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Robust PI Controller Design Satisfying Sensitivity and
Uncertainty Specifications

Oded Yaniv and Mark Nagurka

Abstract—This note presents a control design method for determining
proportional–integral-type controllers satisfying specifications on gain
margin, phase margin, and an upper bound on the (complementary)
sensitivity for a finite set of plants. The approach can be applied to plants
that are stable or unstable, plants given by a model or measured data,
and plants of any order, including plants with delays. The algorithm is
efficient and fast, and as such can be used in near real-time to determine
controller parameters (for online modification of the plant model including
its uncertainty and/or the specifications). The method gives an optimal
controller for a practical definition of optimality. Furthermore, it enables
the graphical portrayal of design tradeoffs in a single plot, highlighting
the effects of the gain margin, complementary sensitivity bound, low
frequency sensitivity and high frequency sensor noise amplification.

Index Terms—Design, gain and phase margin, linear systems, propor-
tional–integral (PI) control, robustness.

I. INTRODUCTION

Although many methods for tuning proportional–integral (PI) and
proportional–integral-derivative (PID) controllers exist, extensive re-
search in design techniques continues, driven by the strong use of such
controllers in industry. Depending on the types of specifications that
the design must satisfy, the tuning methods reported in the literature
can be summarized as falling into one of two categories.

One class of methods considers gain and phase margin specifica-
tions. Hoet al.[1], [2] developed simple analytical formulae to tune PI
and PID controllers for commonly used first-order and second-order
plus dead-time plant models to meet gain and phase margin specifica-
tions. Hoet al. [3], [4] reported tuning formulae for the design of PID
controllers that satisfy both robustness and performance requirements.
Crowe and Johnson [5] presented an automatic PI control design algo-
rithm to satisfy gain and phase margin based on a converging algorithm.
Suchomoski [6] developed a tuning method for PI and PID controllers
that can shape the nominal stability, transient performance, and control
signal to meet gain and phase margins.

A second class of design methods focuses on sensitivity speci-
fications, and is based on the premise that gain and phase margin
specifications may fail to guarantee a reasonable bound on the sen-
sitivity. Ogawa [7] used the QFT-framework to propose a PI design
technique that satisfies a bound on the sensitivity for an uncertain
plant. Poulin and Pomerleau [8] developed a PI design methodology
for integrating processes that bounds the maximum peak resonance
of the closed loop. The peak resonance constraint is equivalent to
bounding the complementary sensitivity, which can be converted to
bounding the sensitivity. Cavicchi [9] described a design method for
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bounding the sensitivity while achieving desired steady-state perfor-
mance. The method can also be applied to measured data. However,
plant uncertainty is not considered, and the procedure fits a simple
compensation structure. Crowe and Johnson [10] reported a design
approach to find a PI/PID controller that bounds the sensitivity while
satisfying a phase margin condition. Kristiansson and Lennartson
[11] emphasized the need to bound the sensitivity and complementary
sensitivity. They suggested the use of an optimization routine to
design PI and PID controllers with low-pass filters on the derivative
gain to optimize for control efforts, disturbance rejection and bound
on the sensitivity. They also provided tuning rules for nonoscillatory
stable plants and plants with a single integrator. Astromet al. [12]
described a numerical method for designing PI controllers based
on optimization of load disturbance rejection with constraints on
sensitivity and weighting of set point response.

Other investigators have pursued research into tuning methods. For
example, Yeunget al. [13] presented a nontrial and error graphical
design technique for controller design of the lead-lag structure that
enables simultaneous fulfillment of gain margin, phase margin and
crossover frequency.

These papers and many others apply gain and phase margin
constraints in finding PI and PID controller designs. Some add
limitations on the (complementary) sensitivity. However, there are
several differences between approaches reported in the literature and
the idea proposed here. First, the approach here bounds the sensitivity
of the closed-loop transfer function for all frequencies, not just at the
crossover frequencies where the gain and phase margins are satisfied.
Second, the approach developed here accounts for plant uncertainty,
in that the controller design must satisfy the specifications for a set of
plants. Third, the approach presented provides explicit equations to
determine the set of all possible controllers. Fourth, with this method
it is possible to extract the optimal control design solution for many
practical optimization criteria. Fifth, the algorithm can be applied to
many types of plants, including continuous and discrete plants, plants
with pure delay, nonminimum phase plants, and stable and unstable
plants. Sixth, since the algorithm uses explicit equations, and not
optimization routines, it is very fast.

II. PROBLEM STATEMENT

Consider an open-loop transfer function,L(s)

L(s) = C(s)P (s) (1)

whereP (s) is a member of a finite set of plants,P1(s); . . . ; Pn(s),
andC(s) is a PI controller

C(s) =
a(1 + bs)

s
: (2)

The gain and phase margin conditions, the typical measures of ro-
bustness, are replaced by a condition on the closed-loop sensitivity in-
equality

1

1 + kL(s)
�M for s = j!; 8! � 0; k 2 [1; K] (3)

where the sensitivity boundM > 1 and the gain uncertainty of the
plant, k, is in the interval [1,K]. It can be shown [14] that when
argL(j!) = �� rad, then (3) requiresjL(j!)j � (M � 1)=M for
K = 1 and, thus, the gain margin for a givenK is at least

GM = 20 log
10
(K) + 20 log

10

M

M � 1
: (4)

Similarly, whenjL(j!)j = 1, (3) requiresargL(j!) > ��+2arcsin
[(2M)�1] and, thus, the phase margin is at least

PM = 2arcsin
1

2M
: (5)

Inequality (3) is a more encompassing measure of robustness than
gain and phase margin. It places a bound on the sensitivity at all fre-
quencies, not just at the two frequencies associated with the gain and
phase margins.

The design problem of interest is to find all (a, b) pairs that satisfy
(3) for all P (s) 2 [P1(s); . . . ; Pn(s)]. For plants that include at least
one integrator, the sensitivity is proportional to1=a at low frequencies,
and for any plant the sensor noise at the plant input is amplified byab
at high frequencies. As such, it is of particular interest to find the pair
(a, b) for whicha is maximum and its associatedab is smallest.

III. M AIN RESULTS

To determine the (a, b) values for which the closed-loop system is
stable and (3) is satisfied, consider first the special case of no gain
uncertainty, i.e.,K = 1, and a single plantP (s). SplittingP (s) for
s = j! into its real and imaginary parts,P (j!) = A(!) + jB(!),
and substituting it and (2) into (3) gives

Da2(1+ b2!2)+ 2aA� 2ab!B+ 1�M�2 � 0 8! � 0 (6)

whereD = A2+B2. For an (a, b) pair which is on the boundary region
of the allowed (a, b) values, there exists! such that (6) is an equality.
Moreover, since at that particular!, (6) is minimum, its derivative (with
respect to!) at the same! is zero. Thus

2E(1 + b2!2) + 2D!b2 a+ 2 _A� 2b(! _B +B) = 0 (7)

whereE = A _A+B _B and the dot indicates derivative with respect to
!. From (7)

a =
� _A+ b! _B + bB

E + Eb2!2 +D!b2
: (8)

Substituting (8) into the equality of (6) gives a fourth-order equation
for b

x4b
4 + x3b

3 + x2b
2 + x1b+ x0 = 0 (9)

whereQ = 1 �M2 and

x4 =(QE2 � 2B _BE +D _B2)!4 + (�2B2E + 2QED)!3

+ (�DB2 +QD2)!2

x3 =(2B _AE + 2A _BE � 2D _A _B)!3

+ (2ABE + 2A _BD)!2 + 2ABD!

x2 =(D _B2 +D _A2 + 2QE2 � 2A _AE � 2B _BE)!2

+ (2QED� 2A _AD � 2B2E + 2D _BB)! +DB2

x1 =(2B _AE + 2A _BE � 2D _A _B)! � 2D _AB + 2ABE

x0 = � 2A _AE +D _A2 +QE2

:

The allowed (a, b) region for a givenM value can be calculated as
follows: For a given! solve (9) forb. Noting thatb has four solutions
(for a given!), select the positive real solution for which the resulting
closed-loop system is stable and (3) is satisfied forK = 1. Then, use
(8) to find its correspondinga. Searching over a range of frequencies
! enables the boundary of the (a, b) region to be identified.

Remark 3.1: A PI controller exists if and only if there exists a fre-
quency for which an (a, b) pair solving (9) can be found for which the
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Fig. 1. Region of (a, b) values forM = 1:46, equivalent to 40 phase margin
(PM) or greater and 10-dB-gain margin or greater (GM for K = 1) for
Example 1. Lower shaded region is forM = 1:46 with additional 6-dB-plant
gain uncertainty(K = 2) for a total of 16-dB or greater.

Fig. 2. Boundary curves of (a, b) region that satisfyj(1=1 + L)j < M for
Example 1. Marked on the right of each curve is itsM value, minimal phase
margin(PM) and minimal gain margin (GM in dB forK = 1) according to
(4) and (5).

resulting closed-loop system is stable and (3) forK = 1 is satisfied. If
a PI controller does not exist and is required, try increasingM .

A. Example 1: Simplified dc Motor

Consider the plant

P (s) =
1

s 1 + s

10

(10)

which can represent a simplified model of an armature-controlled dc
motor with the input being motor current and the output being speed.
For this plant

A(!) =
�10

(100 + !2)
_A(!) =

20!

(100 + !2)2

B(!) =
�100

!(100+ !2)
_B(!) =

100(100+ 3!2)

!2(100+ !2)2
:

Fig. 1 depicts the (a, b) values for the particular case ofM = 1:46,
which is equivalent to a 40� phase margin or greater and a 10-dB-gain
margin or greater. [The (a, b) values fall in both shaded regions.] Fig. 1
can also be used to find the (a, b) values which satisfy any gain margin
constraint. For example, if 6-dB-gain margin uncertainty is desired
(i.e.,K = 2), then for anyb, the alloweda values should be 6-dB

less in order to cope with the increase in uncertainty. The (a, b) region
will, therefore, be the lower shaded region depicted in Fig. 1 where the
upper curve is shifted down by 6 dB. The maximuma for K = 1 oc-
curs at(a; b) = (18:2 dB; 0:67) and maximuma for K = 2 occurs at
(a; b) = (12:2 dB; 0:67), giving the controller designs corresponding
to lowest sensitivity at low frequencies. Note that if gain uncertainty
K is required then a solution is guaranteed only if there exists at least
a singleb corresponding to a range ofa values in an interval[a1; a2]
such thata2=a1 � K.

The solution for severalM values for plant (10) is depicted in Fig. 2.
Each curve is the boundary of the allowed (a, b) values for a givenM .
The correspondingPM andGM values indicated are the minimum
values along the boundary curve, i.e., thePM andGM are equal or
greater along the curve.

B. Extension to Complementary Sensitivity

Replacing the sensitivity margin constraint (3) by the complemen-
tary sensitivity

kL(j!)

1 + kL(j!)
�M 8! � 0; k 2 [1; K] (11)

it can be shown thatL = L0 satisfies (3) if and only ifL = (M2=M2�

1)L0 satisfies (11). This leads to the following corollary: If (a, b) is a
pair that solves the problem stated in Section II, then the pair

M2 � 1

M2
a; b

solves the same problem where (3) is replaced by (11).

IV. OPTIMIZATION

The answer to the question “Which is the best (a, b) pair?” of course
depends on the optimization criterion. Seron and Goodwin [15] note
that “In general, the process noise spectrum is typically concentrated
at low frequencies, while the measurement noise spectrum is typically
more significant at high frequencies.” It follows that an optimal con-
troller can be found by weighting the performance at low frequencies
and noise at high frequencies. Since the high frequency noise is pro-
portional toab and the low frequency performance toa, the optimal
solution must lie on the boundary of the (a, b) curve. Moreover, if
there exists more than one boundary pair for the samea, the one with
the lowestab will be the best. The same condition appears in Kris-
tiansson and Lennartson [11] who proposed several evaluation criteria,
one being the ability of the system to handle low frequency load dis-
turbance, represented here by parametera.

Note that if the open-loop system does not include an integrator, the
maximum gain may not correspond to a practical optimal choice.

V. EXTENSION TO UNCERTAIN PLANTS

Assume that the plant,P (s), is known to be one of a finite set of
plants,P1(s); . . . ; Pn(s). The controller design challenge here is to
find all (a, b) pairs that solve the problem stated in Section II where
P (s) can be any member of the set. This (a, b) region will be the inter-
section of all (a, b) regions of members of the set (if this intersection
region is empty, then there exists no PI solution). As an example, con-
sider the plant set

P (s) =
gain

s 1 + s

pole

for gain = [1; 3]

and pole = [10; 12; 14; 16; 18; 20]

where M = 1:46 as before. Fig. 3 shows the intersection as
the shaded region. The pair corresponding to maximuma is
(a; b) = (8:6 dB; 0:62).
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Fig. 3. Boundary curves of (a, b) region that satisfyj(1=1 + L)j < M for
M = 1:46 for a set of plants. The intersection of all regions is the allowed
region.M = 1:46 is equivalent to 40 phase margin(PM) or greater and
10-dB-gain margin or greater.

VI. DISCRETEPI CONTROLLERS

The problem can be recast in its discrete form, where the plant is
P (z) and the controller (2) is replaced by its discrete equivalent

C(z) = ad 1 + bd(1� z�1) :

Using the bilinear transformation,z = ((1+j
)=(1�j
))where
 =
j!T=2, the plant can be written in the formP ((1 + j
)=(1� j
)),
the controller in the form

C(
) =
ad (1 + (2bd + 1)j
)

1 + j


and the open-loop transfer function in the form

L(
) = ad (1 + (2bd + 1)j
)
P (1+j
)

(1�j
)

1 + j

:

The latter three equations translate the discrete problem into the one
previously defined for finding the (ad, bd) region. The procedure is as
follows: Solve the problem defined in Section II whereP (z) at fre-
quencies on the unit circle is replaced byP ((1+ j
)=(1� j
))=(1+
j
) to determine the (a, b) region. Then, (ad, bd) will be the region
defined by(a; (b � 1)=2).

VII. CONCLUSION

The note presents explicit equations for calculating PI controllers
that simultaneously stabilize a given set of plants and satisfy design
specifications, namely gain margin and phase margin constraints and a
bound on the (complementary) sensitivity, for continuous as well as dis-
crete-time systems. The algorithm fits any plant dimension including
pure delay. Moreover, the algorithm answers the question if a solution
whose bandwidth is in a given interval exists or not.

The two parameters of PI controllers satisfying the constraints
correspond to a domain in a plane whose boundary is a curve
given explicitly. For a practical optimization criterion presented
here, the optimal controller lies on the curve. By inspection, the
design plot enables identification of the PI controller for desired

robustness conditions, and in particular, gives the PI controller for
lowest sensitivity. Tradeoffs among high-frequency sensor noise, low
frequency sensitivity, and gain and phase margin constraints are also
directly available.

The algorithm can be executed very fast for highly uncertain plants,
and as such the controller design can be updated in near real-time to
reflect changes in plant uncertainty and/or closed-loop specifications.

Work on extending the PI algorithm proposed here to the important
class of PID controllers and to controllers based on extended PID
structures, such as PID controllers with filtered D-terms, is now in
progress.
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