ite tube inflates circumferentially and contracts longitudi-
nally resulting in a force and displacement that is anal-
ogous to muscle [1]. These types of actuators are some-
times called pneumatic artificial muscles (or McKibben ac-
tuators), where a flexible fluidic actuator (FFA) describes
the actuation type and prolate identifies the geometric as-
pect ratio of the device [2]. This paper presents the moti-
vation and background to inspire a new class of controlled
actuators for robotics and many other applications.

PFPAs offer unrivaled power density, with values re-
ported from 5 - 10 kW/kg [1], [3]. Moreover, they can
achieve high forces at relatively low pressures that are
typically available in labs, schools, and hospitals. PFPAs
are controllable nonlinear springs, i.e., their output force
is both pressure and position dependent. This property
makes them ideal for biologically-inspired applications,
mobile robots, and human assistive devices (prosthetics
and orthotics) [4]. This paper sets the stage for improve-
ments in motion control for these applications.

BACKGROUND
PFPAs were modeled by describing the change in en-

thalpy in the control volume [5], [2]. Using this approach
Henry Paynter demonstrated accurate open-loop control
with experimentally determined parameters [6]. Applica-
tions of this work include vehicle suspensions and engine
mount vibration dampening [7]. Caldwell illustrated that
closed-loop control could be achieved using discrete linear
feedback control theory [8].

Model-based nonlinear control techniques have
proven to be practical and superior in many cases to linear

1 Copyright c© 2016 by ASME



control theory for pneumatic and highly nonlinear motion
control applications. Sliding mode control (SMC) has
been a topic of substantial research, especially in applied
fluid power applications such as the motion control of
FFAs. SMC approaches have seen many successes due
to their ability to mathematically converge the error
dynamics to zero over a given trajectory and implement
high speed digital switching that enables powerful and
robust tracking behavior [9]. For example, Comber et al.
successfully applied a sliding mode position controller on
a pneumatic five degree-of-freedom (DOF) magnetic res-
onance imaging (MRI) compatible steerable needle robot
that exhibited needle tip errors of 0.78 mm or less, smaller
than the voxel size of most MRI machines [10]. De Volder
et al. illustrated positioning accuracy of +30 µm using a PI
sliding mode controller [11]. Additionally, SMC systems
have been implemented on hydraulic manipulators and
chemically powered pneumatic FFAs [12], [13].

Some literature points out the limited performance us-
ing linear control theory for FFAs. Surdilovic et al. used
linear control theory for motion control of flexible pneu-
matic actuators reporting a low position accuracy of 10 mm
[14]. Linear control theory applied to the motion control
of FFAs exhibited significant overshoot (12%) and was sen-
sitive to noise, changes in supply pressure, temperature,
and pipe length [8]. Undesirable steady-state errors were
achieved using PI position control in antagonistic pairs of
PFPAs, while also suggesting implementing nonlinear con-
trol methods [15]. In contrast, SMC approaches show sub-
stantial tracking improvements when compared to classi-
cal PID controllers for PFPAs [16].

Model-based control of soft actuators such as FFAs is
of high interest in current research and was identified as
one of the top scientific needs to realize human-robot in-
teraction by 2015 Multi-Annual Roadmap for Robotics in Eu-
rope [17]. Lilly et al. developed and simulated a sliding
mode angular position controller for an antagonistic pair
of PFPAs and reported an approximate maximum track-
ing error of 1.15 deg with a 20 kg payload [18]. Comber
et al. reported a maximum steady-state error of 0.015 mm
using sliding mode position control of an oblate flexible
pneumatic needle driver [19]. Nakamura et al. used model-
based force and position control of PFPAs reinforced with
glass fibers [20].

Applications in multi-DOF systems further show the
capabilities of model-based control techniques for prolate
and oblate FFAs. A haptic device made using a delta
robot driven by PFPAs implemented position and stiffness
control with a PI computed torque and stiffness control
method, resulting in an average maximum position error
of 1.17 mm [21]. Sardellitti reported sliding mode torque
and stiffness control for antagonistically actuated contrac-

tile flexible pneumatic pairs that experimentally confirmed
excellent tracking, i.e., maximum error of 0.12 N-m and
0.06 N-m/rad for torque and stiffness tracking, respec-
tively [22]. Ugurlu et al. described a novel torque and force
control using feedback linearization to be implemented in
future exoskeleton systems [23]. Driver and Shen tested a
SMC system on a hybrid sleeve flexible pneumatic actuator
that exhibited approximately a maximum of 3 deg tracking
error when following a sinusoid wave at 1 Hz and an an-
gular amplitude of 20 deg [24]. A maximum of 0.41 deg
tracking error resulted when using a sliding mode posi-
tion controller on an oblate rotary flexible pneumatic actu-
ator [25]. Ivlev reported that along with the precise control
of oblate rotary flexible pneumatic actuators in [25], the in-
herent compliance would be suitable for safe human-robot
interaction, e.g., exoskeletons [26].

This paper is motivated by significant errors presented
in the tracking of sinusoidal trajectories about their in-
flection points, especially at higher frequencies (1 Hz or
greater) as illustrated by experimental results in [18], [24],
and [16]. This paper presents a similar modeling approach
taken by Comber et al. and Driver et al. and uses exper-
imental methods to accurately model the highly nonlin-
ear behavior of PFPAs [19], [24]. Furthermore, a sliding
mode position controller is derived from the actuator and
pressure dynamics while introducing proportional, inte-
gral, and derivative gain action to the SMC as done with
the PI SMC in [11] and alternatively to the Fuzzy SMC pre-
sented in [27] to eliminate the errors about inflection points
in sinusoidal tracking problems.

MODELING
Actuator Dynamics

A diagram of the PFPA system being modeled and
controlled is illustrated in Figure 1. The model of the sys-
tem is shown in Figure 2 The length L of the PFPA is de-
fined by

L = L0 − x. (1)

where L0 is the initial length and x is the translation of the
free end of the FFA. L is also related to the fiber helical fiber
length, b, and angle of the fiber relative primary axis by
L = bcos(θ). The force from the FFA, F, as a result of pres-
surization is the sum of the force acting on the end caps,
F1, and the reaction force of the hyperelastic tube being de-
formed, F2,

F = ΣF = F1 + F2. (2)
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FIGURE 1. PFPA SYSTEM DIAGRAM.

FIGURE 2. PFPA FREE-BODY-DIAGRAM.

The forces acting on the FFA, derived using the principle
of virtual work, are

F1 = −
dV1

dL
P, F2 = −

dV2

dL
P, (3)

where V1 is the control volume for the force acting on the
caps and V2 is the control volume for the force from the
deformation of the bladder. Since the volume of control
volume 2 as a function of actuator length, L, is L(b2 −
L2)/(4πn2), the force from the pressure then becomes

F =
P(3L2 − b2)

4πn2 . (4)

This force represents the input to the equation of motion
that is written by applying Newton’s second law to the sys-

tem, resulting in

Mẍ + cẋ + kx = F, (5)

where k is the stiffness of the actuator material, c is the vis-
cous damping coefficient, and M is the mass of the non-
fixed end of the PFPA. From mechanics of materials, the
stiffness of axial deflection of a tube from an internal pres-
sure can be expressed as

kL =
tE
rL0

(
2− 1

ν

)
, (6)

where E is the actuator’s Young’s modulus, r is the actu-
ator mean radius, ν is Poisson’s ratio of the material, and
t is the thickness of the tube [28]. This approach has been
used for oblate FFAs [19], [29].

Linear theory can not sufficiently describe the axial
displacement of the PFPA due to the nonlinear material
and nonlinear deformation effects. An efficient way to ad-
dress this is by using experimental methods. Writing Equa-
tion 6 as a 4th-order polynomial, the stiffness can be ap-
proximated with the linear theory in Equation 6 to match
that of the nonlinear material and nonlinear deformation
phenomenon by

k =
tE
rL0

(
2− 1

ν

)(
λ4x4 + λ3x3 + λ2x2 + λ1x + λ0

)
. (7)

Substituting Equations 4 and 7 into Equation 5 gives the
equation of motion,

Mẍ + cẋ + kx =
P(3L2 − b2)

4πn2 , (8)

where the nonlinear stiffness coefficient is given by Equa-
tion 7. The actuator model parameters are listed in Table 1.

Pressure and Mass Flow Dynamics
The pneumatic system is modeled for the actuator con-

trol volume with a proportional flow control valve. The
pressure dynamics of the PFPA control volume is the time
derivative of the ideal gas law, giving:

Ṗ =
RT
V

ṁ− P
V

V̇, (9)
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TABLE 1. ACTUATOR PARAMETERS.

Parameter Value Parameter Value

M 0.05 kg λ0 18.2

c 0.44 N-s/mm λ1 −4.72 mm−1

L0 127 mm λ2 0.430 mm−2

b 151.9 mm λ3 −0.0184 mm−3

n 1 λ4 0.000339 mm−4

r 7.62 mm E 3447 kPa

t 3.175 mm ν 0.49

where R is the universal gas constant for air, T is the tem-
perature of the air, V is the volume of the actuator, V̇ is the
rate of change of volume, and ṁ is the mass flow dynam-
ics. The pressure dynamics are assumed to be isothermal
and the mathematical models are explained in more detail
in [10], [19], [30] and [31]. The mass flow dynamics are
modeled as isentropic flow through a plate with a small
hole (aperture), the mass flow is a function of the aperture
cross-sectional area of the spool valve, and the area nor-
malized flow, Ψ, as described by

ṁ = AvΨ, (10)

where the valve dynamics are assumed to be idealized and
the aperture area Av is assumed to be linearly proportional
to the control command signal, u. The area normalized
mass flow is a piecewise function governed by choked and
unchoked flow regimes that is based on the quotient of the
downstream and upstream pressures, respectively.

Ψ(Pu, Pd) =

{
Ψc

Pd
Pu
≤ Cr Choked

Ψuc
Pd
Pu

> Cr Unchoked
(11)

where Ψc is the choked area normalized mass flow defined
by,

Ψc =
C1C f Pu√

T
, (12)

and Ψuc is the unchoked area normalized mass flow de-
fined by,

Ψuc =
C2C f Pu√

T

(
Pd
Pu

)1/γ
√

1−
(

Pd
Pu

)(γ−1)/γ

. (13)

The coefficients C1 and C2 are gas properties, C f is a nondi-
mensional discharge coefficient, and Cr is the threshold be-
tween choked and unchoked flow through the valve. For
air, Cr is 0.528, C f is 0.2939, where C1 and C2 are defined
by

C1 =

√
γ

R
2

γ + 1

γ+1
γ−1

, (14)

and

C2 =

√
2γ

R(γ− 1)
. (15)

For the internal chamber and the type of valve used (5-3
proportional flow control valve), Ψ is governed by

Ψ(P1, Psource, Patm) =

{
Pd = P1, Pu = Psource Av ≥ 0
Pd = Patm, Pu = P1 Av < 0.

(16)

The volume inside the actuator as a function of length is

V =
L(b2 − L2)

4πn2 , (17)

and the time rate of change in volume is

V̇ =
b2 − 3L2

4πn2 L̇. (18)

The pressure dynamics substituted in the equation of mo-
tion gives the third-order nonlinear dynamics,

M
...
x + cẍ + kẋ = Ḟ. (19)

The pneumatic system parameters are summarized in Ta-
ble 2.

CONTROLLER DESIGN
The SMC is made of two components that make a 3rd-

order control law, one term is the equivalent control and
the other is the robustness control to deal with model un-
certainties and system disturbances [9].

u = ueq + urb (20)
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TABLE 2. PNEUMATIC SYSTEM PARAMETERS.

Parameter Value Parameter Value

Ptank 441.3 kPa Av ± 5.161 mm2

Patm 101.3 kPa Cd 0.5898

R 287.1 J kg−1 K−1 C f 0.2800

C1 0.04040 T 273.0 K

C2 1.156 γ 1.400

where the equivalent control is obtained from the system
model that includes the pressure dynamics and is given in
Equation 19 and where Ḟ is the time derivative of Equation
4, resulting in

Ḟ =
6LPL̇
2πn2 +

3L2 − b2

4πn2 Ṗ. (21)

Including the pressure dynamics from Equation 12 and
substituting the volume and volume dynamics from Equa-
tions 17 and 18, respectively, with simplification gives

Ḟ =
3LP
2πn2 L̇ +

P(3L2 − b2)2

4πn2(b2L− L3)
L̇ +

3L2 − b2

b2L− L3 RTṁ. (22)

Rearranging Equation 19 with the expansion of Equation
22 included on the right-hand side to solve for

...
x results in

...
x =

1
M

(
3LPL̇
2πn2 +

P(3L2 − b2)2

4πn2(b2L− L3)
L̇+

3L2 − b2

b2L− L3 RTṁ− cẍ− kẋ
)

.

(23)
Further simplification is possible by separating terms that
are not and are effected by the valve aperture area, Av, re-
spectively, resulting in

f̂ =
1
M

(
3LPL̇
2πn2 +

P(3L2 − b2)2

4πn2(b2L− L3)
L̇− cẍ− kẋ

)
, (24)

and

ĝ =
1
M

(
3L2 − b2

b2L− L3 RTΨ
)

. (25)

For position control, a third-order sliding surface is de-
scribed by

s =
(

d
dt

+ λ

)3 ∫
e = ë + 3λė + 3λ2e + λ3

∫
edt, (26)

where e = x − xd and λ is a gain. A Lyapunov candidate
function was chosen to be

V =
1
2

s2. (27)

Taking the time derivative of Equation 27, results in

V̇ = sṡ, (28)

which is set to be negative definite and ṡ = sat(s/φ), where
φ is the robustness constant and ṡ is bounded by ±1. To
force the error dynamics to smoothly converge to zero,
the desired Lyapunov function is multiplied by a constant
η. Factoring in the desired Lyapunov function and slid-
ing surface with Equation 23 and substituting in Equations
24 and 25 and solving for the command signal, gives the
closed-loop SMC law as

u = Kp

...
x D + f̂ − 3λë− 3λ2 ė− λ3e− ηsat(s/φ)

ĝ
(29)

where Kp is a proportional gain and
...
x D is the third deriva-

tive of the continuous desired trajectory. Adding integral
and derivative action to the SMC law can improve tracking
and response characteristics.

uPIDSMC = Ki

∫
udt + Kdu̇ (30)

The controller parameters were experimentally deter-
mined by considering different trajectories for the SMC, re-
sulting in the values listed in Table 3.

TABLE 3. SMC PARAMETERS.

Parameter Value Parameter Value

Kp 1.00E-9 λx 125 Hz

φ 0.254 mm/s2 η 1270 mm/s3
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The parameters of the PIDSMC system are listed in Ta-
ble 4 and were experimentally determined using the same
approach.

TABLE 4. PIDSMC PARAMETERS.

Parameter Value Parameter Value

Kp 1.00E-9 λx 125 Hz

Ki 0.01 η 1270 mm/s3

Kd 0.01 φ 0.254 mm/s2

EXPERIMENTAL SETUP
For the experimental setup, a PFPA was configured in

a test stand as shown in Figure 3 and its position mea-
sured with a spring returned string potentiometer. An
Enfield Technologies LS-V05s proportional pneumatic con-
trol valve was used with a NPX MPX5700GP pressure sen-
sor. An Arduino MEGA 2560 revision 3 microcontroller
was used for control and data acquisition using Math-
works SIMULINK through a serial connection of a lap-
top computer running a MATLAB graphical user interface
to acquire signals. The control program operated at 1000

FIGURE 3. EXPERIMENTAL SETUP.

Hz and the data sampling rate was approximately 50 Hz.
The data sampling is significantly slower due to the serial
interface and communication running within a MATLAB
graphical user interface that is not operating at real-time
speeds.

EXPERIMENTAL RESULTS
Model Validation

The nonlinear spring rate parameters listed in Table 1
were experimentally determined by pressurizing the actu-
ator at a quasi-static rate. The model predictions were com-
pared to the experimental results of the PFPA stiffness, as
illustrated in Figure 4. The dynamic behavior of the actua-

FIGURE 4. PFPA STIFFNESS.

tor was also experimentally tested using a square wave in-
put command to the proportional flow control valve. This
same signal was then used as an input to the dynamic
model developed for the PFPA, as shown in Figure 5.

FIGURE 5. DYNAMIC SIMULATION VS. EXPERIMENT.

Control Experiments
Sinusoidal tracking experiments were conducted on

SMC and PIDSMC systems after they were tuned. Tun-
ing parameters were experimentally determined, as done
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in [19], [10], and [29]. Tracking experiments at 0.5 Hz and
1.0 Hz were executed with a sinusoidal amplitude of 8.255
mm and an offset of 12.7 mm. A low-pass filter with a
cut-off frequency of 20 Hz was implemented to filter out
chattering from the SMC command signal and was experi-
mentally determined. Moreover, the PIDSMC’s derivative
and integral gains were implemented after this filter, with
the proportional gain being applied prior to the filter. Sinu-
soidal tracking of the SMC at 0.5 Hz is illustrated in Figure
6.

FIGURE 6. SMC TRACKING (0.5HZ).

The trajectory error over the time of the experiment is
shown in Figure 7.

FIGURE 7. SMC TRACKING ERROR (0.5HZ).

The results of the SMC tracking a sinusoidal wave at
1.0 Hz are presented in Figure 8. Trajectory errors for si-
nusoidal tracking are illustrated in Figure 9. Figures 6 and
8 show the successful sinusoidal tracking from the SMC.
The sinusoidal tracking experiment results of the PIDSMC
at 0.5 Hz are depicted in Figure 10. The tracking errors over
the time of the PIDSMC experiment are plotted in Figure
11. The results of the PIDSMC tracking a sinusoidal wave
at 1.0 Hz are reported in Figure 12. Trajectory errors for

FIGURE 8. SMC TRACKING (1.0 HZ).

FIGURE 9. SMC TRACKING ERROR (1.0 HZ).

FIGURE 10. PIDSMC TRACKING (0.5HZ).

sinusoidal tracking are represented in Figure 13.
Mean tracking error, RMS tracking error, and the max-

imum tracking error are reported for both experiments
when the measured signal is considered to be past the fi-
nite time reaching phase. These errors are summarized for
both experiments in Table 5.

CONCLUSIONS
This paper reports the modeling and controller de-

sign for a single DOF PFPA. The PFPA is modeled using a
lumped-parameter approach that utilizes a 4th-order poly-
nomial modification of the linear axial deformation of a
tube. This lumped-parameter and experimental approach
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FIGURE 11. PIDSMC TRACKING ERROR (0.5HZ).

FIGURE 12. PIDSMC TRACKING (1.0 HZ).

FIGURE 13. PIDSMC TRACKING ERROR (1.0 HZ).

TABLE 5. CONTROLLER PERFORMANCE SUMMARY.

Controller RMS e ē Max e

SMC 0.5Hz 0.0105 mm 2.46E-5 mm 4.60 mm

SMC 1.0Hz 0.0153 mm 3.24E-5 mm 5.00 mm

PIDSMC 0.5Hz 0.0101 mm 2.10E-5 mm 4.20 mm

PIDSMC 1.0Hz 0.0137 mm 2.64E-5 mm 4.00 mm

accurately predicts the static and dynamic characteristics
from a qualitative perspective, respectively. The introduc-
tion of the proportional, integral, and derivative gain ac-

tion on top of the SMC has shown that sinusoidal tracking
improvements are possible.

Control experiments demonstrate that a 3.81%, 8.70%,
and 14.7% improvements in RMS, maximum, and mean
errors, respectively, can be achieved using PIDSMC over
SMC when tracking a sinusoid at 0.5 Hz. Improvements
by 10.5%, 20.0%, and 18.6% were illustrated in RMS, max-
imum, and mean errors, respectively, using the PIDSMC
over SMC for 1.0 Hz sinusoidal tracking.

Some chattering noise persisted despite using low-
pass filters and trying many different tuning configura-
tions. This is thought to be attributed to the performance
limitations of the open-source microcontroller hardware
used and some vibrations due to the experimental setup.
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