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Automatic Loop Shaping of
Structured Controllers Satisfying
QFT Performance
This paper presents a robust noniterative algorithm for the design of controllers of a
given structure satisfying frequency-dependent sensitivity specifications. The method is
well suited for automatic loop shaping, particularly in the context of Quantitative Feed-
back Theory (QFT), and offers several advantages, including (i) it can be applied to
unstructured uncertain plants, be they stable, unstable or nonminimum phase, (ii) it can
be used to design a satisfactory controller of a given structure for plants which are
typically difficult to control, such as highly underdamped plants, and (iii) it is suited for
design problems incorporating hard restrictions such as bounds on the high-frequency
gain or damping of a notch filter. It is assumed that the designer has some idea of the
controller structure appropriate for the loop shaping problem.
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1 Introduction
Loop shaping is often a key step in the process of designing a

controller. Although the skill can be gained easily, loop shaping is
not simple, and many are not familiar with it. Moreover, in com-
plicated applications it may be hard even for one skilled in the art.
Automatic loop shaping �ALS� streamlines the design process and
offers the possibility of finding a controller faster and better than
that obtainable by a knowledgeable person.

ALS techniques can be split into two major categories: �i� those
based on optimization algorithms, such as convex, nonconvex,
and genetic algorithms �GAs�, and �ii� those based on calculating
a dense set of controllers from which the optimal solution can be
chosen. The first approach affords more freedom in the sense that
the controller structure is not fixed �although it is restricted in
some way�. In the second approach the controller structure is fixed
and the design challenge is in selecting free parameters that offer
optimal performance and satisfy constraints. Researchers have
pursued both approaches.

An early effort towards the goal of achieving an ALS algorithm
was reported by Gera and Horowitz �1�. They describe a semi-
ALS process, i.e., an iterative approach in which the designer
sequentially adds an element to the open-loop transfer function to
force it to pass a given straight line in the Nichols chart. Being
semi-automatic, the outcome may be a very high-order controller
and the solution may be far from optimal. The technique was
automated by Ballance and Gawthrop �2�. Chait et al. �3� offer an
alternate ALS algorithm. They present a sufficient, constructive
condition for converting the original problem into a convex opti-
mization formulation. The main drawback of their technique is
that the poles of the controller are fixed and are not part of the
optimization process. Thompson and Nwokah �4� proposed a con-
strained, finite dimensional, nonlinear programming approach that
starts from an assumed initial QFT controller. The technique was
extended by Thompson �5� to QFT bounds for combined paramet-
ric and nonparametric as well as weighted control efforts. A GA
for ALS was proposed by Garcia-Sanz and Guillen �6� with the
advantage over previous work being that no initial controller is
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needed. However, it suffers from the drawbacks of GAs, such as
being computationally demanding �GAs are inherently parallel al-
gorithms and therefore best suited to multiple-processor ma-
chines�, not guaranteeing a global optimum without unlimited
computational effort, and being user intensive �knowing what one
wants helps to setup the problem in a way that increases the
chance of getting a better solution�.

ALS algorithms falling into the second category have been pur-
sued by Zolotas and Halikias �7�, Besson and Shenton �8�, and
others. Zolotas and Halikias �7� describe an ALS method for
proportional-integral-derivative �PID� controllers based on search-
ing over a dense set of controllers. Their technique is efficient for
two parameter controllers and a small number of bounds. Frans-
son et al. �9� adopted a nonconvex optimization method to design
PID controllers for QFT-type problems, while considering the
tradeoffs among low, mid, and high frequencies specifications.

This paper describes an approach that also fits within the sec-
ond ALS category. It is based on a noniterative solution for the
design of a two-parameter controller. As will be shown, it can be
extended to design controllers of more than two parameters by
cycling through free parameters two-at-a-time. In practice, it
means solving for the optimal controller with two free parameters
while fixing all other parameters, and then repeating this process
over a reasonable range of values of the fixed parameters. As
opposed to the existing optimization techniques, the approach pro-
posed here is based on a set of closed form solutions, giving a set
of controllers. Moreover, it can be used for the design of control-
lers with notch filters and can handle gain uncertainty without
additional computational burden.

The paper is organized as follows: The problem is defined in
Sec. 2 and the design method for two parameter controllers is
given in Sec. 3. An extension for the design of controllers having
more than two parameters is provided in Sec. 4. Section 5 ad-
dresses the design of two degree-of-freedom QFT problems.

2 The Loop Shaping Problems
The QFT loop shaping problem for single-input single-output

�SISO� or multi-input single-output �MISO� systems or the se-
quential QFT loop shaping problem for multi-input multi-output

�MIMO� systems can be described as follows: Find a stabilizing
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linear time-invariant �LTI� controller G�s� such that the feedback
system whose open-loop transfer function, L�s�= P0�s�G�s�, satis-
fies

L�j�� = P0�j��G�j�� � R���, ∀ � � 0

where P0�s� denotes a single plant and R���, for any frequency �,
denotes a set in the complex plane. Moreover, for a given control-
ler structure, an optimal controller can be defined in any way. In
QFT the practice is to take the controller whose high-frequency-
gain �HFG� is minimum. �The HFG of G�s� is k=lims→�G�s�se

where e is the excess of poles over zeros of G.� It is required to
design a controller whose HFG is as close to the optimal control-
ler as possible.

For MISO QFT problems, the boundary of the set R��� can for
some specifications be given by the QFT bounds �or Horowitz
bounds �10�� of the following problem. Consider the feedback
system depicted schematically in Fig. 1 and described by the
equations,

y = Pu + d

u = G�Fr − y� , �1�

where P is an LTI plant known to belong to a set �P�, G is an LTI
controller, r=0 and d is a disturbance which may depend on
P� �P�. The problem is to design an LTI controller, G�s�, such
that for any P� �P�, the system �1� is stable and for a given
function, M�� , P�, the transfer function y�s� /d�s� is bounded by

� 1

1 + P�j��G�j��
� � M��,P�, ∀ � � 0 and P � �P� .

�2�

R��� is the set in the complex plane such that
P0�j��G�j���R���, if and only if, �2� is satisfied for � �where
P0 is a chosen member of �P� and R��� depends on P0�. Note that
since M can be a function of the plant, Eq. �2� can represent
disturbances at the plant input and disturbances as a function of
the plant.

3 Automatic Loop Shaping for a Two-parameter
Controller

Let P1�s�, P2�s� be a pair of plants known to belong to a set of
pairs ��P1�s� , P2�s��� and define an open-loop transfer function
L�s� for the pair P1�s�, P2�s� by

L�s� = a�P1�s� + bP2�s�� �3�

where a and b are scalars. The design problem is to find the a, b
pairs such that

� 1

1 + L�j��
� � M�P1�j��,P2�j��,��;

∀ � � 0 for all pairs P1,P2 � ��P1,P2�� .

�4�
In order to identify the open-loop transfer function of the sys-

tem of Fig. 1, L�s�= PG is written as L�s�=aP1�s��1
+bP2�s� / P1�s��. Thus, choosing P1= P and P2 / P1=s gives a PD

Fig. 1 A MISO feedback system
controller, G=a�1+bs�; choosing P1= P /s and P2 / P1=1 gives the
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PI controller, G=a�1/s+b�. A PD controller augmented with a
low-pass filter, G=a�1+bs� / �1+s / p�, is the result of choosing
P1= P / �1+s / p� and P2 / P1=s. These and more structures will be
used later to design controllers of more than two parameters.

The �a ,b� pairs satisfying inequality �4� form a set in the two-
dimensional plane. An analytic algorithm for calculating its
boundary was presented by Yaniv and Nagurka �11� for a PI con-
troller and constant M and in Ref. �12� for the open-loop case
having the form of Eq. �3� with constant M. The algorithm for
M��� is developed next.

Substituting �3� into �4� gives �where the dependence on � is
suppressed for convenience�

U + a�U1 + bU2� + a2�V1 + bV2 + b2V3� � 0, ∀ � � 0 �5�

where

U = 1 − 1/M2, U1 = 2 · Real�P1�, U2 = 2 · Real�P2� ,

V1 = �P1�2, V2 = 2 · Real�P1P2
*�, V3 = �P2�2.

For an �a ,b� pair which is on the boundary of the allowed �a ,b�
pairs, there exists � and a pair P1,P2� ��P1 , P2�� such that �5� is
an equality. �Otherwise, �a ,b� can only be an internal point of the
set solving the inequality �5�.� At that particular �, the left-hand
side of �5� is zero and minimum, and thus its derivative with
respect to � is zero. �The latter observation was also used in Ref.
�13� to design a controller for maximum a.� Thus, at that particu-
lar � �dot denotes derivative with respect to ��

U̇ + a�U̇1 + bU̇2� + a2�V̇1 + bV̇2 + b2V̇3� = 0. �6�

Solving the equality of �5� and �6� for a gives

a =
U̇U1 − UU̇1 − �− U̇U2 + UU̇2�b

U̇V1 − UV̇1 + �U̇V2 − UV̇2�b + �U̇V3 − UV̇3�b2

=
A + Bb

C + Db + Eb2 . �7�

Substituting �7� into the equality of �5� gives a fourth-order poly-
nomial equation for b

x4b4 + x3b3 + x2b2 + x1b + x0 = 0 �8�

whose coefficients are the following functions of �

x4 = UE2 + B2V3 − BU2E

x3 = �− U2E + 2BV3�A − BU1E + 2UDE + B2V2 − BU2D

x2 = A2V3 + �2BV2 − U2D − U1E�A + B2V1 − BU1D + UD2

+ 2UCE − BU2C

x1 = A2V2 + �− U1D − U2C + 2BV1�A + 2UCD − BU1C

x0 = − AU1C + UC2 + A2V1.

The boundary of the allowed �a ,b� region can be calculated using
the following procedure.

�1� Choose a pair P1,P2� ��P1 , P2��.
�2� Choose � and solve �8� for b. Noting that b has four solu-

tions �for a given ��, pick the real solution �s�.
�3� For each b found in �2�, solve inequality �4� to find all a, b

pairs for which the resulting closed-loop system is stable
and �4� is satisfied for all P1,P2� ��P1 , P1��. The result for
each b is one or more intervals since inequality �4� is a set
of quadratic inequalities involving a.

�4� Repeat the above three steps over a range of frequencies,

���, and all P1,P2� ��P1 , P2��. This will give pairs,
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�a��� ,b����, for each �� ��� having a solution in steps �2�
and �3�, which form the boundary of the allowed �a ,b�’s.

Some remarks regarding the topology of the �a ,b� region can
be found in Ref. �12�.

A QFT optimal controller is a controller for which the HFG is
minimum �see Horowitz and Sidi �14��. For C�s�=a�1+bs� the
optimal controller is the one for which ab is minimum. The fol-
lowing lemma states that this optimal controller lies on the bound-
ary of the �a ,b� region or is as close to the boundary for the
accuracy associated with the frequency grid searched and plant
grid searched, given the assumption that P1 and P2 are uncertain.
It is therefore sufficient to calculate the boundary of the �a ,b�
region to find the optimal controller.

Lemma 3.1 Let �a ,b� denote the set of all controllers solving
the problem defined by equations �3� and �4�. Suppose this set is
not empty and denote by d the infimum of all the multiplications
ab’s within the allowed �a ,b�’s. Then there exists an a0, b0 pair on
the boundary of the allowed �a ,b�’s such that a0b0=d.

Proof. Denote by a1, b1 a pair for which a1b1 is infimum over
all allowed �a ,b�’s �such finite infimum exists because closed loop
stability requires lower bound on a and b�. If a1, b1 is not on the
boundary, then �5� is an inequality, thus, there exists a0=a1−�
such that for a0, b1 �5� is valid and the system is stable, which
contradicts the assumption that a1b1 is infimum. Therefore, a1, b1
must be on the boundary. �

Example 1: Design of a PD Controller. The plant pair P1, P2
as defined in Eq. �3� and the sensitivity upper bound, M, are

P1 =
1

s2e−sT, T = 0.005 s,

P2 = sP1,

M = � 2s3

�s + 10�2�s + 30�
�, s = j� .

The open-loop transfer function is L= P1G where G=a�1+bs� is a
PD controller. The boundary of the �a ,b�’s is given in Fig. 2,
calculated for 300 frequencies, between �=1 and 700 rad/s. In
this and the following examples, frequencies are chosen such that
the plant does not change by more than 1 deg and 0.2 dB�.

From inequality �5� for each frequency, �, the boundary of the

Fig. 2 Boundary of all „a ,b… pairs satisfying inequality „4… and
„5… for example „1…. The a, b pair for which ab is minimum is
marked by „Œ….
domain where L�j�� must lie can be calculated. It is possible to
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draw these boundaries, known as QFT bounds. Figure 3 shows
several such boundaries and the open-loop transfer function L�s�
= P�s�G�s�, where

G�s� = a�1 + bs� = 820�1 + 0.0348s�
is the controller for which the HFG is minimum.

4 Automatic Loop Shaping of More Than Two-
Parameter Controllers

An open-loop transfer function of the two-parameter controller
can be written in the form

L�s� = aP1�s��1 + bP2�s�/P1�s�� .

Let P denote a plant and choose P1= PH and P2 / P1=W, which
gives the open-loop transfer function L= PG where the controller
is G=aH�1+bW�. This observation is the basis for extending the
method for the design of a controller of arbitrary structure. For
example, consider the design of a lead or lag controller

G�s� =
a�1 + bs�
1 + s/c

.

The following algorithm can be used to find suitable �a ,b ,c�
triplets and the triplet whose HFG is the lowest.

�1� Fix the pole c. This will reduce the problem of searching
the boundary of �a ,b� to a two-parameter controller given
in Sec. 3.

�2� Find the �a ,b� boundary and save the best a, b pairs. If the
criterion is lowest HFG, it is the pair for which ab is mini-
mum.

�3� Repeat steps �l� and �2� for a reasonable range of c values.
�A guideline for how to choose the range of c values is
given in example �2�.�

�4� From all chosen controllers choose the best one one. If the
criterion is lowest HFG, it is the one for which abc is
minimum.

Remark 4.1 The extension of lemma 3.1 to a three parameter
controller is straightforward. Since for each searched c the near-
optimal ac, bc pair is known, it is possible to directly select a
global near-optimum solution from all calculated triplets
�ac ,bc ,c�. The denser the grid of c, the closer the solution will be

Fig. 3 Several QFT bounds satisfying inequality „4… and the
open-loop transfer function L„s… for the pair a, b for which ab is
minimum
to the global optimum. Moreover, for many engineering systems it

Transactions of the ASME



is straightforward to choose a frequency grid such that the bound-
ary of all ac, bc pairs is calculated for points that differ by less
than a percent, and thus the optimal solution is close to the one
taken from the calculated solutions.

4.1 Example 2: Design of a Gain and Lead or Lag
Controller. The plant and sensitivity function are the same as of
those of Example 1. The frequency where the optimal solution of
Example 1 crosses �180 deg below the 0 dB line is 290 rad/s
�that is, c→� in this example�. For the pole c to be effective, it
should therefore contribute at least 5 deg phase lag at 290 rad/s.
Here, the search for the pole c was started at 2900 and its value
was decreased by 10% each iteration until it was sufficiently small
that no solution existed. The optimal controller, found to be

G�s� =
768�1 + 0.0535s�

1 + s/155
,

is shown in Fig. 4, together with several QFT bounds. In compari-
son to the PD controller of example �1�, it shows the same per-
formance with much lower control effort �i.e., the open-loop
transfer function above 0 dB is the same, while at high frequen-
cies it is much lower�.

The main question of this search-type algorithm relates to the
computational burden. For this example, the algorithm took
0.17 s. on a 1.6 GHz laptop using MATLAB® v.6.5 where the
routine which solves the fourth-order Eq. �8� was written effi-
ciently in C.

4.2 Example 3: Design of a Gain Notch and Lead or Lag
Controller. Many mechanical servo applications can be modeled
as a load on a motor shaft. A classical model of such a system
includes two integrators, a resonance, an anti-resonance whose
frequency is lower than the resonant frequency, and a pure delay
which may resemble a low-pass filter or a ZOH, that is,

P�s� =
1

s2 ·
s2 + 2d1�1s + �1

2

s2 + 2d2�2s + �2
2 · e−sT.

A suitable controller for many applications of this type includes a
lead element, a notch filter and a low-pass filter.

The following example investigates a controller with a lead
element and a notch filter. The addition of a low-pass filter could

Fig. 4 Several QFT bounds satisfying inequality „4… at different
frequencies and the open-loop transfer function for the optimal
triplet a, b, c for which abc is minimum
readily be included. The controller model is
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G�s� = 	a�1 + bs�
1 + s/c


	1 + 2d3�3/s + �3
2/s2

1 + 2d4�3/s + �3
2/s2
 .

Consider the problem of finding the lowest HFG controller, G�s�,
that stabilizes the uncertain plant, P�s�, whose parameters are:
d1=0.01, d2=0.03, the resonance-antiresonance pair is uncertain
being one of the following: �1=50 rad/s, �2=90 rad/s or �1
=55 rad/s, �2=95 rad/s, or �1=60 rad/s, �2=100 rad/s, or �1
=65 rad/s, �2=105 rad/s and the delay T is 0.005 s or lower. The
closed-loop sensitivity performance is defined by

M��� = � 2s3

�s + 10�2�s + 10�
�, s = j� .

The following design algorithm was applied.

�1� Since a suitable notch filter should notch around the reso-
nance, choose one of the following filters.

�a� d4=0.5 and d3 a value between 0.07 and 0.3, with seven
equally spaced values in logarithmic scale.

�b� A value of �3 between the lowest resonance, 90 rad/s and
1.5 times the highest resonance, 105 rad/s, with eight val-
ues equally spaced in logarithmic scale.

�2� The pole, c, of the low-pass filter is chosen. Starting with a
very large value of c, find where the open-loop transfer function
crosses �180 deg below the 0 dB line, say at c�. Search from a
maximum value of c=10c� and decrease by 10% in each iteration
until no solution exists.

�3� Search for the boundary of the �a ,b� domain and from it
select the controller considered the optimal one.

�4� Repeat the previous steps for all chosen notch filters and
low-pass filters. Save the optimal solution�s� for each iteration.

�5� From all saved optimal solutions choose a global optimal
one.

Implementing this algorithm gave the following controller

G�s� = 	918�1 + 0.0774s�
1 + s/136


	1 + 2 · 0.224 · 95/s + 952/s2

1 + 2 · 0.5 · 95/s + 952/s2 
 .

Figure 5 presents the open-loop transfer function where the
nominal plant P0 is the one with the lowest resonance frequency
�90 rad/s�. It also includes several QFT bounds. The computa-
tional cost �using a 1.6 GHz laptop and Matlab� associated with

Fig. 5 Several QFT bounds satisfying inequality „4… and the
open-loop transfer function for which the controller HFG is
minimum „nominal plant is the one with the largest resonance
frequency, here 105 rad/s…
this four element controller was 35 s.
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4.3 Example 4: Design of a PID Controller With Filtered
D. More than 90% of industrial feedback controllers are PI, PD, or
PID with a low-pass filter on the D-term �15,16�, that is, the
controller structure is of the following form:

G�s� =
kI

s
+ kP +

kDs

1 + s/c
,

with the four design parameters �kI ,kP ,kD ,c�. For this example,
the uncertain plant and performance are

P =
k

s2 + s
e−sT, T = 0.005 s, gain uncertainty k � �1,2�

M = � 2s3

�s + 10�2�s + 30�
�, s = j� .

The design process is as follows. First, a PID controller is de-
signed and the frequency where the optimal solution crosses
�180 deg below 0 dB is calculated. �This occurs at 290 rad/s.�
The expected pole on the D term should therefore be around that
value. A search for the pole in the frequency range �70, 2900� was
conducted. Searching over forty c values equally spaced logarith-
mically suffices since successive c values then differ by less than
10%. The optimal controller was found to be

G�s� =
1530

s
+ 506 +

27.2

1 + s/387

The open-loop transfer function for the plant where k=1 is shown
in Fig. 6 together with some QFT bounds. This figure verifies
graphically both stability and satisfaction of the specifications.

An important question is what conditions must exist for a suc-
cessful application of the algorithm proposed here. A key condi-
tion is that there is a fixed controller G0�s� such that �a
+bs�G0�s� is a solution to the problem for some a, b values, or,
more generally, there are fixed controllers, G1 and G2, such that
aG1+bG2 is a solution to the problem for some a, b values. Fur-
thermore, it is assumed that the designer has some idea of the
controller structure appropriate for the problem.

5 The Design of Two DOF Systems by Reduction to
One DOF Systems

Consider the feedback system depicted schematically in Fig. 7

Fig. 6 Several QFT bounds satisfying inequality „4… and the
system’s open-loop transfer function „for k=1… for which the
controller HFG is minimum
and described by the equations

476 / Vol. 127, SEPTEMBER 2005
y = Pu

u = Fr − GHy ,

where P is a LTI plant known to belong to a set �P�, G is an LTI
controller, r is the reference input, F is the prefilter, and H is the
sensor. The QFT two degree-of-freedom problem can be phrased
in two ways.

�1� Given a function A���, design F and G such that

�P�j��G�j��F�j��
1 + P�j��G�j��

− F�j��� � A���, for all P � �P� .

�2� Given two functions A��� and B���, design F and G such
that

A��� � �P�j��G�j��F�j��
1 + P�j��G�j��

� � B���, for all P � �P� .

The first problem, assuming F is given, is analogous to the ALS
problem defined in Sec. 3 because it is equivalent to

� 1

1 + P�j��G�j��� �
A���

�F�j��
, for all P � �P� .

The second problem, where F is assumed known, is also analo-
gous to this problem based on the following lemma.

Lemma 5.1 Let M �1 be a constant. A complex number L
satisfies the inequality

� L

1 + L
� � M

if and only if it satisfies the inequality

� 1

1 + L/M0
� � M, if M � 1

� 1

1 + L/M0
� � M, if M � 1; M0

M2

M2 − 1
.

Proof. Substitute L=x+ jy in both inequalities and after ma-
nipulation it can be shown that both are the same inequality. �

Note that a bound for M =1 can always be calculated by replac-
ing it by a value very close to 1. Based on lemma 5.1 a design
process for the second two degree-of-freedom problem, suited for
the design of a two-parameter controller, is

�1� Choose the prefilter F, the problem will then be analogous
to designing G such that

M1 =
A���

�F�j���
� � P�j��G�j��

1 + P�j��G�j��
� �

B���
�F�j���

= M2,

for all P � �P� . �9�

�2� Find the boundary of the �a ,b�’s solving the right side of

Fig. 7 A SISO two degree-of-freedom feedback system
inequality �9�
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� 1

1 + P�j��G�j��/M0
� � M1, for all P � �P�

where M0=M1
2 / �M1

2−1�, change the inequality if M1�1 accord-
ing to lemma 5.1.

�3� Find the boundary of the �a ,b�’s solving the left side of
inequality �9�

� 1

1 + P�j��G�j��/M0
� � M2, for all P � �P�

where M0=M2
2 / �M2

2−1�, change the inequality if M1�2 accord-
ing to lemma 5.1.

�4� The intersection of the closure of the latter two domains
is all �a ,b� pairs being sought. Pick an optimal a, b pair as a
solution.

The extension to controllers involving more than two param-
eters is as described in Sec. 4.

6 Conclusions
The paper presents a noniterative based algorithm to design

structured controllers satisfying frequency-dependent sensitivity
specifications. Assuming that the designer has some idea of the
controller structure and a suitable range of its parameters, the
proposed approach can be used to find the boundary of the set of
possible solutions. Internal points are of no interest if the QFT
optimal criterion is used.

Being noniterative, the algorithm is efficient and fast, and offers
several additional attractive properties. It can be applied to un-
structured uncertain plants, be they stable, unstable or nonmini-
mum phase. It can be used to design a near optimal controller of
a given structure for plants which are typically difficult to control,
such as highly underdamped plants. The algorithm can be used to
sort controller designs based on a given criterion, such as the one
with the lowest high-frequency gain. The technique can be ex-
tended to incorporate notch filters and low-pass filters into the
controller. In addition, hard restrictions can be included, such as
bounding the damping factor of a notch filter or adding a low-pass
filter with a given cutoff frequency in order to limit the sensor

noise effect.
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