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A TWO-STAGE COMMITTEE MACHINE OF NEURAL NETWORKS

Jen-Feng Wang, Chinson Yeh, Chen-Wen Yen*, and Mark L. Nagurka

ABSTRACT

In solving pattern recognition problems, many ensemble methods have been pro-
posed to replace a single classifier by a classifier committee.  These methods can be
divided roughly into two categories: serial and parallel approaches.  In the serial
approach, component classifiers are created by focusing on different parts of the train-
ing set in different learning phases.  In contrast, without paying special attention to
any part of the dataset, the parallel approach generates classifiers independently.  By
integrating these two techniques and by using a neural network approach for the base
classifier, this work proposes a design method for a two-stage committee machine.  In
the first stage of the approach the entire dataset is used to train an averaging ensemble.
Based on the classification results of this first stage, hard-to-classify samples are se-
lected and sent to the second stage.  To improve the classification accuracy for these
samples, a computationally more intensive bagging ensemble is employed in the sec-
ond stage.  These two neural network ensembles work in series whereas the compo-
nent neural networks in each of the ensembles are trained in parallel.  Experimental
results demonstrate the accuracy and robustness of the proposed approach.
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I. INTRODUCTION

It  has been found, both theoretically and
empirically, that combining the results of multiple
classifiers can create a classifier committee that is
generally more accurate than any of the component
classifiers.  In general, these classifier combination
methods can be divided into two categories: parallel
and serial approaches.  In the former approach, clas-
sifiers are trained in parallel using the same dataset.
These independently trained classifiers are then com-
bined using rules such as averaging (Haykin, 1999;
Kuncheva, 2002) voting (Lam and Suen, 1997;
Windeatt, 2003), multiplying (Tax et al., 2000;
Alexandre et al., 2001), linear combination (Hashem,
1997; Ueda, 2000; Fumera and Roli, 2004), and other
methods.

In the serial approach a committee machine is
constructed by increasing the number of classifiers
one-at-a-time.  The dataset used to train each classi-
fier is chosen based on the performance of the earlier
classifiers in the series.  The goal is to produce new
classifiers that can somehow compensate for the
weakness of the existing classifiers.  A well-known
example of the serial approach is boosting (Schapire,
2002), which tries to generate new classifiers that are
better able to correctly classify samples for which the
current committee performance is poor.

Compared with the serial approach, a limitation
of the parallel approach is that its classifiers are in-
dependently designed and the interaction among the
classifiers has thus not been utilized to enhance the
performance of the committee.  As a result, classifi-
ers designed by the parallel approach tend to be less
accurate than those constructed by the serial approach.
On the other hand, a drawback of the serial approach
is that in dealing with a noisy dataset it can easily
overfit, since it is typically designed to focus more
on the misclassified examples which in some cases
are the noisy data.

A goal of this work is to develop a committee
machine design method that combines the advantages
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of the serial and parallel approaches.  It relies on neu-
ral networks for the base classifier.  In analogy with
the serial approach, the proposed approach divides
the classification process into two stages.  In
particular, after using an averaging ensemble in the
first stage, the second stage tries to improve the clas-
sification accuracy by focusing on a selected data
subset which is more susceptible to classification er-
ror than the remaining dataset.  To preserve the ad-
vantages of the parallel approach, these two serially
combined neural ensembles are both constructed us-
ing a conventional parallel approach.

This paper is organized as follows: The follow-
ing section discusses the basic ideas of two of the
most popular classifier combination methods, bagging
and boosting.  Also addressed in Section II is the po-
tential instability problem of classifiers.  The pro-
posed approach is developed in Section III.  Section
IV presents experimental results that demonstrate the
method’s accuracy and robustness.  Conclusions are
offered in Section V.

II. BAGGING AND BOOSTING

The approaches of bagging (Breiman, 1996) and
boosting (Schapire, 2002) have received extensive
attention.  Compared with conventional classifier
combination methods, a distinct feature shared by both
approaches is the use of the resampling technique.  A
fundamental difference between them is that bagging
constructs classifiers in parallel whereas boosting
creates classifiers in series.

In bagging (or bootstrap aggregating), each clas-
sifier is trained on a set of N examples, drawn ran-
domly with replacement from the original training set
of size N.  Training sets generated in such a way are
called bootstrap replicates of the original set (Efron
and Tibshirani, 1993).  Specifically, with the neural
network as the base classifier, bagging works as
follows.  First, the original training set is represented
as:

T = {(xi, yi), i = 1, ..., N}, (1)

where xi is the input vector, yi is the output of the ith
sample and N is the number of the data.  Trained by
training set T, given an input x, the output of the neu-
ral network can be denoted as f (x, T ).  Next, using a
resampling technique to produce a sequence of boot-
strap replicates {Gk, k = 1, ..., K} from T, one can con-
struct K component neural networks by using these K
bootstrap replicates.  With x as the input, the output
of the kth component neural network can be expressed
as f (x, Gk).  Finally, for a sample x, the classification
result can be determined using the following averag-
ing rule:

fB(x) = 1
K f (x, Gk)Σ

k = 1

K

. (2)

As a serial approach, boosting tries to combine
a series of “weak” classifiers (whose individual per-
formance is only slightly better than random guessing)
to form a stronger classifier.  Several variants of the
boosting approach have been proposed.  Here, this
paper considers the well known AdaBoost method
(Freund and Schapire, 1997), which has been success-
fully applied to many pattern recognition problems
(Maclin and Opitz, 1997; Bauer and Kohavi, 1999).
The basic idea of AdaBoost is to generate a series of
classifiers using reweighed versions of the training
set T.  Specifically, by weighting all samples equally
at the beginning, the dataset Fj used to train the jth
classifier is created by sampling examples that are
incorrectly classified by previous classifiers more
frequently.  This allows hard-to-classify samples to
have ever-increasing influence since a subsequent
classifier will focus more on the samples that have
been misclassified by its predecessors.  Finally, the
results of these component classifiers can be inte-
grated using the following linear combination rule:

fAB(x) = wj f (x, Fj)Σ
j = 1

J

, (3)

where J is the number of component classifiers.  The
weighting coefficients wj are determined such that
those more accurate classifiers will have more influ-
ence on the final classification decision.

Both bagging and boosting have been found to
be effective in working with unstable classifiers, such
as decision trees and neural networks.  The instabil-
ity of a classifier can be measured by the sensitivity
of the classification accuracy to the training set
perturbation.  For neural networks, this instability prop-
erty is particularly noticeable for problems that have
small training sets.  The reason is that, without suffi-
cient training data, it is unlikely that a neural net-
work can perform accurate learning.  Consequently,
neural networks built on small training sets are usu-
ally biased.  They may have a large error variance
and are thus relatively unstable.  In addition to in-
creasing the size of the training set, this instability
problem can be partially resolved by bagging or boost-
ing since these two methods can reduce the variance
of the classifier (Bauer and Kohavi, 1999; Breiman,
1998).

Previous studies (Maclin and Opitz,1997; Opitz
and Maclin,1999; Dietterich, 2000; Chan et al., 2001)
have shown that both bagging and boosting ap-
proaches can improve the classification accuracy over
individual classifiers including decision trees and
neural networks.  The studies also found that the bag-
ging approach tends to be more consistent than the
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boosting approach, despite the fact that the latter is
often more accurate when applied properly.  However,
in dealing with problems with substantial noise, the
bagging approach typically outperforms the boosting
approach.  This can be explained by noticing that the
boosting may overfit the training set since the later
classifiers may over-emphasize examples that are
actually noisy data.  This phenomenon will be ob-
served in the experimental studies.

III. THE PROPOSED METHOD

The two-stage classification process proposed
here is conceptually and operationally simple.  The
first stage uses an averaging neural ensemble to per-
form learning.  In similarity to the boosting approach
that trains individual classifiers sequentially to learn
harder and harder parts of the classification problem,
hard-to-classify samples are selected and sent to the
second stage for further processing.  Since the bag-
ging approach has been shown to be effective in im-
proving the accuracy of neural classifiers (Opitz and
Maclin, 1997) and is also robust to noise, the second
stage of the proposed approach adopts a bagging en-
semble to classify this hard-to-classify training subset.
The key issue then is how to determine this hard-to-
classify training subset so that the overall classifica-
tion accuracy can be maximized.  This issue can be
divided further into two subproblems.  First, a crite-
rion is needed to determine which samples are more
difficult to classify than others.  Second, the optimal
size of the hard-to-classify training subset must be
determined in order to minimize the classification error.

In responding to the first problem, a criterion is
proposed to quantify the degree-of-classification-dif-
ficulty for the training samples.  This criterion is
closely related to the following rule for classification.
Typically, a classifier assigns an input vector x to
class Ck if

dk(x) > dj(x) for k, j = 1, ..., M and j ≠ k, (4)

where d1(x), d2(x), ... dM(x) is a set of discriminant func-
tions used by the classifier and M is the number of classes.
To minimize the probability of misclassification, the
Bayes’ rule for minimum error chooses the discrimi-
nant function dk(x) as the posterior probability associ-
ated with class Ck, that is,

dk(x) ≈ P(Ck|x). (5)

It has been shown that the outputs of a neural
network can be trained to approximate the posterior
probabilities (Bishop, 1995).  For example, for a two-
class problem, this can be achieved by first setting
the number of the neural network outputs to two and

by specifying the target outputs to be [1, 0] and [0, 1]
for C1 and C2 samples, respectively.  Next, after de-
fining the error as the difference between target and
actual outputs and by using the mean square error as
the objective function to be minimized, the first and
second outputs of the neural network can be trained
to approximate the posterior probabilities of C1 and
C2, respectively.  As a result, these two neural net-
work outputs are typically chosen as the discriminant
functions d1(x) and d2(x).

By defining training error e(x) as the difference
between the desired and actual neural network out-
puts and by representing the training error associated
with d1(x) and d2(x) as e1(x) and e2(x), respectively,
it follows that:

d1(x) + e1(x) = P(C1|x), (6)

d2(x) + e2(x) = P(C2|x). (7)

The difference between the two discriminant func-
tions is then

d1(x) – d2(x) = P(C1|x) – P(C2|x) + e2(x) – e1(x).

(8)

Based on the classification rule of Eq. (4), the Bayes’
rule for minimum error will be violated if

sgn(d1(x) – d2(x)) ≠ sgn(P(C1|x) – P(C2|x)), (9)

where sgn(.) represents the signum function.
According to Eq. (9), the Bayes’ rule for mini-

mum error will not be violated as long as the follow-
ing inequality is satisfied.

|P(C1|x) – P(C2|x)| > |e1(x) – e2(x)| (10)

Eq. (10) shows that a sample is more tolerant of training
error if it has a larger value of |P(C1|x) – P(C2|x)|.
Therefore, for a two-class problem, the term |P(C1|x)
– P(C2|x)| seems to be a reasonable index for charac-
terizing the degree-of-classification-difficulty.
Unfortunately, the posterior probabilities are typically
unknown.  However, since the outputs of a neural
network can be trained to approximate the posterior
probabilities, |P(C1|x) – P(C2|x)| is replaced by |d1(x)
– d2(x)| as a measure for the degree-of-classification-
difficulty.

The next problem is to determine how many
samples the hard-to-classify training subset should
contain.  To resolve this problem, two relevant prop-
erties of bagging (Breiman, 1998) are considered:

1. With judicious component classifiers, the commit-
tee machine designed by bagging can provide a
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near optimal solution.  However, if the component
classifiers are not sufficiently accurate, bagging
can also degrade the classification accuracy.

2. By defining the instability of a classifier as the sen-
sitivity of the classifier’s accuracy to the content of
the training set, applying bagging to unstable clas-
sifiers usually improves the classification results.
In contrast, applying bagging to stable classifiers
does not seem to be useful.

These two properties indicate that the success
of bagging depends heavily on the accuracy and in-
stability of the component classifiers.  For the pro-
posed approach, accuracy and instability are two
conflicting requirements.  Specifically, increasing the
size of the hard-to-classify training subset can im-
prove the accuracy and reduce the instability of the
component neural networks at the same time.
Therefore, determining the optimal size for the hard-
to-classify training subset so that the accuracy and
instability requirements can be met simultaneously
becomes a key issue for the proposed approach.

An analytical solution that can determine the
optimal size of the hard-to-classify training subset by
balancing these two conflicting requirements of ac-
curacy and instability does not seem to be available.
A computationally intensive but conceptually simple
technique to resolve this difficulty is to perform a
systematic search by incrementally increasing the size
of the hard-to-classify training subset.  Based on this
idea and the proposed measure for degree-of-classi-
fication-difficulty, the approach here can be expressed
procedurally (below).  In developing the approach,
attention is restricted to two-class problems.  This
does not limit the applicability of the approach since
a multiclass problem can always be converted into a
series of two-class problems (Knerr et al., 1990;
Anand et al., 1995).

The design process of the proposed two-stage
committee machine consists of the following steps:

(1) Construct an averaging neural ensemble and
record the resulting |d1(x) – d2(x)| value for ev-
ery sample.

(2) Set a = 0.
(3) Divide the training set into two subsets Z1 and Z2

by letting Z1 contains the samples whose |d1(x) –
d2(x)| value is larger than a and Z2 contains the
remaining samples.

(4) Construct a bagging ensemble by using Z2 as its
training set.

(5) After using the averaging ensemble to classify Z1

and the bagging ensemble to classify Z2, deter-
mine the total number of incorrectly classified
samples.

(6) Set a = a + ∆a and continue the solution process

by going back to step 3 until Z1 becomes an empty
set.  In this work, the parameter ∆a is set to 0.01.

(7) From all the tested two-state committee machines,
select the one that yields the smallest classifica-
tion error as the final design.  Signify the corre-
sponding a as a*.

In the procedure the optimal size for the hard-
to-classify training subset is determined by testing
every quantized value for parameter a.  Initially, with
parameter a set to zero, the two-stage committee ma-
chine is essentially an averaging ensemble.  After
parameter a reaches its maximum, the two-stage com-
mittee machine transforms to a standard bagging
ensemble.  As a result, the proposed approach is ex-
pected to perform no worse than the averaging and
bagging ensembles.  The tradeoff of this flexibility
for adjusting parameter a is that the computational
cost increases linearly with the number of quantiza-
tion levels of parameter a.  However, this computa-
tional cost is only required for the classifier design
phase, which is basically a one-time process and is
typically executed off-line.  For the repetitive classi-
fication tasks, which often require on-line operation,
the computational cost of the approach is of the same
order as that of the conventional committee machine.
To perform classification using the proposed two-stage
committee machine, the sample is first classified by
the averaging neural ensemble.  Its classification re-
sult is accepted if its |d1(x) – d2(x)| value is no less
than a*.  Otherwise, this sample is considered to be a
hard-to-classify sample and the bagging ensemble is
used to determine its membership.

IV. EXPERIMENTAL RESULTS

This section compares the proposed approach
with neural ensembles constructed by an averaging
rule, bagging and AdaBoost.  In implementing these
ensemble methods, the multilayered perceptron
(MLP) is chosen as the base classifier.  Additionally,
in constructing the AdaBoost neural ensembles,
AdaBoost.M2, which improves upon some of the
properties of the original AdaBoost algorithm, is used
to train the MLPs (Freund and Schapire, 1997).

The tested datasets are real-world problems ob-
tained from the UCI repository of Machine Learning
Databases and Domain Theories (Blake and Merz,
1998).  The contents of these datasets are summa-
rized in Table 1.  In comparing the tested methods,
each dataset is divided into training, validation and
testing subsets with an 8:1:1 ratio.  The training sub-
set is used to adjust the connection weights of the
MLP; the validation subset is used by the early-stop
technique to avoid overfitting.  The testing subset is
used to characterize the generalization accuracy of
the MLP.  For the sake of reliability, the training process
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was repeated 1000 times using randomly partitioned
training, validation and testing subsets.  To charac-
terize the generalization performances of the tested
ensemble methods, the accuracy reported is the aver-
age of the testing subset classification accuracy.

In addition to classification accuracy, this work
also compares the robustness of the tested ensemble
methods by introducing noise into the datasets
(Demiriz et al., 2002; Windeatt, 2006).  In particular,
this work “injects” α% of noise into the datasets by
randomly selected α% of the training and validation
subset samples to alter their class memberships.  In
order to test the true generalization performance of
the classification methods, the testing subset samples
remain unchanged.  The means of the testing accu-
racy for the original datasets and datasets with 5%,
10% and 15% of noise are summarized in Tables 2-5.
The best classification results are highlighted (shown
as shaded cells in the table) for every tested problem.

Based on the results of Tables 2 to 5, the classi-
fication accuracy of the proposed approach can be
compared with that of the other three tested methods
in a pairwise manner.  Since there are thirteen
problems, such an arrangement requires thirty nine
comparisons for each noise level.  These compara-
tive results are summarized in Table 6.  The white
(black) boxes in Table 6 signify that the proposed
approach has a higher (lower) classification accuracy
than the competing method.  From Table 6, for the
noise free cases, the number of white and black boxes
is 31 and 8, respectively.  For simplicity, the result is
expressed as 31W-8B.  For the problems with 5%,
10% and 15% noise, Table 6 shows that the proposed
approach results in 32W-7B, 32W-7B and 34W-5B,
respectively.  Summarizing results from all four tested
noise levels, the proposed approach yields an overall
result of 129W-27B.

To more rigorously compare the performance of

Table 1  Summary of the tested datasets

Dataset Number of features Number of samples

Sonar 60   208
Hepatitis 19   155
Horse-Colic 22   368
Heart-Statlog 13   270
Heart-C 13   303
Heart-H 12   294
House-Votes-84 16   435
German (Credit-g) 24 1000
Credit-a 15   690
Australian 14   690
Breast cancer     9   699
Kr-vs-Kp 36 3196
Diabetes     8   768

Table 2  Summary of the means and standard deviation of the testing subset accuracy (without noise)

Testing accuracy % (Mean ± Standard deviation)
Dataset

Averaging Bagging AdaBoost Two stage

Sonar 75.87 ± 8.64 78.26 ± 8.34 78.15 ± 8.35 77.89 ± 8.39
Hepatitis 81.07 ± 5.96 85.36 ± 7.08 87.06 ± 7.18 86.34 ± 7.47
Horse-Colic 87.33 ± 5.04 88.50 ± 4.73 88.38 ± 4.93 88.48 ± 4.79
Heart-Statlog 82.92 ± 7.11 84.60 ± 6.76 84.09 ± 6.97 84.33 ± 7.03
Heart-C 83.21 ± 6.46 84.21 ± 6.24 83.94 ± 6.24 84.22 ± 6.23
Heart-H 95.10 ± 4.38 96.88 ± 3.10 98.02 ± 2.52 97.75 ± 2.58
House-Votes-84 93.53 ± 3.86 95.21 ± 2.94 95.78 ± 2.77 95.51 ± 2.95
German (Credit-g) 70.73 ± 1.89 76.14 ± 3.20 75.06 ± 3.03 76.72 ± 3.50
Credit-a 86.16 ± 3.95 86.74 ± 3.87 86.62 ± 3.85 86.73 ± 3.85
Australian 86.49 ± 3.85 86.96 ± 3.70 86.85 ± 3.71 87.18 ± 3.75
Breast cancer 96.00 ± 2.35 96.41 ± 2.10 96.47 ± 2.12 97.21 ± 1.89
Kr-vs-Kp 95.11 ± 1.27 95.98 ± 1.07 96.13 ± 1.09 96.41 ± 1.02
Diabetes 76.16 ± 4.34 76.40 ± 4.45 76.50 ± 4.40 76.63 ± 4.36
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Table 3  Summary of the mean and standard deviation of the testing subset accuracy (5% noise)

Testing accuracy % (Mean ± Standard deviation)
Dataset

Averaging Bagging AdaBoost Two stage

Sonar 75.28 ± 8.61 77.72 ± 8.37 77.10 ± 8.70 77.83 ± 8.37
Hepatitis 76.90 ± 2.10 81.46 ± 5.87 84.58 ± 7.09 84.68 ± 6.86
Horse-Colic   71.49 ± 10.60 88.24 ± 4.85 87.19 ± 5.89 88.21 ± 4.89
Heart-Statlog 81.24 ± 8.22 84.30 ± 6.71 84.00 ± 6.87 84.14 ± 6.81
Heart-C 83.05 ± 6.52 84.33 ± 6.17 84.03 ± 6.21 84.03 ± 6.35
Heart-H 94.55 ± 4.72 96.94 ± 3.21 96.42 ± 3.60 97.59 ± 2.76
House-Votes-84 93.08 ± 4.06 95.14 ± 3.03 94.70 ± 3.29 95.44 ± 3.04
German (Credit-g) 70.00 ± 0.11 71.21 ± 2.18 71.74 ± 2.38 74.93 ± 3.23
Credit-a 85.91 ± 4.04 86.51 ± 3.86 86.53 ± 3.86 86.52 ± 3.87
Australian 86.10 ± 3.86 86.57 ± 3.77 86.68 ± 3.75 86.68 ± 3.84
Breast cancer 95.48 ± 2.43 96.22 ± 2.18 95.81 ± 2.28 96.97 ± 1.97
Kr-vs-Kp 94.71 ± 1.32 95.60 ± 1.15 95.25 ± 1.21 96.04 ± 1.06
Diabetes 75.78 ± 4.41 76.63 ± 4.30 76.46 ± 4.23 76.47 ± 4.34

Table 5  Summary of the mean and standard deviation of the testing subset accuracy (15% noise)

Testing accuracy % (Mean ± Standard deviation)
Dataset

Averaging Bagging AdaBoost Two stage

Sonar   69.80 ± 10.74 75.79 ± 8.79 74.56 ± 9.30 75.95 ± 8.92
Hepatitis 76.47 ± 0.00 76.52 ± 0.56 77.56 ± 3.68 77.23 ± 2.79
Horse-Colic 63.16 ± 0.00 65.59 ± 6.33 67.43 ± 8.87 81.79 ± 8.42
Heart-Statlog 56.60 ± 4.75   75.90 ± 10.98   73.06 ± 13.02 82.93 ± 6.74
Heart-C   71.49 ± 12.50 83.21 ± 6.49 81.90 ±7.98 83.30 ± 6.42
Heart-H 67.56 ± 9.35 93.66 ± 6.49   90.05 ± 10.34 96.45 ± 3.58
House-Votes-84   87.48 ± 10.20 94.27 ± 3.51 92.54 ± 4.24 95.09 ± 3.19
German (Credit-g) 70.00 ± 0.00 70.00 ± 0.00   69.997 ± 0.17 70.01 ± 0.12
Credit-a 85.30 ± 4.25 85.96 ± 4.01 85.94 ± 3.95 85.77 ± 3.97
Australian 85.04 ± 4.45 86.08 ± 3.86 86.02 ± 3.95 85.99 ± 3.89
Breast cancer 93.94 ± 2.86 94.79 ± 2.53 94.17 ± 2.63 96.49 ± 2.18
Kr-vs-Kp 93.81 ± 1.40 94.53 ± 1.32 93.89 ± 1.42 95.36 ± 1.21
Diabetes 66.45 ± 3.33 71.41 ± 4.95 70.67 ± 4.32 75.03 ± 4.16

Table 4  Summary of the mean and standard deviation of the testing subset accuracy (10% noise)

Testing accuracy % (Mean ± Standard deviation)
Dataset

Averaging Bagging AdaBoost Two stage

Sonar 73.79 ± 9.42 76.85 ± 8.78 76.14 ± 8.83 76.41 ± 8.51
Hepatitis 76.51 ± 0.53 77.42 ± 2.94 81.35 ± 6.49 81.16 ± 5.76
Horse-Colic 63.46 ± 2.38   80.03 ± 10.33   77.92 ± 11.59 87.74 ± 4.70
Heart-Statlog   66.38 ± 11.79 83.25 ± 6.96 81.20 ± 8.97 83.86 ± 6.86
Heart-C 81.86 ± 7.18 84.10 ± 6.20 83.64 ± 6.38 83.71 ± 6.33
Heart-H 91.13 ± 8.80 96.50 ± 3.52 95.21 ± 4.38 97.24 ± 3.05
House-Votes-84 92.36 ± 4.25 94.82 ± 3.23 93.83 ± 3.77 95.34 ± 3.04
German (Credit-g) 70.00 ± 0.00 70.00 ± 0.21 70.19 ± 0.93 70.52 ± 1.51
Credit-a 85.64 ± 4.02 86.26 ± 3.96 86.24 ± 3.96 86.17 ± 3.98
Australian 85.75 ± 3.87 86.33 ± 3.80 86.40 ± 3.79 86.29 ± 3.85
Breast cancer 94.96 ± 2.69 95.59 ± 2.39 95.05 ± 2.53 96.76 ± 2.05
Kr-vs-Kp 94.29 ± 1.34 95.13 ± 1.21 94.58 ± 1.34 95.77 ± 1.16
Diabetes 72.38 ± 5.43 76.10 ± 4.18 75.14 ± 4.11 76.33 ± 4.27
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the proposed approach with the other three ensemble
methods, a one-sided t-test was conducted to com-
pare classif icat ion results .   In each of these
comparisons, the approach is considered to have won
(lost) the comparison if its mean testing accuracy is
statistically significantly higher (lower) than that of
the competing method.  A p-value less than 0.01 is
considered statistically significant, and a statistically
insignificant result is considered to be a tie.  To visu-
alize the overall performance of the proposed
approach, Table 7 summarizes its statistical test re-
sults by representing wins, losses and ties with white,
black and grey boxes, respectively.  From this table,
for the noise free cases, the number of white, black
and grey boxes is 21, 1 and 17, respectively.  This
result is reported as 21W-1L-17T signifying 21 wins,
1 loss and 17 ties.  Similarly, Table 7 also shows that
for the 5%, 10% and 15% noise level cases, the pro-
posed approach yields 24W-0L-15T, 28W-0L-11T
and 29W-0L-10T, respectively.  The overall result for
all four noise levels is 102W-1L-53T.

A comparison of the overall results of Table 6
(129W-27B) and Table 7 (102W-1L-53T) sheds some
light on the performance of the proposed approach.
First, both tables show that, among the four tested en-
semble methods, the proposed approach has achieved
the best overall classification results.  Second, among
the 129 white boxes of Table 6, where the proposed
approach has lower classification error than the com-
peting method, 102 of these results are statistically

significant.  In contrast, among the 27 black boxes of
Table 6, where the proposed approach has lower clas-
sification accuracy than the competing method, only
one of them achieves statistical significance.

Tables similar to Table 7 can be established for
the other three tested methods.  Although they are
omitted for brevity, their overall results for the num-
ber of wins, losses and ties are summarized in Table
8, leading to the following observations:

1. First, the averaging method has the largest num-
ber of losses and least number of wins in all four
tested noise levels.  For the tested cases, it has not
won any comparison.  Consequently, despite its
simplicity, an averaging neural ensemble is not rec-
ommended as a general solver for classification
problems.

2. As addressed in Section II, the classification accu-
racy of bagging depends on the size of the training
set.  With the flexibility of adjusting the training
set size for its bagging ensemble, the proposed ap-
proach is expected to perform at least as well as
bagging.  This expectation is confirmed from the
results of Table 7 showing that, when compared
with the proposed approach, bagging has not won
any statistical comparison.

3. For the noise free datasets, next to the proposed
approach, the AdaBoost has the second largest
number of wins.  However, as the noise level in-
creases from 0%, 5%, 10% to 15%, the number of

Table 6  Summary of classification accuracy comparison results for the proposed approach
Noise level

Datasets
0% 5% 10% 15%

Methods: A (Averaging), B (Bagging), AB (AdaBoost)

A B AB A B AB A B AB A B AB

Sonar

Hepatitis

Horse-Colic

Heart-Statlog

Heart-C

Heart-H

House-Votes-84

German (Credit-G)

Credit-A

Australian

Breast cancer

Kr-vs-Kp

Diabetes
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wins achieved by the AdaBoost decreases from 16,
15, 14 to 12.  In contrast, under the same conditions,
the number of wins for bagging increases from 13,
18, 19 to 20.  These results are in agreement with
previous findings that show that bagging is more
robust to noise than AdaBoost.

4. In similarity to bagging, the number of wins of the
proposed approach improves as the noise level
increases.  The proposed approach employs bagging
ensemble at the second stage of its classification pro-
cess and thus preserves bagging’s robustness with
respect to noise.  The results of Table 7 show that,
for the tested problems, the proposed approach is even
more robust than bagging.  Specifically, as the noise
level increases from 0%, 5%, 10% to 15%, when com-
pared against bagging, the statistical comparison
results of the proposed approach improves from 5W-
0L-8T,  5W-0L-8T, 7W-0L-6T to 8W-0L-5T.

5. Finally, Table 9 is given to demonstrate the con-
sistency of the proposed approach.  By defining
the error margin as the difference between the
smallest classification error obtained by the tested
methods and the classifier under investigation,
Table 9 summarizes the largest error margins
(LEM) for all the tested methods and for all four
tested noise levels.  In essence, LEM represents
the worst performance of a classifier in solving the
thirteen benchmark problems.  As shown by Table
9, the two-stage method has the smallest LEM for
all four tested noise levels.  In particular, for the
noise free case, LEMs of the conventional meth-
ods are at least twice as large as those of the pro-
posed approach.  Moreover, for the 15% noise level
case, LEMs of earlier classification methods are
at least 43.5 larger than those of the two-stage
method.

Table 8  Summary of the numbers of wins, losses and ties

Number of wins (W), losses (L) and ties (T)

Noise level Averaging Bagging AdaBoost Two stage

W L T W L T W L T W L T

  0% 0 36 3 13   8 18 16   4 19 21 1 17
  5% 0 39 0 18   7 14 15 11 13 24 0 15
10% 0 37 2 19   9 11 14 15 10 28 0 11
15% 0 34 5 20 10   9 12 17 10 29 0 10

Table 7  Summary of statistical significance test results for the proposed approach
Noise level

Datasets
0% 5% 10% 15%

Methods: A (Averaging), B (Bagging), AB (AdaBoost)

A B AB A B AB A B AB A B AB

Sonar

Hepatitis

Horse-Colic

Heart-Statlog

Heart-C

Heart-H

House-Votes-84

German (Credit-g)

Credit-a

Australian

Breast cancer

Kr-vs-Kp

Diabetes
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Table 9  Summary of the largest error margin (LEM) for the tested classification methods

Noise level
The largest error margin among 13 benchmark results

Averaging Bagging AdaBoost Two stage

  0%   5.99     1.70   1.66 0.72
  5% 16.75     3.72   3.19 0.30
10% 24.28     7.71   9.82 0.44
15% 28.89 16.2 14.36 0.33

In summary, the proposed approach compares
very favorably with the other three tested methods in
terms of accuracy, robustness and consistency.

V. CONCLUSION

By adopting a neural network as the base
classifier, this paper introduced a two-stage commit-
tee machine to solve classification problems.  The first
stage of the proposed method was the conventional
averaging ensemble.  The second stage employed a
bagging ensemble to focus on hard-to-classify
samples.  In developing this classification method,
two key problems needed to be resolved.  First, a cri-
terion was needed to determine which samples are
more difficult to classify than the others.  Based on
the idea of Bayes’ rule and by utilizing the property
that a neural network can be trained to approximate
the posterior probabilities, this work employed the
absolute value of the neural network output differ-
ence as a measure for the degree-of-classification-
difficulty.

The second key problem was how to determine
the optimal size of the hard-to-classify training sub-
set for the bagging ensemble so that the classifica-
tion accuracy can be maximized.  The importance of
this problem lies in the fact that the performance of a
bagging ensemble depends heavily on the size of its
training set.  Since an analytical solution does not
seem to be feasible, at the expense of computational
cost, this problem is resolved by incrementally ex-
panding the size of the hard-to-classify training
subset.  The subset that yields the highest classifica-
tion accuracy is selected for the final design.  Con-
sidering the heavy computational cost required by this
incremental procedure, one of the lines of promising
future work is to develop a more efficient approach
to determine the optimal size of the hard-to-classify
training subset.

Finally, a series of experiments were conducted
to compare the proposed approach with other well
known committee machine design methods including
the averaging rule, bagging and AdaBoost.  The ex-
perimental results validate the accuracy and the ro-
bustness of the proposed approach.
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NOMENCLATURE

a Threshold value for the output of the two-
stage committee machine

a* Optimal value of a
Ck kth class
dj jth output of the neural network
e(x) Neural network training error associated

with input x
f (x, T) Output of the neural network when the

training set is T and input vector is x
fAB Output of the AdaBoost committee machine
fB Output of the bagging committee machine
Fj Dataset that is employed to train the jth

component classifier of the AdaBoost com-
mittee machine

Gk Dataset that is used to train the kth compo-
nent classifier of the Bagging committee
machine

M Total number of classes
N Total number of data
P(Ck|x) Posterior probability of x in association

with class Ck

T Training set
wj Weighting coefficient for the jth component

classifier of the committee machine
xi Input vector of the ith sample
yi Output vector of the ith sample
Z1 Training subset that is used to train the av-

eraging ensemble for the two-stage commit-
tee machine

Z2 Training subset that is used to train the bag-
ging ensemble for the two-stage committee
machine
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