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ABSTRACT 

This paper proposes a method for the design of predic-
tive controllers for nonlinear systems. The method consists 
of two phases, a solution phase and a learning phase. In 
the solution phase, dynamic programming is applied to 
obtain a closed-loop control law. In the learning phase, 
neural networks are used to simulate the control law. This 
phase overcomes the "curse of dimensionality" problem 
that has often hindered the implementation of control laws 
generated by dynamic programming. Experimental results 
demonstrate the effectiveness of the method. 

1. INTRODUCTION 
Predictive control methods have many exceptional fea-

tures, including their broad applicability to a wide variety 
of systems and their ease of tuning [1]. However, only a 
few predictive controller design methods are applicable to 
nonlinear systems [2-8]. These approaches suffer from one 
or more of the following limitations: they may not be able 
to handle constraints, they may not guarantee a global op-
timal solution, and they may not be able to specify a closed-
loop control law.  

2. PROBLEM STATEMENT 
With y as the output variable, u as the control variable, 

ω as the reference trajectory, k = 0 as the current sampling 
instant, HP as the perdition horizon, Hm as the minimum 
horizon and Hc as the control horizon, the goal of a predic-
tive control problem is to find a control law for the follow-
ing system, 

 ( ) ( ) ( ) ( ) ( )( )y k f y k y k n u k u k m+ = − −1 , , , , ,  (1) 

that minimizes the criterion function, 

 
( ) ( )[ ]J y i i

i H
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p

= −
=
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while satisfying the constraints, 

 ( )y y i y i H pmin max≤ ≤ ≤ ≤1  
(3)

 

 ( )u u i u i H pmin max≤ ≤ ≤ ≤ −1 1  
(4)

 

 ( )∆ ∆ ∆u u i u i H pmin max≤ ≤ ≤ ≤ −1 1 
(5)

 

 ( ) ( )u i u H i Hc c= − > −1 1 
(6)

 

where ∆u(i) = u(i) − u(i−1) and where the predictive output 
in Eq. (2) is  
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(following [1]) with 
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Eqs. (3) and (4) represent constraints on the operational 
regions of the output and control variables, respectively. 
Eq. (5) limits the rate of change of the controller output and 
Eq. (6) constrains the controller output to be a constant 
when the control process moves Hc sampling periods into 
the future. 

3. A DP-BASED SOLUTION APPROACH 
The problem defined in the previous section can be 

viewed as an optimal control problem and can be solved via 
dynamic programming (DP). DP offers several advantages: 
(i) it can handle constraints easily, (ii) it gives the global 
minimum solution, and (iii) it provides closed-loop solu-
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tions. This study relies on DP to develop a predictive con-
trol law. 

To simplify the development process, the system 
model of Eq. (1) is rewritten as 

 
( ) ( ) ( )( )y k h k u k+ =1 x ,∆

 
(9)

 
where 
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Also, the cost associated with the ith stage of the control 
process is expressed as 

( ) ( )( ) ( ) ( )[ ]
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By applying the principle of optimality [9], it can be shown 
that the general recurrence relation for the optimal control 
law is 

( )( )

( ) ( ) ( )( )

( )( )

*
,

*
1,

min
,

1
c

c p

c p

H k H c

c c

H k H c

u H k

J H k

g H k u H k

J H k

−

− +

∆ −

− =

 − ∆ − +

− + 

x

x

x
 
(12)

 

where Jm,M (x(m)) denotes the portion of the criterion func-
tion associated with the time interval from the mth to the 
Mth sampling instant for the given x(m) and that J * repre-
sents the optimal value of J. In addition, in the absence of 
∆u constraints, the recurrence relation becomes 
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where 
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To implement the control policy in a closed-loop con-
figuration, the DP generated solutions should be stored in 
high-speed memory so that appropriate control signals can 
be retrieved online by means of a suitable table look-up 
method. However, this constitutes a formidable storage 

burden since the memory requirement increases exponen-
tially with the order of the system. This "curse of dimen-
sionality" problem is resolved in the next section. 

4. THE NEURAL CONTROL METHOD 
This section introduces a neural network based ap-

proach to replace the conventional table look-up method. 
For simplicity, the approach as described is applicable only 
to problems with ∆u constraints. (The approach can be 
modified to handle problems without ∆u constraints.)  

To learn the DP generated control law, a regression 
neural network (RNN) method can be proposed with the 
following steps: 

(1) Use a trajectory planner to generate the desired output 
response yd . 

(2) Set the reference trajectory ω = yd and use the previ-
ously described DP-based solution method to compute 
the predictive control law. 

(3) With data provided by the DP-based control law, train 
a RNN to simulate the mapping from x(k) to ∆u(k). 

This direct method, however, has two drawbacks. First, the 
neural network training process must be repeated when the 
desired output response has been changed. This restricts the 
practicality of the control method. Second, due to the exis-
tence of constraints, the control law may not be a continu-
ous or continuously differentiable function of x(k). As a 
result, accurate neural network training may be difficult. 

To resolve the first problem, this study uses the follow-
ing first-order reference trajectory to approximate the de-
sired output response yd , 

 

( ) ( ) ( )
( )
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1 1 0 1
d p

p

k y k H

k i i H

ω α

αω α

+ = − + +

+ − ≤ ≤ ≤ <  (15) 

with ω(k) = y(k). By generating the reference trajectory ω 
in this manner, the approach characterizes any desired out-
put response yd by y(k) and yd(k+Hp) when ω is given. 
Treating y(k) and yd(k+Hp) as trajectory parameters, this 
study uses the following procedure to create training sam-
ples so that neural networks can be trained to generate a 
trajectory dependent predictive control law: 

(1) Quantize the admissible y(k) and yd(k+Hp) values into a 
finite number of levels. 

(2) For every quantized set of [y(k) yd(k+Hp)], use the pro-
posed DP solution method to find the predictive con-
trol law. 
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(3) With x(k) and yd(k+Hp) as inputs and ∆u(k) as output, 
use results obtained from the previous step to train 
neural networks. Note that y(k) is an element of x(k). 

Since the trajectory parameters y(k) and yd(k+Hp) are part of 
the neural network inputs, they can be varied to account for 
desired output response changes. For convenience, the in-
put vector is denoted as z where zT(k) = [ xT(k) yd(k+Hp) ]. 

To resolve the second problem, a divide-and-conquer 
strategy is proposed to divide the potentially discontinuous 
mapping learning problem into several continuous mapping 
learning problems. In particular, before the application of 
the RNN, a classification neural network (CNN) is first 
used to learn to classify the predictive control policy into 
the following five patterns 

 

( ) ( )
( )

max

min

max

min

1
1

u
u

u k u k u
u k u

otherwise



= − + ∆
 − + ∆
  

(16)

 

Hereafter, the first four patterns are referred to as the umax, 
umin, ∆umax and ∆umin control patterns, respectively. The last 
control pattern is called the nonsaturated control pattern. 
Note that the control signals associated with umax and umin 
control patterns are apparently known and the values of 
u(k) associated with the ∆umax and ∆umin patterns can also 
readily be determined since u(k−1) is one of the CNN in-
puts. Consequently, with the assistance of the CNN, the 
RNN only needs to learn to simulate the nonsaturated con-
trol pattern. The possibility of using a RNN to learn a dis-
continuous mapping is thus avoided. 

The block diagram of Fig. 1 depicts the structure of the 
proposed two-stage neural control method. In the first 
stage, a CNN module is used to classify the z(k) signal into 
one of five predefined categories. The control signals asso-
ciated with the first four control patterns are determined 
with the CNN whereas the RNN is used to generate non-
saturated control commands corresponding to a continuous 
mapping region. (Although not shown in Fig. 1, the RNN 
has the same inputs as the CNN.) 

5. EXPERIMENTAL STUDIES 
Two predictive control problems for a DC motor servo 

system are posed to test the effectiveness of the method. 
The experimental setup uses a PC to perform the I/O ac-
tions. The axes of an X-Y table are actuated by two linear 

voltage amplifier driven DC motors. The model of each DC 
motor servo system is of the following form, 

 ( ) ( ) ( ) ( )( )y k ay k bu k c y k d+ = + + +1 sgn  
(17)

 

where y is the angular velocity of the DC motor, u is the 
armature voltage and sgn is the signum function used to 
account for the effect of friction. The parameters of the 
model were determined by a standard least-squares identifi-
cation method. The mean and variance of the trajectory 
tracking error, e = yd − y, were used to characterize the 
tracking efficacy.  

In applying the neural control method, the one-hidden-
layer optimal interpolative (OI) neural network and training 
method proposed by Sin and Defigueiredo [11] was used to 
construct the CNN. The implementation of the RNN is 
based on the one-hidden-layer radial basis function (RBF) 
neural network and the training algorithm developed by 
Chen and Billings [12]. 

The tested control methods were used to track two dif-
ferent trajectories. In the first case, the desired output re-
sponse was yd(k) = 700sin(2π k/500) rpm. The desired out-
put response of the second case was a 5 second period 
(50% duty cycle) square-wave function whose velocity 
changed between 700 and −700 rpm. The length of both 
control processes was 20 seconds. For the square-wave 
tracking problem, the transition period data were excluded 
in computing the means and variances of the trajectory 
tracking errors so that the regulator behavior of the tested 
control methods could be examined more accurately. For 
reliability, the experiment was repeated five times. 

Based on restrictions imposed by the hardware, the fol-
lowing constraints were included,  

 
( )rpm rpm1000 1000 1 py i i H− ≤ ≤ ≤ ≤

 
(18)

 

 
( )V V33 33 0 1pu i i H− ≤ ≤ ≤ ≤ −

 
(19)

 
corresponding to a maximum speed limit of 1000 rpm and 
an armature voltage limit of 33 V. To simulate a deadbeat 
controller, the prediction horizon Hp , the minimum horizon 
Hm , and the control horizon Hc were chosen as 10, 1, and 3, 
respectively [1].  

In applying the proposed DP based solution approach, 
the admissible y and u regions were both quantized into 101 
grid points while the admissible region of yd(Hp) was quan-
tized into 41 grid points. The reference trajectory parameter 
ω was chosen as 0.1. With these settings, DP found 3892 
sets of admissible solutions containing 1291 umax control 
pattern data, 1043 umin control pattern data and 1558 non-
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saturated control pattern data. The number of floating point 
variables that needed to be stored was 11676. With these 
data, the OI network based CNN achieved a 99% classifica-
tion accuracy with 12 hidden neurons. For the RNN part, a 
50-hidden-node RBF network was employed. Overall, the 
proposed neural control method required 220 floating point 
number memory space, representing a 98% storage space 
reduction. 

The tracking performance of the proposed approach 
was compared to that of the conventional table look-up 
control method. The two methods were used to track the 
two desired output responses described in the beginning of 
this section. The experimental results, summarized in Ta-
bles 1 and 2, indicate that the tracking performance of the 
proposed approach – with its significant saving in the stor-
age requirement – is not inferior to that of the table look-up 
method. To explain this phenomenon, recall that the DP-
based method generates the predictive control law only at a 
finite number of grid points. In the remaining part of the x 
space, the control policy is determined by interpolation. 
The table look-up method is thus subject to interpolation 
errors. The comparable tracking results demonstrate that the 
generalization error of the neural networks is not necessar-
ily larger than the interpolation error associated with the 
table look-up method. The results show that the method can 
reduce the storage space requirement by a factor of 50. 

6. CONCLUSION 
This paper proposes a dynamic programming (DP) and 

neural network based predictive controller design method 
for nonlinear systems. The DP based solution method has 
several exceptional features. First, it deals with constraints 
easily. Second, it finds the global optimal solution. Third, it 
produces a closed-loop control law. To overcome the po-
tential "curse of dimensionality" problem associated with 
the DP generated control law, neural networks are used to 
reduce the storage requirement. The proposed approach can 
achieve significant storage space saving without sacrificing 
tracking efficacy. In addition to the significant saving in 
memory space, experimental results demonstrate that the 
control method provides tracking performance comparable 
to that of a conventional approach. 
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Table 1: Summary of trajectory tracking errors for example 1: 
Sinusoidal output response case. 

 

Table Look-up method Neural Controller Experiment 
Number Mean (rpm) Variance (rpm2) Mean (rpm) Variance (rpm2) 

1 1.58 41.76 1.91 31.99 

2 1.53 44.12 1.88 31.65 

3 1.54 42.67 1.98 31.70 

4 1.70 44.84 2.27 30.33 

5 1.46 43.69 2.24 30.06 

Average 1.56 43.42 2.06 31.15 

 

Trajectory
Planner CNN

RNN

Process

Z-1

Z-2

Z-m

Z-1

Z-2

Z-n

u(k-1) , . . . , u(k-m)

y(k) , y(k-1) , . . . , y(k-n)

u(k) y(k)yd(k+Hp)

u k u( ) min=

u k u( ) max=

u k u k u( ) ( ) max= − +1 ∆

u k u k u( ) ( ) min= − +1 ∆

:

:

Fig. 1. The block diagram of the proposed neural control method.
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Table 2: Summary of trajectory tracking errors for example 1: 

Square wave output response case. 
 

Table Look-up method Neural Controller Experiment 
Number 

Mean (rpm) Variance (rpm2) Mean (rpm) Variance (rpm2) 

1 2.62 24.26 −0.02 15.80 

2 2.62 18.76 −0.01 19.40 

3 2.46 21.83 −0.13 21.31 

4 2.54 20.75 0.01 19.23 

5 2.62 20.38 −0.08 15.11 

Average 2.57 21.20 −0.03 18.17 
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