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Abstract

This paper presents a method for the design of PID-type controllers, including those augmented by a 2lter on the D element, satisfying
a required gain margin and an upper bound on the (complementary) sensitivity for a 2nite set of plants. Important properties of the
method are: (i) it can be applied to plants of any order including non-minimum phase plants, plants with delay, plants characterized by
quasi-polynomials, unstable plants and plants described by measured data, (ii) the sensors associated with the PI terms and the D term
can be di6erent (i.e., they can have di6erent transfer function models), (iii) the algorithm relies on explicit equations that can be solved
e8ciently, (iv) the algorithm can be used in near real-time to determine a controller for on-line modi2cation of a plant accounting for
its uncertainty and closed-loop speci2cations, (v) a single plot can be generated that graphically highlights tradeo6s among the gain
margin, (complementary) sensitivity bound, low-frequency sensitivity and high-frequency sensor noise ampli2cation, and (vi) the optimal
controller for a practical de2nition of optimality can readily be identi2ed.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Methods for tuning PI and PID controllers have been re-
ported widely and active research continues due to the exten-
sive use of such controllers in industry. The tuning methods
can be divided into two main categories, those emphasizing
gain and phase margin speci2cations and those emphasizing
sensitivity speci2cations. Design techniques based on gain
and phase margin speci2cations include those by Ho, Hang,
and Cao (1995a) and Ho, Hang, and Zhou (1995b). They
developed simple analytical formulae to tune PI and PID
controllers for commonly used 2rst-order and second-order
plus dead time plant models to meet gain and phase margin
speci2cations. Ho, Hang, and Zhou (1997) and Ho, Lim,
and Xu (1998) presented tuning formulae for the design
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of PID controllers that satisfy both robustness and perfor-
mance requirements. Crowe and Johnson (2002) presented
an automatic PI control design algorithm to satisfy gain and
phase margins based on a converging algorithm. Suchomski
(2001) developed a tuning method for PI and PID controllers
that can shape the nominal stability, transient performance,
and control signal to meet gain and phase margins.

Although gain and phase margin speci2cations are clas-
sical measures of robustness, they may fail to guarantee a
reasonable bound on the sensitivity. This point was con-
sidered by several researchers. Ogawa (1995) used the
QFT-framework to propose a PI design technique that satis-
2es a bound on the sensitivity for an uncertain plant. Poulin
and Pomerleau (1999) developed a PI design methodol-
ogy for integrating processes that bounds the maximum
peak resonance of the closed-loop transfer function. The
peak resonance constraint is equivalent to bounding the
complementary sensitivity, which can be converted to
bounding the sensitivity. Cavicchi (2001) presented a de-
sign method for bounding the sensitivity while achieving
desired steady-state performance. Although the method
can be applied to measured data, plant uncertainty is not
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considered, and the procedure 2ts only simple compen-
sation structures. Crowe and Johnson (2001) reported a
design approach to 2nd a PI/PID controller that bounds
the sensitivity while satisfying a phase margin condition.
Kristiansson and Lennartson (2002) emphasized the need
to bound the sensitivity and complementary sensitivity.
They suggested the use of an optimization routine to design
PI/PID controllers with low-pass 2lters on the derivative
gain to optimize for control e6orts, while rejecting dis-
turbances and bounding the sensitivity. They also gave
tuning rules for non-oscillatory stable plants or plants with
a single integrator. Astrom, Panagopoulos, and Hagglund
(1998) and Panagopoulos, Astrom, and Hagglund (2002)
described a numerical method for designing PI controllers
based on optimization of load disturbance rejection with
constraints on sensitivity and weighting of the setpoint
response.

Other tuning methods have been proposed. Yeung, Wong,
and Chen (1998) presented a non-trial and error graphi-
cal design technique for controller design of the lead-lag
structure that enables simultaneous ful2llment of gain mar-
gin, phase margin and crossover frequency speci2cations.
Guillermo, Silva, and Bhattacharyya (2002) developed
a theorem to calculate all stabilizing PID controllers for
2rst-order delayed plants. However, uncertainty, sensitivity
and margins were not discussed.

These papers and others apply gain and phase margin
constraints in 2nding PI and PID controller designs. Some
add limitations on the (complementary) sensitivity. How-
ever, there are several di6erences between approaches re-
ported in the literature and the idea proposed here. First,
the approach presented here bounds the sensitivity of the
closed-loop transfer function for all frequencies, not just at
the crossover frequencies where the gain and phase margins
are satis2ed. (It is possible that the gain and phase margin
conditions are met with a given PI/PID design, but the sensi-
tivity can be very high.) Second, the approach accounts for
plant uncertainty, with the controller design satisfying the
speci2cations for a set of plants. Third, the algorithm can
be applied to plants of any order including plants with pure
delay, unstable plants, and plants given by measured data.
Fourth, it allows for di6erent sensor models for the PI terms
and the D term. Fifth, the approach relies on explicit equa-
tions, rather than optimization routines, to determine the set
of all possible controllers. Sixth, since the algorithm uses
explicit equations that can be solved e8ciently, it is very
fast and suitable for near-real time implementation. Seventh,
it is possible to extend the method to design cascaded loop
and other control structures.

2. Problem statement and motivation

Consider the open-loop transfer function, L(s),

L(s) = a[P1(s) + bP2(s)]: (1)

If P1(s)=(1+ ki=s)P(s) and P2(s)= sP(s), (1) corresponds
to the open-loop transfer function of plant, P(s), with a PID
controller

C(s) =
aki
s

+ a + abs: (2)

It is possible to use di6erent sensors for the D term and
for the PI terms. In this case, if the transfer function of the
sensor associated with the D term is taken as H (s) (with
H (s) being a delay and/or a low-pass 2lter to decrease noise)
and the transfer function of the sensor for the PI terms is
unity, then P1(s) = (1 + ki=s)P(s), P2(s) = sH (s)P(s), and
the controller can be written as

C(s) =
aki
s

+ a + absH (s): (3)

The gain and phase margin conditions, the typical measures
of robustness, are replaced by a condition on the closed-loop
sensitivity inequality,∣∣∣∣ 1
1 + kL(s)

∣∣∣∣6M for s = j!; ∀!¿ 0; k ∈ [1; K]; (4)

where the sensitivity bound M ¿ 1 and the gain uncertainty
of the plant, k, is in the interval [1; K]. Yaniv (1999) shows
that (4) guarantees the following margins

GM = 20 log10(K) + 20 log10

(
M

M − 1

)
;

PM = 2 arcsin[(2M)−1]:

Inequality (4) is a more encompassing measure of robust-
ness than gain and phase margin. It places a bound on the
sensitivity at all frequencies, not just at the two frequencies
associated with the gain and phase margins.

Two design problems are considered here:

(1) Determine all (a; b) pairs that satisfy (4) where the pair
(P1; P2) is uncertain in the sense that it belongs to a 2nite
set of pairs (P1m; P2m); m = 1; : : : ; n, and, in particular,
extract an optimal pair (a0; b0) for a given optimality
criterion.

(2) Replacing L(s) in (4) by

L(s) = a
[(

1 +
ki
s

)
P1(s) + bP2(s)H (s)

]
;

= a[P̃1(s) + bP̃2(s)] (5)

determine all a, b, ki and H (s) of a given structure that
satisfy (4), and, in particular, extract an optimal solution
a0, b0, ki0 and H0(s).

These two problems for the special case of P̃2 = P̃1s,
without considering plant and gain uncertainty, were solved
by Astrom et al. (1998) and Panagopoulos et al. (2002)
to determine a single controller for the case of maximum
kia or a, where the solutions were not obtained explicitly
but numerically (with MathWorks’ Matlab 5 Optimization
Toolbox).
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3. Design methodology

In order to determine the (a; b) values for which the
closed-loop system is stable and (4) is satis2ed, consider
2rst the special case of no gain uncertainty, i.e., K = 1, and
a single plant pair (P1(s); P2(s)). Substituting (1) into (4)
after splitting P1(s) and P2(s) for s=j! into real and imag-
inary parts,

P1( j!) = A1(!) + jB1(!); P2( j!) = A2(!) + jB2(!)

gives,

(1 + aA1 + abA2)2 + (aB1 + abB2)2 − 1=M 2¿ 0: (6)

For an (a; b) pair which is on the boundary region of the
allowed (a; b) values, an! exists such that (6) is an equality.
Moreover, since at that particular !, (6) is minimum, its
derivative (with respect to !) at the same ! is zero. (This
observation was also used in Astrom et al. (1998) to design
a controller for maximum a.) Thus,

(1 + aA1 + abA2)(Ȧ1 + bȦ2)

+(aB1 + abB2)(Ḃ1 + bḂ2) = 0: (7)

Solving (7) for a gives

a =
−2(Ȧ1 + bȦ2)

Ḋ1 + Ḋ3b + Ḋ2b2
; (8)

where

D1 = A2
1 + B2

1; D2 = A2
2 + B2

2;

D3 = 2(A1A2 + B1B2):

Substituting (8) into the equality of (6) gives a fourth-order
equation for each !.

x4b4 + x3b3 + x2b2 + x1b + x0 = 0; (9)

where

x4 = −2E2Ḋ2 + D2F2 + QH4;

x3 = D2F1 − 2E3Ḋ2 + QH3 + 4D3Ȧ2
2 − 2E2Ḋ3;

x2 =−2E3Ḋ3 + QH2 + D2F0 + 4D1Ȧ2
2 + 8D3Ȧ1Ȧ2

− 2E1Ḋ2 − 2E2Ḋ1;

x1 = 4D3Ȧ2
1 − 2E3Ḋ1 + QH1 − 2E1Ḋ3 + 8D1Ȧ1Ȧ2;

x0 = −2E1Ḋ1 + QH0 + 4D1Ȧ2
1;

Q = 1 −M 2; E1 = 2Ȧ1A1; E2 = 2Ȧ2A2;

E3 = Ȧ1A2 + Ȧ2A1; F0 = 4Ȧ2
1; F1 = 8Ȧ1Ȧ2;

F2 = 4Ȧ2
2;

H0 = Ḋ2
1; H1 = 2Ḋ1Ḋ3; H2 = 2Ḋ1Ḋ2 + Ḋ2

3;

H3 = 2Ḋ3Ḋ2; H4 = Ḋ2
2:

The allowed (a; b) region for a given M value can be cal-
culated as follows: For a given !, solve (9) for b. Noting

Fig. 1. Region of (a; b) values for M = 1:46, equivalent to 40◦ phase
margin or greater and 10 dB gain margin or greater. Lower shaded region
is with additional 6 dB plant gain uncertainty (K=2) for a total of 16 dB
or greater.

that b has four solutions (for a given !), pick the positive
real solution(s) and use (8) to 2nd their corresponding a.
Select the (a; b) pairs for which the resulting closed-loop
system is stable and (4) is satis2ed. Searching over a range
of frequencies, !, gives two vectors that are a function of
!, (a(!); b(!)) which lie on the boundary of the allowed
(a; b) region. Note that for an (a; b) on the boundary, one
of the following conditions can occur: (i) increasing a is
inside the region, (ii) decreasing a is inside the region, or
(iii) neither increasing nor decreasing a is inside the region.
Thus, for two points, (a1; b) and (a2; b), on the boundary,
any a∈ [a1; a2] and b is a pair within the region only if
(i) increasing a1 is within the region, (ii) decreasing a2 is
within the region, and (iii) there exist no (a; b) points on the
boundary for any a∈ (a1; a2). Since, as will be shown later,
the optimal pair lies on the boundary of the (a; b) region,
internal points are not of interest.

3.1. Example

Consider an armature-controlled DC motor with the input
being motor current and the output being position. The motor
transfer function is P(s)=e−0:001s=s2. It is required to 2nd the
region of the (a; b) pairs such that the complementary sensi-
tivityM6 1:46, which allows for gain uncertainty k ∈ [1; K]
and the pair for which a is maximum. This is equivalent
to at least 40◦ phase margin and [10 + 20 log(K)] dB gain
margin. The plant is

P1(s) =
(

1 +
ki
s

)
P(s); P2(s) = sP(s) (10)

Fig. 1 depicts the boundary of the allowed (a; b) pairs for
ki = 80 and K = 1 (the (a; b) values fall in both shaded
regions). Fig. 1 can also be used to 2nd the (a; b) values
which satisfy any gain uncertainty constraint k ∈ [1; K]. For
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Fig. 2. Nichols plot for M = 1:46 and K = 2, corresponding to 40◦ phase
margin or greater and 16 dB gain margin or greater. The open-loop must
not enter the shaded region in order to satisfy the M;K constraint.

example, if 6 dB gain uncertainty is desired (K=2), then for
any b, the allowed a values should be 6 dB less in order to
cope with the increase of a between 0 and 6 dB. The (a; b)
region will therefore be the lower shaded region depicted in
Fig. 1 where the upper curve is shifted down by 6 dB. The
maximum a for K = 1 occurs at (a; b) = (94:2 dB, 0.063)
and for K =2 occurs at (a; b)=(84:9 dB, 0.011), giving the
controller designs corresponding to lowest sensitivity at low
frequencies. Qualitatively, this means that the price of pro-
tecting the system from a possible gain uncertainty of 6 dB
is increasing the low-frequency sensitivity by 9:5 dB while
the high-frequency noise decreases by 48%. The open-loop
Nichols plot for maximum a and K = 2 is shown in Fig. 2
for veri2cation.

3.2. Extension to complementary sensitivity specs

It is possible to replace the sensitivity margin constraint
(4) by the complementary sensitivity,∣∣∣∣ kL(j!)
1 + kL(j!)

∣∣∣∣6M; ∀!¿ 0; k ∈ [1; K]: (11)

The following lemma shows that L= L0 satis2es (4) if and
only if L = M 2=(M 2 − 1)L0 satis2es (11).

Lemma 1. The pair (a; b) solves problem 1 (2) stated in
Section 2 if and only if the pair ([(M 2 − 1)=M 2]a; b) solves
problem 1 (2) where (4) is replaced by (11).

4. Optimization

The answer to the question “Which is the best (a; b) pair?”
of course depends on the optimization criterion. Seron and
Goodwin (1995) note that “In general, the process noise

spectrum is typically concentrated at low frequencies, while
the measurement noise spectrum is typically more signi2cant
at high-frequencies”. It follows that an optimal controller can
be found by weighting the performance at low frequencies
and of noise at high frequencies. Since the high-frequency
noise is proportional to ab and low-frequency performance
to 1=a, a practical optimal criterion can be J=�(1=a)+�(ab)
whose solution must lie on the boundary of the (a; b) curve.
When � is small enough or zero (meaning the sensor noise
is neglected), the optimal solution is the maximum possible
a. This is the criterion corresponding to the Nichols plots of
the example.

5. Design methodology for PID controllers with low pass
on D term

In the previous sections, a design methodology of a PID
controller whose three parameters are (a; b; ki) was given
assuming the ki term is known (aki is the I term of the
PID, see (5)). The extension to include a 2lter, H , on the
D parameter of the PID is again by searching over both
the ki and H (s) (see Eq. (5)). The idea is to choose the
structure of the 2lter H (s), for example, H (s)=p=(s+p) or
H (s)=p2=(s2 +ps+p2), and search over the parameter p.

The question then is how best to choose the p values
for the search. Since the reason for introducing the 2lter
H0(s) is to limit the sensor noise ampli2cation of the D term
and/or reduce high-frequency resonances, it is recommended
to perform an iterative search on p as follows: starting with
very large p, measure the noise and if it is too large decrease
p. When reaching an acceptable noise level a re2ned search
can be conducted around the satisfactory p.

A reasonable range for this search on p for 2rst- or
second-order 2lters can be calculated as follows: If !0 is the
largest frequency where the open-loop phase is −180◦ for a
given ki where H0(s)=1, the search should not exceed about
p=10!0 because above that value the low-pass 2lter phase
at frequencies larger than !0 is neglected (less than 5◦).

The answer to the question of how best to choose the ki
values for the search is based on the following equation: the
PID controller is

a0

(
1 +

ki
s

+ bs
)

= a0(1 + bs)
(

1 +
ki=s

1 + bs

)
(12)

(if P2 �= P2 this is an approximation). Let (a0; b0) denote
the optimal solution for ki = 0 and !0 its lowest crossover
frequency. Find the range of ki values whose phase contri-
bution to (12) at !0 is between −45◦ and about −1◦, that
is, the ki values for which

arg
(

1 +
ki=(j!0)
1 + bj!0

)
= −45◦; −1◦: (13)

Use these two ki values as the largest and lowest values for
the search on ki.
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Fig. 3. Region of (aki; abp) values for M = 1:46 and K = 1.

Remark 1. There may exist control applications where
the plant has a high-frequency resonance that must be at-
tenuated because (i) if it is not attenuated the achievable
closed-loop performance is restricted and (ii) the resonance
might generate non-tolerable aliasing phenomena in dis-
crete systems. This attenuation can be done using a notch
2lter or a low-pass 2lter on the D term or on both the D and
P terms. The algorithm proposed here supports this kind of
2lter where H (s) can be applied either on D or on the D
and P terms.

5.1. Continuation of example for designing H (s)

It is next of interest to evaluate the tradeo6 between
high-frequency noise, that is a quantity proportional to the
multiplication ab by the sensor’s noise of the D term 2l-
tered by H (s). For simplicity, it is assumed that this noise
is abp and the tradeo6 is considered for ki = 100. The fre-
quency !0 is 1500 rad=s, and thus the search is in the range
p∈ [15; 000; 1500]. Fig. 3 depicts the boundary of the al-
lowed (aki; abp) pairs for di6erent p’s. Using a low-pass
2lter with p = 5000 instead of p = 15; 000 decreases the
noise by a factor of three, while decreasing the performance
by 2:1 dB. If the optimal criterion is that the high-frequency
noise must be less than 1:34 × 106, then p = 5000 gives
the best performance. Its controller parameters are kia =
30:9 dB; abp=1:34×106 and ki=100. Its open-loop Nichols
plot is shown in Fig. 4.

6. Extension to plants given by measured data

If a plant identi2ed at a list of frequencies is given and it
is not possible to 2nd a state-space model or the accuracy of
a chosen model is not good enough, it is still possible to de-
sign a controller. One option is to interpolate and/or spline
2t the plant pair(s) corresponding to the known frequencies
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Fig. 4. Nichols plot for M = 1:46 and K = 1. Frequencies are marked in
rad/s. The open-loop transfer function must not enter the shaded region
in order to satisfy the M and K constraint.

and replace the derivatives appearing in (7) by a numerical
derivative. Another option is based on the fact that any
a; b pair on the boundary of the (a; b) region must satisfy
|1 + L(j!)| = 1=M , from which the following observations
can be made: (i) using the notation L(j!) = x + jy,

L(j!) = a[A1(!) + bA2(!) + j(B1(!) + bB2(!))]; (14)

then |1 + L(j!)|= 1=M if and only if (x− 1)2 + y2 =M−2

or equivalently x = −1 + cos  =M and y = sin  =M , where
 ∈ [0; 2!], (ii) any x + jy on the circle (x − 1)2 + y2 =
M−2 must satisfy |y=x|6

√
1=(M 2 − 1) and x¡ 0 and (iii)

solving (14) for b gives

b =
B1x − A1y
A2y − B2x

=
B1 − A1y=x
A2y=x − B2

: (15)

Based on the above three observations, the proposed design
method is:

(1) pickadenselistofy=x intheinterval |y=x|6
√

1=(M 2−1).
(2) Solve for b using (15). From all possible b values, pick

only the positive b’s for which the sign of x, that is, of
a(A1(!) + bA2(!)) is negative.

(3) Substitute b in (6) to get the following quadratic equality
on a (Q = 1 − 1=M 2)

a2[(A1 + bA2)2 + (B1 + bB2)2] + a[A1 + bA2]Q = 0

and solve for a.
(4) All the (a; b) pairs for which the closed-loop system is

stable and (6) is satis2ed at all measured frequencies lie
on the boundary of the (a; b) region.

(5) Repeat the above steps for all measured data points to
get a list of controllers, that is a list of (a; b) pairs. Apply
the optimal criterion on this list to determine the optimal
solution.
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The drawback of this technique, compared to the one using
a model, is that the computation time can be much longer.

7. Conclusions

In this paper, explicit equations are provided for deter-
mining controllers of the classical form, i.e., PI, PID, and
PID with D 2ltered, that stabilize a given set of plants and
satisfy both gain margin constraints and a bound on the
(complementary) sensitivity. The algorithm 2ts any plant
dimension including pure delay, unstable plants, continuous
plants, discrete plants, and plants given by measured data.

The outcome of applying the algorithm is a list of con-
trollers from which an optimal controller can be extracted
for many practical optimization criteria. Moreover, tradeo6s
among high-frequency sensor noise, low-frequency sensi-
tivity, the parameters of the PID and the 2lter on D are di-
rectly presented by design graphs (a single plot su8ces for
a single 2lter). Since the algorithm uses explicit equations,
it can be executed very fast, and as such the controller de-
sign can be updated in near real-time to reWect changes in
plant uncertainty and/or closed-loop speci2cations.
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