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This paper introduces a fast starting motion control method for servo systems. The method
consists of two phases. In the firs phase atime-optimal controller is used to accelerate the
servo system. The second phase adopts aneural network based approach for speed regulation. It
also achieves robustness to payload variation by estimating the payload uncertainty from the
motion characteristics of the first phase. Experimental results demonstrate the effectiveness of

the proposed approach.

1. INTRODUCTION

In many control applications, aservo systemisrequired to
reach a target speed from rest. In such applications, an
ideal servo system controller should meet the following
demands. First, the servo system should reach the target
speed as fast as possible. Second, after reaching the target
speed, the controller should regulate the servo system
such that speed variation is minimized Third, the
controller should provide sufficient robustness to make
the stability and performance of the servo system
insensitive to payload variaion.

The first objective can be satisfied by adopting a
time-optimal (or near time-optimal) control strategy. To
meet the second requirement, a regulator -type controller
can be designed given appropriate performance
specifications. However, due to their conflicting nature,
designing a single controller to simultaneously satisfy
both control objectivesdoes not seem to be possible. As a
result, conventional controller design methods often
involve atrial-and-error parameter tuning process so that
a balance between time-optimal and regulator-oriented
control methods can be obtained. Inevitably, this design
strategy comprises control system performance.

A possible solution is to design separate time-optimal and
regulator -oriented controllers. An on-line control process
can then be used to switch from the time-optimal
controller to the regulator-oriented controller at an

appropriate time. For example, Rubo and Araci (1997)
rely first on a deadbeat controller to rapidly accelerate a
servo system and then switch to an LQR/LTR based
controller to perform speed regulation when the speed of
the servo system is sufficiently close to the target speed.
This controller switching method seemingly combinesthe
advantages of time-optimal and regulator-oriented
controllers. However, a drawback of this method is that it
is not adaptive to payload variations. A more flexible
approach would be to tailor an LQR/LTR based controller
offering sufficient robustness to account for payload
uncertainty. However, providing robustness comprises
the regulation performance of an LQR/LTR based
controller. The goal of this work is to develop a more
genera control method to resolve this difficulty.

The remainder of this paper is organized as follows.
Section 2 describes the method in detail, Section 3
presents experimental results, and Section 4 offers
conclusons

2. METHODOLOGY
2.1 ThePredictive Control Method
The dynamics of the system considered in this paper can

be represented by the following discretetime transfer
function modd
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Notethat yisthe output variable, uisthe control variable,
o] !is the backward shift operator, d is the time delay of
the process (in samples), x isthe disturbance and
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where n and mare the degrees of the polynomialsA andB,
respectively. With gk) denoting a discrete white noise

sequence with zero mean and unit variance, the
disturbanceismodeled as
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Many methods have been proposed to design the
closedH4oop control law for systems that can be
represented by equation (1). In this study, the unified
predictive control method (Soeterboek, 1992) is adopted.
Specifically, the control law is obtained by minimizing
the following criterion function

J=J+J, ®)
With y* and w denoting the predicted and desired output
of the process, respectively, the first part of the criterion
function characterizes the tracking output error and is
Oefined as
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where P is a monic polynomial inq ! The second part of
the criterion function represents the controller output
weighting and is defined as
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Note that Q, and Qg are monic polynomials with no
common factor. In the predictive control framework, the
control law is obtained by minimizing the criterion
function of equation (4) under the following constraint

fPu(k+i-1)=01£H_£H-d ®)
Hence, the design parametersincludeH, H,, P, f, Q, and

Qg In addition, the polynomials T and D of the
disturbance model are also used asdesigh parameters.
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2.2 The Payload Edtimation Method

Payload uncertainty oft en degrades the performance of a
servo system. A possible solution tothis problem isto use
neural networks to estimate the payload. For example, by
dividing the payload into a finite number of classes and
by training neural networks to recognize a payload
variation associated with degradation in tracking
performance, Leahy et al. (1991) provided a method that
adapted the feedforward dynamic compensation torques
to payload variation. However, the effectiveness of this
approach remains to be investigated when the payload
does not belong toany of the predefined classes.

This paper adopts aneural network based method to make
the controller adaptive to payload variations. It relies on
the fact that with the same control law, the response of the
servo system varies with the payload. Sharing the
common property of using neural networks to estimate
the payload uncertainty, the proposed approach differs
from the approach proposed by Leahy et al. (1991) in
several aspects. First, the proposed control method
divides the control process into two phases. A
time-optimal control strategy is used to bring the servo
system to the vicinity of the target. Based on the

performance of the time-optima controller, a neural

network estimates the payload at the end of the first phase
of the control process.

As shown in Fig.1, the motion of the first phase of the
control process is divided into three subphases that have
equal speed increments. (In Fig.1 § denotes the target
speed.) The means and variances of the speed of these
three subphases as well asthose of the entire first phase of
the control process are used as feature variables. As such,

the neural network is used only once in the control
process. In contrast, Leahy’s method estimates the
payload in each sampling period, imposing a
computationa burden on the controller.

A second difference between the proposed work and
Leahy’'s method is in the application of the neura
networks. During the control process, Leahy et al. used
the neural network to determine which of the predefined
payload classes the payload uncertainty belongs to.
However, in training the neural network, Leahy et d.
formulated the neural network learning task as a function
approximation problem. Since the minimization of the
function approximation eror does not necessarily lead to
the minimization of classification error, the trained neural
network often has room for further improvement. In view
of this problem, this work uses a hyperspherical classifier
(Telfer and Casasent, 1993) to learn to recognize the
payload uncertainty. One reason for choosing the
hyperspherical classifier is the existence of an effective
training method (Y en and Liu, 1997). The other reason is
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that this neural network, once successfully trained, is
computationally very efficient in performing classifica
tionsalowing for on-line control.

The following steps illustrate the neural network training
process of the proposed method.

Step 1: Based on their weights, payloads are divided into
anumber of classes. For example, in the experiments the
payload is divided into light, medium, and heavy weight
levels

Step 2: With a given payload, atime-optimal controller is
used tobringthe servo system to the target speed and the
resulting rise time is determined. The mean and standard
deviation of the servo system speed in the rise time period
are computed. This time period is divided egualy into
three time subintervals and the mean and standard
deviation of the servo system speed in each subinterval
are computed. In this study, these eight feature variables
are used to characterize the response of the servo system.

Step 3: The experiments are repeated for a sufficient
number of payloads such that the entirerange of payload
variatiorns is effectively covered.

Step 4: With the eight feature variables obtained in the
previous steps as inputs and the class of the corresponding
payload as output, a neural network is trained to relate the
servo system response with the payload class.

3. EXPERIMENTS

3.1 Experimental System

To test its dfectiveness, the proposed control method was
implemented for speed control of an AC servomotor
(NIKKI DENSO, model number NA50-40NA). Using an
80486 PC to perform the 1/O actions, analog inputs and
outputs were calculated with 16-bit resolution. The motor
driver was set to a torque mode so that PC generated
commands were proportional to the output torque of the
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motor. In this study, the target speed was chosen as 1800
rpm and the sampling frequency was chosen as 100 Hz.
The hyperspherical classifier was chosen as the neural
network model and was trained by a method proposed by
Yenand Liu (1997).

3.2 BExperimental method

In the experiments, t he payload was varied from 4 to 20
times the inertia of the rotor. In the remaining part of this
paper the term “payload parameter” will be used to
characterize the weight of the payload. In particular, a
payload parameter of m signifies that the payload is m
times the inertia of the rotor. The payload was divided
into three classes. low (payload parameter of 4 to 8),
medium (payload parameter of 9 to 14) and high (payload
parameter of 15 to 20). A hominal payload was chosen for
each class. In particular, payload parameters of 6, 9 and
15 were selected as nominal values for the low, medium
and high classes, respectively. For each of these nominal
payloads, afirst order difference equation was determined
experimentally to characterize the motor dynamics from
input voltage to speed. With these models and the
predictive controller parameters of H=5, H, = 1, P=1,
T=1 D=A(1-q, f=1-q'% Q, =1 and Qq =1, three
predictive controllers were designed independently for
the three payload classes. In specifying these control
parameters, the goal was to achieve regulation. The speed
of response of the adopted predictive controllers was
between the speeds of response of deadbeat and
mean|eve controllers.

Payloads with integer payload parameters (in the range of
4 to 20) were used to generate training and testing
samples for the neural network. For each of the payload
parameters, 100 sets of PC generated command versus
speed data were collected. Half of the data was used to
train the neural network. The other half was used to test
the generalization error of the neural network. It was
found that that the hyperspherical classifier achieved
perfect classification results in performing the
generdization tests.

In the first phase of the control process, a deadbeat
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controller was used to accelerate the AC servomotor. The
deadbeat control strategy was selected due to its ripple
free time optima nature.

In the second phase of the control process, the required
feature variables were computed in real time from the
results of the first phase of the control process. With these
feature variables, the neural network determined the class
of the payload in real time. Based on this result, one of the
three previously designed predictive controllers was
selected to regulate the servo system to the target speed.

For comparison, the built-in controller of the motor driver
was also used to perfor m the same control task. With a
payload parameter of 9, the experimental procedure given
in the motor driver manual was implemented to determine
the nominal control parameters for the motor driver. To
make fair comparisons between the built-in motor
controller and the proposed control method, this set of

nomina control parameters was then experimentally

tuned. The first tuning method minimized the difference
in the rise time and the second tuning approach
minimized the difference in the amount of overshoot. The
results using these two methods, denoted as NIKKI -T and
NIKKI-O, respectively, are described below.

3.3 Bxperimental Results

For reliability, each experiment was repeated five times
and the averages of the experimental results are reported.

The percent overshoot, steady -state error and the standard
deviation of the steady-state error of the proposed control
method and the NIKKI-T method are plotted in Figs. 2, 3
and 4, respectively, as a function of the payload
parameter. As shown in Fig. 2, with the same speed of
response, the proposed method yields smaller overshoot.

The percent overshoot generated by the NIKKI-T,
NIKKI-0 and the proposed control methods are plotted in
Fig. 5 & a function of the rise time. As shown in Fig. 5,
even with the rise time three times that of the proposed
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Fig. 4 Standard deviation of steady state error

method, the built-in motor controller can not reduce its
overshoot to be as small as the proposed method.
Generally speaking, the response of built-in motor
controller is much slower than that of the proposed
control method.

The results depicted in Figs. 3 and 4 demonstrate that the
proposed control method yields smaller steady- state error
and smaller steady-state error deviation than the built-in
motor controller.

4. CONCLUSION

This paper presents an intelligent controller switching
method for servo systems. A distinct advantage of the
proposed approach is that it circumvents the typical
tradeoff nature of servo controller design. Compared with
other controller switching methods, the approach is
capable of estimating the payload uncertainty by
observing the characteristics of the servo system motion
before making the controller switching decision. As a
result, the proposed method can choose an optimal
controller for the regulation part of the control process yet
remains robust to payload variation. Experimental results
demongtrate the effectiveness of the proposed method.
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