
 1

 
 
 
 
 
 
 

A NEURAL NETWORK BASED FAST STARTING METHOD FOR SERVO SYSTEMS 
 
 

Chen-Wen Yen1 and Mark L. Nagurka2 
 
 

1Department of Mechanical Engineering, National Sun Yat-Sen University 
Kaohsiung, Taiwan, 80424, e-mail: vincen@cc.nsysu.edu.tw 

 
2 Department of Mechanical and Industrial Engineering, Marquette University  

Milwaukee, WI 53201-1881, e-mail: nagurka@marquette.edu 
 
 
 

This paper introduces a fast starting motion control method for servo systems. The method 
consists of two phases. In the first phase, a time-optimal controller is used to accelerate the 
servo system. The second phase adopts a neural network based approach for speed regulation. It 
also achieves robustness to payload variation by estimating the payload uncertainty from the 
motion characteristics of the first phase. Experimental results demonstrate the effectiveness of 
the proposed approach. 

 
 
 
 
 

1. INTRODUCTION 
 
In many control applications, a servo system is required to 
reach a target speed from rest. In such applications, an 
ideal servo system controller should meet the following 
demands. First, the servo system should reach the target  
speed as fast as possible. Second, after reaching the target  
speed, the controller should regulate the servo system 
such that speed variation is minimized. Third, the 
controller should provide sufficient robustness to make 
the stability and performance of the servo  system 
insensitive to payload variation. 
 
The first objective can be satisfied by adopting a 
time-optimal (or near time-optimal) control strategy. To 
meet the second requirement, a regulator -type controller 
can be designed given appropriate performance 
specifications. However, due to their conflicting nature, 
design ing a single controller to simultaneously satisfy 
both control objectives does not seem to be possible. As a 
result, conventional controller design methods often 
involve a trial-and -error parameter tuning process so that  
a balance between time-optimal and regulator-oriented 
control methods can be obtained.  Inevitably, this design 
strategy comprises control system performance. 
 
A possible solution is to design separate time-optimal and 
regulator -oriented controllers. An on-line control process 
can then be used to switch from the time-optimal 
controller to the regulator-oriented controller at an 

appropriate time. For example, Rubo and Araci (1997) 
rely first on a deadbeat controller to rapidly accelerate a 
servo system and then switch to an LQR/LTR based 
controller to perform speed regulation when the speed of 
the servo system is sufficiently close to the target speed. 
This controller switching method seemingly combines the 
advantages of time-optimal and regulator-oriented 
controllers. However, a drawback of this method is that it 
is not adaptive to payload variations. A more flexible 
approach would be to tailor an LQR/LTR based controller 
offering sufficient robustness to account for payload 
uncertainty. However, providing robustness comprises 
the regulation performance of an LQR/LTR based 
controller. The goal of this work is to develop a more 
general control method to resolve this difficulty. 
 
The remainder of this paper is organized as follows. 
Section 2 describes the method in detail, Section 3 
presents experimental results, and Section 4 offers 
conclusions. 

 
 

2. METHODOLOGY 
 

2.1 The Predictive Control Method 
 
The dynamics of the system considered in this paper can 
be represented by the following discrete-time transfer 
function model 
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Note that  y is the output variable, u is the control variable, 
q−1 is the backward shift operator, d is the time delay of 
the process (in samples), ξ is the disturbance and 
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where n and m are the degrees of the polynomials A and B,  
respectively. With e(k) denoting a discrete white noise 
sequence with zero mean and unit variance, the 
disturbance is modeled as 
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with T and D being monic polynomials in q−1. 
 
Many methods have been proposed to design the 
closed-loop control law for systems that can be 
represented by equation (1). In this study, the unified 
predictive control method (Soeterboek, 1992) is adopted. 
Specifically, the control law is obtained by minimizing 
the following criterion function 

21 JJJ +=  (5) 
With y* and w denoting the predicted and desired output 
of the process, respectively, the first part of the criterion 
function characterizes the tracking output error and is 
defined as  
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where P is a monic polynomial in q−1. The second part of 
the criterion function represents the controller output 
weighting and is defined as  
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Note that Qn and Qd are monic polynomials with no 
common factor. In the predictive control framework, the 
control law is obtained by minimizing the criterion 
function of equation (4) under the following constraint 

0)1( =−+ ikPuφ  dHH c −≤≤1  (8) 
Hence, the design parameters include H, Hc,  P,  φ, Qn  and 
Qd. In addition, the polynomials T  and D of the 
disturbance model are also used as design parameters. 
 
 
2.2 The Payload Estimation Method 
 
Payload uncertainty oft en degrades the performance of a 
servo system. A possible solution t o this problem is to use 
neural networks to estimate the payload. For example, by 
dividing the payload into a finite number of classes and 
by training neural networks to recognize a payload 
variation associated with degradation in tracking 
performance, Leahy et al. (1991) provided a method that 
adapted the feedforward  dynamic compensation torques 
to payload variation. However, the effectiveness of this 
approach remains to be investigated when the payload 
does not belong to any of the predefined classes.  

 
This paper adopts a neural network based method to make 
the controller adaptive to payload variations. It relies on 
the fact that with the same control law, the response of the 
servo system varies with the payload. Sharing the 
common property of using neural  networks to estimate 
the payload uncertainty, the proposed approach differs 
from the approach proposed by Leahy et al. (1991) in 
several aspects. First, the proposed control method 
divides the control process into two phases. A 
time-optimal control strategy is used to bring the servo 
system to the vicinity of the target. Based on the 
performance of the time-optimal controller, a neural 
network estimates the payload at the end of the first phase 
of the control process.  
 
As shown in Fig.1, the motion of the first phase of the 
control process is divided into three subphases that have 
equal speed increments. (In Fig.1 Sp  denotes the target 
speed.) The means and variances of the speed of these 
three subphases as well as those of the entire first phase of 
the control process are used as feature variables. As such,  
 
the neural network is used only once in the control 
process. In contrast, Leahy’s method estimates the 
payload in each sampling per iod, imposing a 
computational burden on the controller. 
 
A second difference between the proposed work and 
Leahy’s method is in the application of the neural 
networks. During the control process, Leahy et al. used 
the neural network to determine which of the predefined 
payload classes the payload uncertainty belongs to. 
However, in training the neural network, Leahy et al. 
formulated the neural network learning task as a function 
approximation problem. Since the minimization of the 
function approximation error does not necessarily lead to 
the minimization of classification error, the trained neural 
network often has room for further improvement. In view 
of this problem, this work uses a hyperspherical classifier 
(Telfer and Casasent, 1993) to learn to recognize the 
payload uncertainty. One reason for choosing the 
hyperspherical classifier is the existence of an effective 
training method (Yen and Liu, 1997). The other reason is 
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Fig. 1 The feature variable extraction strategy 
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that this neural network, once successfully trained, is 
computationally very efficient in performing classifica-
tions allowing for on-line control. 
 
The following steps illustrate the neural network training 
process of the proposed method. 
 
Step 1: Based on their weights, payloads are divided into 
a number of classes. For example, in the experiments the 
payload is divided into light, medium, and heavy weight 
levels. 
 
Step 2: With a given payload, a time-optimal controller is 
used to bring the servo system to the target speed and the 
resulting rise time is determined. The mean and standard 
deviation of the servo system speed in the rise time period 
are computed. This time period is divided equally into 
three time subintervals and the mean and standard 
deviation of the servo system speed in each subinterval 
are computed. In this study, these eight feature variables 
are used to characterize the response of the servo system.  
 
Step 3: The experiments are repeated for a sufficient 
number of payloads such that the entire range of payload 
variations is effectively covered. 
 
Step 4: With the eight feature variables obtained in the 
previous steps as inputs and the class of the corresponding 
payload as output, a neural network is trained to relate the 
servo system response with the payload class. 
 
 

3. EXPERIMENTS 
 
3.1 Experimental System 
 
To test its effectiveness, the proposed control method was 
implemented for speed control of an AC servomotor 
(NIKKI DENSO, model number NA50-40NA). Using an 
80486 PC to perform the I/O actions, analog inputs and 
outputs were calculated with 16-bit resolution. The motor 
driver was set to a torque mode so that PC generated 
commands were proportional to the output torque of the 

motor. In this study, the target speed was chosen as 1800 
rpm and the sampling frequency was chosen as 100 Hz. 
The hyperspherical classifier was chosen as the neural 
network model and was trained by a method proposed by 
Yen and Liu (1997). 
 
 
3.2 Experimental method 
 
In the experiments, t he payload was varied from 4 to 20 
times the inertia of the rotor. In the remaining part of this 
paper the term “payload parameter” will be used to 
characterize the weight of the payload. In particular, a 
payload parameter of m signifies that the payload is m  
times the inertia of the rotor. The payload was divided 
into three classes: low (payload parameter of 4 to 8),  
medium (payload parameter of 9 to 14) and high (payload 
parameter of 15 to 20). A nominal payload was chosen for 
each class. In particular, payload parameters of 6, 9 and 
15 were selected as nominal values for the low, medium 
and high classes, respectively. For each of these nominal 
payloads, a first order difference equation was determined 
experimentally to characterize the motor dynamics from 
input voltage to speed. With these models and the 
predictive controller parameters of H=5, Hc = 1, P=1, 
T=1, D=A(1−q−1), φ=1−q−1, Qn =1 and Q d =1, three 
predictive controllers were designed independently for 
the three payload classes. In specifying these control 
parameters, the goal was to achieve regulation. The speed 
of response of the adopted predictive controllers was 
between the speeds of response of deadbeat and 
mean-level controllers. 
 
Payloads with integer payload parameters (in the range of 
4 to 20) were used to generate training and testing 
samples for the neural network. For each of the payload 
parameters, 100 sets of PC generated command versus 
speed data were collected. Half of the data was used to 
train the neural network. The other half was used to test 
the generalization error of the neural network. It was 
found that that the hyperspherical classifier achieved 
perfect classification results in performing the 
generalization tests. 
 
In the first phase of the control process, a deadbeat 
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 4

controller was used to accelerate the AC servomotor. The 
deadbeat control strategy was selected due to its ripple 
free time optimal nature. 
 
In the second phase of the control process, the required 
feature variables were computed in real time from the 
results of the first phase of the control process. With these 
feature variables, the neural network determined the class 
of the payload in real time. Based on this result, one of the 
three previously designed predictive controllers was 
selected to regulate the servo system to the target speed. 
 
For comparison, the built-in controller of the motor driver 
was also used to perfor m the same control task. With a 
payload parameter of 9, the experimental procedure given 
in the motor driver manual was implemented to determine 
the nominal control parameters for the motor driver. To 
make fair comparisons between the built-in motor 
controller and the proposed control method, this set of 
nominal control parameters was then experimentally 
tuned. The first tuning method minimized the difference 
in the rise time and the second tuning approach 
minimized the difference in the amount of overshoot. The 
results using these two methods, denoted as NIKKI -T and 
NIKKI-O, respectively, are described below. 
 
 
3.3 Experimental Results 
 
For reliability, each experiment was repeated five times 
and the averages of the experimental results are reported. 
 
The percent overshoot, steady -state error and the standard 
deviation of the steady-state error of the proposed control 
method and the NIKKI-T method are plotted in Figs. 2, 3 
and 4, respectively, as a function of the payload 
parameter. As shown in Fig. 2, with the same speed of 
response, the proposed method yields smaller overshoot. 
 
The percent overshoot generated by the NIKKI -T, 
NIKKI-O and the proposed control methods are plotted in 
Fig. 5 as a function of the rise time. As shown in Fig. 5, 
even with the rise time three times that of the proposed 

method, the built -in motor controller can not reduce its 
overshoot to be as small as the proposed method. 
Generally speaking, the response of built-in motor 
controller is much slower than that of the proposed 
control method. 
 
The results depicted in Figs. 3 and 4 demonstrate that the 
proposed control method yields smaller steady-state error 
and smaller steady-state error deviation than the built -in 
motor controller. 
 
 

4. CONCLUSION 
 
This paper presents an intellige nt controller switching 
method for servo systems. A distinct advantage of the 
proposed approach is that it circumvents the typical 
tradeoff nature of servo controller design. Compared with 
other controller switching methods, the approach is 
capable of estimating the payload uncertainty by 
observing the characteristics of the servo system motion 
before making the controller switching decision. As a 
result, the proposed method can choose an optimal 
controller for the regulation part of the control process yet  
remains robust to payload variation. Experimental results 
demonstrate the effectiveness of the proposed method. 
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