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Abstract—A nonlinear lumped-parameter state-space
model of a pneumatic artificial muscle that accounts
for kinetic friction is developed. Model simulations are
reported for square-wave command signals at different
frequencies. Comparisons to experimental results demon-
strate the fidelity of the model. A new sliding mode control
tuning parameter is introduced that increases the gradient
of the error dynamic poles of the sliding surface with
respect to lower order errors. With this method input-
output feedback linearization and model observation are
not needed. A third-order integral sliding mode control
law exhibits steady-state errors of ± 15 µm or less with a
maximum error of 0.29 mm or less when tracking a 7th-
order square-wave position trajectory with an amplitude of
5.40 mm. This simplified sliding mode control law shows
advantages compared to a conventional approach.

Index Terms—Fluid-Power Control, Sliding Mode Con-
trol, Modeling, Pneumatic Artificial Muscles.

I. INTRODUCTION

A pneumatic artificial muscle (PAM) is a flexible
actuator constructed from a hyperelastic tube

inside of a braided fiber sleeve with caps on both
ends. One end allows a compressed gas (typically
air) to flow in and out. When pressurized, the tube
and braid assembly deforms radially and contracts
longitudinally resulting in a force and displacement
that is analogous to biological muscle [1].

PAMs are often deployed in antagonistic pairs
and use computationally expensive model-based con-
trollers to achieve high performance. As soft robots
include more and more degrees of freedom, computa-
tional costs from model-based controllers can become
a technical hurdle. The challenge addressed here is to
design a model-based control system that has similar
computational requirements of classical methods with
the performance of model-based methods.

This paper presents a nonlinear lumped-parameter
model of a PAM with a new expression for kinetic
friction and a novel control approach. A background
on PAM modeling and control approaches is first pre-
sented. Then detailed modeling of the actuator dynam-
ics, pressure dynamics, and overall system dynamics
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of a PAM is developed. Subsequently, a novel design
of a sliding mode position controller is presented.
This is followed by a description of the experimental
setup, results of the simulations and experiments, and
a discussion with conclusions.

II. BACKGROUND

The first patent for a PAM, an Apparatus for Gener-
ating an Over-or-Under Pressure in Gases or Liquids in
1929, was followed by patents by Morin, Woods, and
Gaylord, as well as by McKibben, who used a PAM in
an orthotic device [2]. PAMs are sometimes referred
to as McKibben actuators, despite the foundational
work by Gaylord and others [3], [4]. Although in use
for almost a century, their theoretical behavior is still
under study.

A. Modeling of PAMs
Using a discrete transfer function and experimen-

tally determined parameters, Caldwell et al. developed
a dynamic model and discrete closed-loop control
systems for PAMs [5]. Paynter and Nagurka modeled
PAMs for active leveling, tuning, and damping of
vehicle suspensions and motor mounts and illustrated
the position dependent nature of their force output [6].

Driver and Shen modeled a sleeved PAM using
Chou and Hannaford’s force model and a rotational
spring-mass-damper model [7], [8]. Driver and Shen
also incorporated pressure dynamics with idealized
valve dynamics, with the latter being popularized by
Richer and Hurmuzlu, with the command input being
the valve position or aperture area of the valve [9].

Kang et al. modeled an antagonistic pair of PAMs for
a rotational joint and arrived at a similar expression as
Driver and Shen and Tang without using a spring term
[10], [11]. Kang’s friction model came from the form of
Tondu’s, whose dynamic model was presented as an
empirical three parameter model for the dynamic dry
friction due to the contact surface of the shell against
itself (the braid against the rubber tube) [12].

Hošovský and Havran presented an empirical model
with nonlinear terms for the force, damper, and spring
based on a modified Hill’s model with a variable
damper, which was later used and refined by Tóthová
and Pitel’ et al [13]–[17].
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A multivariate damping term was introduced to
describe the damping force as FD = µPζ̇ or FD = µPẋ,
where ζ̇ is the rate of the contraction ratio, ẋ is the
rate of displacement, and µ is the area normalized
geometric coefficient to model the viscous friction
between the braid and bladder [18], [19]. In [18], this
damping force is a single damping term, whereas
Slightam and Nagurka modeled the damping force as
FD = µPẋ + cẋ, where the linear damping term reflects
of the braid on braid friction and viscous friction from
bearings and bushings [19], [20]. This paper expands
this concept using an analytical approach and develops
a dynamic PAM model.

B. Control
Model-based nonlinear control techniques have

proven to be practical and superior in many cases
to linear control theory for pneumatic applications.
Sliding mode control (SMC) approaches for the motion
control of pneumatic flexible actuators have been used
due to their ability to converge the error dynamics to
zero over a given trajectory [21]. Comber et al. applied
a SMC on a pneumatic five degree of freedom steerable
needle robot that exhibited needle tip errors of 0.78
mm or less, smaller than the voxel size of most MRI
machines [22]. De Volder et al. achieved positioning
accuracy of +30 µm using PI-SMC [23]. Slightam et al.
presented a PI-SMC that attained steady-state accuracy
of 50 µm [19]. Liu et al. proposed two types of SMC
for PAMs based on an empirical model, and compared
the SMCs to a PID control law showing approximately
half the error for sinusoidal tracking [24].

III. MODELING

This paper derives a lumped-parameter model of
a PAM, where the multivariate kinetic friction term
previously introduced by Slightam and Nagurka is
expanded [19]. Model simulations are compared to
experimental results motivating a new SMC design.

A. Actuator Dynamics
The PAM consists of a rubber tube encompassed by

a helical fiber braid with end caps, as shown in Fig. 1
(left). The length L of the PAM is

L = L0 − x (1)

where L0 is the initial length and x is the displacement
of the free end of the PAM. The length L is also related
to the helical fiber length, b, of the braid that wraps
around the rubber tube and angle of the fiber relative
primary axis by L = b cos θ. The model of the PAM
is shown in Fig. 1 (right). The force from the PAM
as a result of pressurization is determined using the
principle of virtual work [3], [7].

Fig. 1: PNEUMATIC ARTIFICIAL MUSCLE DIAGRAM
AND MODEL [19].

The volume of the PAM is defined by

V =
L(b2 − L2)

4πn2 (2)

where n is the number of turns the fiber braid wraps
around the rubber tube. Using the principle of virtual
work, F = −PdV/dL, from Eqn. 2, the force produced
by the actuator is

F =
P(3L2 − b2)

4πn2 . (3)

This force represents the input to the equation of
motion from Newton’s second law,

Mẍ + Ff (x, ẋ, P) + kx =
P(3L2 − b2)

4πn2 , (4)

where k is the stiffness of the actuator material which
is assumed to linear at the PAMs given operating
pressure, P is the internal pressure, Ff (x, ẋ, P) is the ki-
netic friction model that describes the friction between
the tube and fiber braid in addition to the internal
damping of the tube, and M is the mass of the non-
fixed end of the PAM. The friction model is

Ff =

{
cẋ + µk NPAb(bθ̇ cos θ + ẋ) ẋ > 0

cẋ ẋ < 0 (5)

where µk is the coefficient of kinetic friction between
the rubber tube and the braid, N is the number of
braids in the braid assembly, and Ab is the area of
a single braid in contact with the tube, which can
be determined using a Hertzian contact model and
measurements of the braid strand thickness and the
length of the braid b. The other friction force term, cẋ,
represents the internal damping of the material and
braid-to-braid Coulomb friction.
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In state-space form, Eqn. 5 can be expressed as(
ẋ1
ẋ2

)
=

(
x2

P(3(L0−x1)
2−b2)

4πMn2 − Ff (x1,x2,P)
M − kx1

M

)
(6)

The actuator model parameters are listed in Table I.

TABLE I: ACTUATOR PARAMETERS.

Parameter Value Parameter Value
M 0.05 kg L0 200 mm
c 0.57 N-s/mm b 232 mm
n 1.94 k 9.68 N/mm
µk 55.3 D 19.1 mm
N 100 Ab 0.233 mm2

B. Pressure Dynamics

The pressure dynamics for the PAM are modeled
for the actuator control volume and a proportional
flow control valve. The pressure rate of change of the
control volume is the time derivative of the ideal gas
law,

Ṗ =
RT
V

ṁ− P
V

V̇, (7)

where R is the universal gas constant for air, T is the
absolute temperature of the air, V is the volume of the
actuator, V̇ is the rate of change of volume, and ṁ is
the mass flow rate. The pressure dynamics model is
explained in more detail in [22], [25], [26] and [9].

The mass flow rate is modeled as isentropic flow
through a plate with a small hole (aperture). The
mass flow rate is described by ṁ = AvΨ, where the
aperture area Av is assumed to be linearly proportional
to the valve command voltage (Av = KAv u) and the
area normalized flow rate Ψ is a piecewise function
governed by choked and unchoked flow regimes that
is based on the quotient of the downstream and up-
stream pressures, Ψ(Pu, Pd) = Ψc

Pd
Pu
≤ Cr for choked

flow and Ψ(Pu, Pd) = Ψuc
Pd
Pu

> Cr for unchoked flow
regimes, described and validated in [9] and applied to
PAMs in [8], [27], and [19].

In state-space form, the PAM pressure dynamics are

Ṗ = ẋ3 =
RTKAvΨ

V(x1)
u− x3V̇(x1, x2)

V(x1)
(8)

with u being the command voltage (± 5 V) and KAv is
the aperture area gain. Parameter values are listed in
Table II.

TABLE II: PNEUMATIC SYSTEM PARAMETERS.

Parameter Value Parameter Value
Ptank 441.3 kPa Av ± 5.161 mm2

Patm 101.3 kPa T 273.0 K
R 287.1 J kg−1 K−1 KAv 1.03 mm2V−1

C. System Dynamics
The system dynamics for the servovalve controlled

PAM include Eqn. 6 and 8. In state-space form,

ẋ =


x2

x3(3(L0−x1)
2−b2)

4πMn2 − Ff (x1,x2,x3)

M − kx1
M

RTKAvΨ
V(x1)

u− x3V̇(x1,x2)
V(x1)

 . (9)

IV. SLIDING MODE POSITION CONTROL

Traditional SMC approaches for PAMs use an inte-
gral sliding surface s =

( d
dt + λ

)m ∫ e, where m is the
order of the differential equation of the system to be
controlled [21], [25], [27]. This results in a 3rd-order
sliding surface for a PAM tracking control problem. It
is proposed that the constant λ be raised to the power
q to increase the gradient of the error dynamic poles
from absement (integral of position) to position and
higher order terms [28] [19]. Then the sliding surface
is

s =
(

d
dt

+ λq
)m ∫

e (10)

where q is a new tuning parameter. For a PAM, where
m = 3, expanding Eqn. 10,

s = ë + 3λq ė + 3λ2qe + λ3q
∫

e. (11)

Differentiating Eqn. 11 with respect to time

ṡ =
...
e + 3λq ë + 3λ2q ė + λ3qe. (12)

The equivalent control law can be expressed using
Filippov’s equivalent dynamics principle

ueq =
1
ĝ

(
...
x D + f̂ − 3λq ë− 3λ2q ė− λ3qe

)
(13)

where f̂ and ĝ are model estimation parameters de-
termined by solving for the control input in the third
order model, similar to those presented in [27], [25].
With a Lyapunov like function, 1

2
d
dt s2 ≤ −η | s |, the

robust control law is determined to be

urb = η | s | sgn
(
s
)

(14)

to keep the sliding surface s at zero, where sgn(s) =
+1 if s > 0 and sgn(s) = −1 if s < 0. To minimize
chatter from the high speed switching, a saturation
function is introduced to act as a first-order filter, with
the saturation of s/φ being at ±1, where φ is a constant
that decreases the rate of switching.

urb = η | s | sat
(

s
φ

)
(15)

Combining the equivalent and robust control laws and
introducing a proportional gain, Kp, results in the 3rd-
order integral sliding surface SMC law,

uSMC =
Kp

ĝ
(...

x D + f̂ − 3λëq − 3λ2q ė− λ3qe− urb
)

(16)
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with the tuning parameter q. With the parameter q, the
control law is assumed sufficiently robust such that
observation and input-output feedback linearization
are not needed. Eliminating f̂ and ĝ, the SMC becomes

uqSMC = Kp
(...

x D − 3λq ë− 3λ2q ė− λ3qe− urb
)

(17)

For benchmark comparison, a traditional SMC using
observation, where q = 1, is

uSMC =
Kp

ĝ
(...

x D + f̂ − 3λë− 3λ2 ė− λ3e− urb
)

(18)

The tuning parameters determined empirically for
both control laws are listed in Table III. Both SMCs
were tuned by first adjusting the parameter λ, fol-
lowed by incrementally increasing η to achieve the
desired tracking while simultaneously increasing φ to
eliminate chatter. The new controller was tuned by
simultaneously adjusting λ and q. Two 3rd-order low-
pass filters were used to filter the measured encoder
signal and numerical differentiation noise for error
dynamic and observer derivatives; these are denoted
as LPF1 and LPF2, respectively.

TABLE III: SMC PARAMETERS.

SMC Eqn. (17) qSMC Eqn. (16)
Parameter Value Parameter Value

LPF1 300 Hz LPF1 300 Hz
LPF2 0.5 Hz LPF2 0.5 Hz
Kp 0.00025 Kp 0.0002
λ 225 Hz λ 10 Hz
η 25.4 mm/s3 η 10.2 mm/s3

φ 2.54 mm/s2 φ 0.51 mm/s2

q 1 q 1.75

V. EXPERIMENTAL SETUP

The PAM is controlled and tested via Simulink
Desktop Real-time operating at 1 kHz with a desktop
computer using a National Instruments PCI-6221 data
acquisition card (DAQ). The PAM test stand is shown
in the upper image of Fig. 2 with the PAM shown in
the lower image of Fig. 2.

An Enfield Technologies LS-V05s proportional pneu-
matic control valve is used that has a bandwidth of
109 Hz. A voltage command signal is sent from the
DAQ to an Enfield Technologies D1 proportional lin-
ear motor valve driver. The proportional flow control
valve controls the mass flow rate from the pressure
source at the manifold to the PAM or from the PAM
exhausted to atmosphere. Between the valve and the
PAM, a NPX MPX5700GP pressure sensor is used to
record the pressure dynamics. The PAM’s guide shaft
is connected to a US Digital EM2 optical quadrature
encoder with 2000 counts per 25.4 mm (1 inch), giving
a resolution of 3.2 µm.

Fig. 2: EXPERIMENTAL SETUP FOR PAM TESTING AND
PAM TESTED.

VI. SIMULATION AND EXPERIMENTAL RESULTS

A. Model Simulation vs. Physical System

For model validation, a square wave voltage com-
mand signal was applied to the valve controller and
the response of the PAM was measured. Experiments
were conducted at frequencies of 0.25, 0.5, 1, and 2
Hz and at amplitudes of the maximum voltage (5
V) with 5 V offset (0 to 10 V command signal). The
open-loop responses of the square-wave command
signal at 0.25, 0.5, 1, and 2 Hz are shown in Fig. 3,
which demonstrates accurate model prediction for the
position of the PAM at the four command signals.

B. Controller Tracking Experiments

Two different tracking experiments were conducted:
in experiment 1, a square-like seventh-order polyno-
mial trajectory with an amplitude of 5.4 mm and an
offset of 11.8 mm, with 0.2 Hz transitions between
set points and a 0.1 Hz resting period, is tracked; in
experiment 2, the same trajectory with no steady-state
period is tracked. Fig. 4 and 5 show the results of the
tracking experiments 1 and 2, respectively.
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Fig. 3: 0.25, 0.5, 1, AND 2 HZ SQUARE WAVE RE-
SPONSES OF ACTUAL AND MODEL.

Fig. 4: TRACKING EXPERIMENT 1.

The 7th-order trajectory is determined by meth-
ods presented in Niku and is needed to provide a
continuous-time trajectory for higher order differential
terms in the control law [29]. The maximum tracking,
steady-state (s.s.), and root-mean-square (RMS) errors
for both controllers and experiments are listed in Table
IV.

Fig. 5: TRACKING EXPERIMENT 2.

TABLE IV: CONTROLLER PERFORMANCE.

Index Experiment SMC qSMC
max(|e|) 1 292 µm 272 µm

s.s. e 1 ± 15 µm ± 15 µm
RMS(e) 1 43.2 µm 35.6 µm
max(|e|) 2 284 µm 291 µm
RMS(e) 2 43.2 µm 55.3 µm

The controllers in both tracking experiments exhibit
tracking errors of 0.3 mm or less. For the tracking
experiment with a 10 s resting period the steady-
state accuracy of the controller was 15 µm for both
controllers.

VII. DISCUSSION

Comparing the results of the model and the actual
system shows that the PAM model accurately predicts
the dynamic behavior. There is slight degradation in
the accuracy of the model at higher frequencies likely
due to discrepancies in valve and pressure dynamics.

The SMC law with the exponential modifier shows
that accurate sub-millimeter tracking is possible with-
out observers and input-output feedback linearization.
There is a small difference in the controller perfor-
mance between methods, as shown in Table IV. This
suggests that the simplified SMC is sufficiently robust
that observation and input-output feedback lineariza-
tion are unwarranted. This promises to be particu-
larly useful in soft robotic applications where there
are many degrees of freedom and computationally
expensive controllers may be problematic.

VIII. CONCLUSIONS

A dynamic lumped-parameter model of a PAM that
includes kinetic friction is presented. A comparison
of model simulation and experimental results from a
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square wave command to the valve at 0.25, 0.5, 1, and
2 Hz shows high fidelity.

Based on the model, a sliding mode control law is
derived using a 3rd-order integral sliding surface. A
tuning parameter q is added that is the exponent of λ
in the integral sliding surface function. It allows for the
error dynamic poles to be manipulated so model obser-
vation and input-output feedback linearization are not
needed. This simplified SMC method is compared to a
traditional approach with no discernable difference in
tracking performance. With the simplified SMC, mea-
surement of the position of the PAM provides sufficient
information to achieve sub-millimeter tracking. This
approach requires tuning of five parameters (λ, Kp, η,
φ, and q), making implementation nearly as simple as
PID control (that requires tuning of KP, KI , KD, and n)
with exclusion of model estimation.
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[16] M. Tóthová and J. Piteĺ, “Simulation of Actuator Dynamics
Based on Geometric Model of Pneumatic Artificial Muscle,”
IEEE 11th International Symposium on Intelligent Systems and
Informatics, pp. 233–237, 26-28 Sept. 2013.

[17] J. Piteĺ and M. Tóthová, “Dynamic Modeling of PAM based Ac-
tuator Using Modified Hill’s Muscle Model,” IEEE Carpathian
Control Conference, pp. 307–310, 26-29 May 2013.
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