
Neurocomputing 57 (2004) 295–312
www.elsevier.com/locate/neucom

A false acceptance error controlling method for
hyperspherical classi$ers

Chen-Wen Yena , Chieh-Neng Younga , Mark L. Nagurkab;∗
aDepartment of Mechanical Engineering, National Sun-Yat Sen University, Kaohsiung 80424, Taiwan

bDepartment of Mechanical and Industrial Engineering, Marquette University, P.O. Box 1881,
Milwaukee, WI 53201-1881, USA

Received 16 August 2001; received in revised form 16 December 2002; accepted 10 October 2003

Abstract

Controlling false acceptance errors is of critical importance in many pattern recognition ap-
plications, including signature and speaker veri$cation problems. Toward this goal, this paper
presents two post-processing methods to improve the performance of hyperspherical classi$ers in
rejecting patterns from unknown classes. The $rst method uses a self-organizational approach to
design minimum radius hyperspheres, reducing the redundancy of the class region de$ned by the
hyperspherical classi$ers. The second method removes additional redundant class regions from
the hyperspheres by using a clustering technique to generate a number of smaller hyperspheres.
Simulation and experimental results demonstrate that by removing redundant regions these two
post-processing methods can reduce the false acceptance error without signi$cantly increasing
the false rejection error.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Hyperspherical classi$ers; Pattern recognition; Unknown pattern rejection; Self-organization

1. Introduction

Pattern recognition deals with objects or events to be classi$ed. This study assumes
the existence of a known $nite set of possible events

c = [c1c2 · · · cK]; (1)

∗ Corresponding author. Tel.: +1-414-288-3513; fax: +1-414-288-7790.
E-mail address: mark.nagurka@marquette.edu (M.L. Nagurka).

0925-2312/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2003.10.008

mailto:mark.nagurka@marquette.edu

296 C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312

where c is the set of known classes and the elements ck of c are called classes. A
pattern can be de$ned as a pair of variables

Pattern = [x; ck]; (2)

where x is the feature vector that characterizes the property of ck . The goal of pat-
tern recognition is to establish a mapping from x to c in order to recognize the
class ck when a feature vector x is presented. This mapping can be constructed by
a learning-from-example approach where a number of samples of known classes are
given. A classi$er can then be designed to $nd the decision boundary for classifying
the training samples. Based on the decision boundary, the classi$er enables one to infer
the class of unknown samples.

Typically, classi$ers are designed to be Bayes optimal [5]. However, in many pattern
recognition problems, a scheme for Gexible classi$cation error adjustment is often
added. In such a scheme, one particular class is chosen as the “true class” and the
remaining classes are designated as the “false class.” Classifying a true class sample
into the false class represents a “false rejection error,” whereas assigning a false class
sample into the true class is a “false acceptance error.” While a Bayesian classi$er
minimizes the sum of false rejection and acceptance errors, this approach may not be
optimal for many many real-world applications. For example, in medical diagnostic
problems a missed detection is much less desirable than a false detection.

To resolve such a problem, approaches for traditional statistical classi$ers and non-
parametric classi$ers, such as arti$cial neural networks, have been developed to Gexibly
balance the false acceptance and rejection errors [11]. A drawback of these methods is
that they assume the samples always are members of the set of known classes c. As a
consequence, it is diLcult for these classi$ers to reject samples that do not belong to
the known class set. For applications whose false acceptance error is of critical impor-
tance, this may create serious problems. To control false acceptance errors, this work
proposes two post-processing methods that improve the capability of hyperspherical
classi$ers in rejecting samples of unknown classes. The paper is organized as fol-
lows. The basic idea of hyperspherical classi$ers is discussed in the following section.
The proposed post-processing methods are introduced in Section 3. Section 4 presents
simulation and experimental results that demonstrate the eMectiveness of the proposed
methods. Future work and conclusions are provided in Section 5.

2. Hyperspherical classi�ers

The purpose of hyperspherical classi$ers is to cover samples of the same class by
the same set of hyperspheres. A distinct advantage of hyperspherical classi$ers is that
they automatically de$ne a rejection criterion for unknown classes. This property can
be illustrated using a multilayer perceptron (MLP) and a hyperspherical classi$er to
solve a two-class classi$cation problem. For the MLP, the decision boundary obtained
by the conventional backpropagation algorithm [5] is plotted in Fig. 1. Trained by the
method proposed by Yen and Liu [12] and post-processed by an approach introduced

C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312 297

-0.8 -0.4 0 0.4 0.8

X1

-0.8

-0.4

0

0.4

0.8
X

2
Class 1 - an ellipse

Class 2 - two circles

Decision boundary obtained by MLP

Fig. 1. MLP generated training result for Example 1.

in this paper, the hyperspherical classi$er generated the results shown as solid line
circles in Fig. 2.

In Fig. 2 each class is enclosed by a circle. This result indicates that the hyperspher-
ical classi$er implicitly de$nes a rejection region, which for this problem encompasses
the area outside the two circles. In contrast, no rejection region is de$ned in Fig. 1.
The MLP merely divides the feature space into c1 and c2 regions. As a result, the
MLP always assigns a sample to one of the two classes even if the sample came from
an unknown class.

Several methods have been proposed for the design of hyperspherical classi$ers
[2,8,9,12]. The common goal of these training methods is to determine the number
and parameters (center and radius) of the hyperspheres such that the training set can
be classi$ed accurately by the boundary of these hyperspheres. In similarity to con-
ventional classi$er training methods, the focus is on $nding the decision boundary to
classify the given training set. The potential of rejecting samples of unknown classes
of the hyperspherical classi$ers has not been fully explored.

298 C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312

-1.2 -0.8 -0.4 0 0.4 0.8 1.2
X1

-0.8

-0.4

0

0.4

0.8

X
2

Class1 - an ellipse
Class2 - two circles
Decision boundary (partially)
obtained by Hyperspherical Classifier [11]
Decision boundary processed by MSH

Fig. 2. Hyperspherical classi$er generated decision boundaries for Example 1.

This paper proposes two methods to reduce the redundancy of the class region
de$ned by hyperspherical classi$ers and introduces a simple technique for balancing
the false acceptance and false rejection errors. Since these methods can be used to
improve results obtained using any hyperspherical classi$er training algorithm, they
can be regarded as general post-processing methods for hyperspherical classi$ers.

3. Proposed methods

In the previous section Fig. 2 was introduced to illustrate the inadequacy of the
hyperspherical classi$er training method. As shown by the dashed line circles of Fig.
2, in dealing with c1 samples, the training method was terminated once a suLcient
number of training samples had been classi$ed correctly. Since no consideration is
given to the size of the class region, the dashed line circle for c1 of Fig. 2 is larger
than necessary. Hence, a goal of the $rst proposed method is to design minimum
spanning hyperspheres (MSHs) to enclose samples without sacri$cing the classi$cation
accuracy.

The problem of $nding a MSH is very similar to the combinatorial problem for $nd-
ing a circle of minimum radius to contain a given set of points [1,6]. A mathematical

C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312 299

statement of the problem is

min
x;y

max
j
d((aj; bj); (x; y)); (3)

where {(a1; b1); (a2; b2); : : : ; (an; bn)} represents a set of n given points that need to be
encircled, and d((aj; bj); (x; y)) is the Euclidean distance from (aj; bj) to the center of
the minimum spanning circle (x; y).

This paper adopts a generalized version of the self-organization method proposed
by Datta [3] to $nd the MSHs. In particular, at iteration t, the center (x; y) of the
minimum spanning circle is updated according to

x(t + 1) = x(t) + �(a∗ − x(t)); (4)

y(t + 1) = y(t) + �(b∗ − y(t)); (5)

where (x(0); y(0)) is the center of gravity of all n given points. Note that (a∗; b∗) repre-
sents the farthest point of (x(t); y(t)) in {(a1; b1); (a2; b2); : : : ; (an; bn)}. The coeLcient
� is the learning rate selected as [3]

�= �max − t(�max − �min)=(tmax + 1); (6)

where �max is the maximum learning rate, �min is the minimum learning rate and tmax

is the maximum number of iterations allowed for center updating. With this formula,
the learning rate decreases linearly with the iteration number. As indicated by Eqs. (4)
and (5), the self-organization method updates the minimum spanning circle by moving
its center toward its farthest point. The updating process is repeated until the center
converges to a $xed point.

In addition to being simple to implement, the self-organization method can read-
ily be adapted to problems of any dimension. In contrast, it is generally diLcult to
generalize other minimum spanning circle methods to higher dimension problems. For
convenience, the self-organization method will be referred to as the MSH method in
this paper. The solid lines of Fig. 2 represent the minimum spanning circles found by
the MSH method.

The MSHs are not always inside the class region de$ned by the original hyper-
spheres. To avoid unnecessary expansion of the class region, the new class region is
de$ned as the intersection between the class region associated with the old hyperspheres
and the region occupied by the MSHs.

Due to the distribution pattern of the samples, the class region found by the MSH
method may still be too large even when the smallest possible hyperspheres have been
used. For instance, it is impossible to use a circle to construct a nonredundant class
region for the c1 samples of Fig. 2 since the c1 data are distributed in an ellipse.
Similarly, due to the multi-modal distribution pattern of the c2 samples of Fig. 2, it
is also impossible to $nd a single circle to represent the c2 region without any class
region redundancy. In summary, the incompatibility between the shapes of the actual
class region and the hypersphere is one reason behind the class region redundancy of
hyperspherical classi$ers.

300 C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312

-4 -3 -2 -1 0 1 2 3
X1

0

1

2

3

4

X
2

Fig. 3. Clustering results obtained by the conventional ISODATA method.

To resolve this problem, this paper uses an appropriate number of smaller hyper-
spheres to enclose the data associated with every hypersphere that has a redundant
region. To achieve this goal, one can use a conventional clustering method to divide
the training samples into a number of groups. A typical criterion of the traditional clus-
tering method is to minimize the within-cluster variation. For example, the following
criterion function has often been used

E =
N∑

n=1

Kn∑

i=1

(xni −mn)T(xni −mn); (7)

where N is the number of clusters, Kn is the number of training samples associated
with cluster n; xni is the ith sample belonging to the nth cluster and mn is the centroid
of the nth cluster. An important property of this type of criterion function is that
the clustering results depend on the distribution density of the training samples. In
particular, cluster centers are apt to be located in the high distribution density region.
However, this property may not be desirable for our purpose. To illustrate the nature
of the problem, the data points given in Fig. 3 were divided into two clusters by a
conventional ISODATA method [4]. All but two samples in Fig. 3 were distributed
in a highly concentrated region. Consequently, in order to minimize within-cluster
variation, both ISODATA generated cluster centers are located in this high distribution
density region. Fig. 3 uses diMerent symbols to denote samples associated with diMerent
clusters. Applying the MSH method to $nd a minimum spanning circle for samples of
each cluster yields the two circles of Fig. 3. This result is unsatisfactory since one of
the circles contains a signi$cant amount of empty space.

C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312 301

To remedy this problem, this paper uses the following algorithm to $nd N smaller
hyperspheres to contain the same training samples.

1. Denote the feature vector of the training samples as x1; x2; : : : :
2. Choose x1; x2; : : : ; xN as the initial reference points of the clusters. That is, set
r1 = x1; r2 = x2; : : : ; rN = xN where ri represents the reference point of the ith
cluster.

3. Compute the distances between the cluster reference points.
4. With dij denoting the distance between the ith and jth cluster reference points, $nd

the smallest dij and the corresponding reference points. Denote the smallest dij as
d∗ and the corresponding reference points as r∗i and r∗j .

5. Denote the nonreference point training samples as z1; z2; : : : :
6. Set k = 1.
7. Find the smallest distance between the zk and reference points. Denote this distance

as e∗.
8. If d∗¿ e∗ then continue the algorithm from step 10. Otherwise, continue to the

next step.
9. If the distance between r∗i and its second nearest reference point neighbor is smaller

than the distance between r∗j and the second nearest reference point neighbor of
r∗j , replace r∗i with zk . Otherwise, replace r∗j with zk .

10. Set k = k + 1 and repeat the solution process from step 7 until all the training
samples have been used.

11. Repeat the process from step 3 until the reference points no longer change.
12. Associate every training sample to its closest cluster reference point to form N

clusters.
13. For the data points associated with each of the clusters, use the MSH method to

$nd a MSH to enclose them.

An important property of the above procedure is that the reference points are de-
termined by trying to maximize the “minimum distance,” de$ned in this study as the
shortest distance between all pairs of the reference points. Speci$cally, in every itera-
tion, the $rst two reference points associated with the minimum distance are identi$ed
$rst. Next, the procedure seeks to increase the minimum distance by replacing one of
these reference points with a training sample selected from the remaining training set to
maximize the new minimum distance. This process is repeated until the new minimum
distance is not larger than the old minimum distance. Since the reference points have
to be a subset of a $nite number of training samples, the number of possible reference
point combinations is $nite. Given this property and the fact that the minimum distance
will only get larger, it is impossible for the above procedure to run endlessly. There-
fore, this procedure will always converge. Hereafter, this procedure will be referred as
the hyperspherical clustering (HC) method.

The circles shown in Fig. 4 are the results obtained by applying the HC method
to the data points given in Fig. 3. Note that the two outliers are contained in one
circle whereas the other circle encloses all the remaining samples. Compared with the
circles of Fig. 3, the HC method has reduced the redundant class region signi$cantly.

302 C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312

-4 -3 -2 -1 0 1 2 3
X1

0

1

2

3

4
X

2

Fig. 4. Clustering results obtained by the HC method.

In addition, by setting a threshold value for the minimum number of data points that a
hypersphere must cover, one can easily design an outlier rejection method. This makes
the HC method a valuable tool for outlier removal.

With the availability of the MSH and HC methods, the next question is how to
increase the number of the hyperspheres so that the false acceptance/rejection errors
can be controlled eMectively. Toward this goal, this work de$nes the following index
to characterize the “redundancy” of a hypersphere:

R= rn=p; (8)

where r is the radius of the hypersphere, n is the dimension of the feature space and
p is the number of sample points contained in the hypersphere. For a $xed number
of sample points, this redundancy index will be relatively small if the class boundary
associated with these points can be approximated closely by a hypersphere. In contrast,
if the shape of this class boundary is very diMerent from a hypersphere, then one
needs to use a larger hypersphere to enclose these points. This will result in a larger
redundancy index. In addition, part of the resulting hypersphere can be considered
redundant since it contains no sample points. This redundant part of the hypersphere
is to be avoided since any sample points from other classes will be falsely accepted
if they appear in such a region. This phenomenon is graphically illustrated in the $rst
example of the following section.

With the redundancy index de$ned, the following post-processing procedure is pro-
posed.

1. Use an appropriate training method to design a hyperspherical classi$er.
2. Use the MSH method to $nd a MSH for each of the hyperspheres found by the

hyperspherical classi$er.

C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312 303

3. Compute the redundancy index value for each of the MSH.
4. Use the HC method to split the hypersphere that has the largest redundancy index

value into two smaller hyperspheres.
5. Continue the process from step 3, terminating the procedure when one or more of

the following criteria have been satis$ed.
1. The false acceptance error is suLciently small.
2. The false rejection error has exceeded a prespeci$ed bound.
3. When the number of hyperspheres is larger than a prespeci$ed limit.

The last criterion can be used to constrain the complexity of the classi$er. The
$rst and second criteria are closely related to the trade-oM in balancing false accep-
tance/rejection errors. For example, in designing a veri$cation system where security is
the most important concern, the $rst stop criterion can be used as the design goal for
the classi$er, whereas the second criterion is used as a safeguard to prevent the false
rejection error from exceeding an intolerable limit. However, if convenience for the reg-
ister users is the major concern for the veri$cation system, then the roles of these two
criteria should be switched. The hypersphere splitting process could then be terminated
immediately once the false rejection error is larger than the prespeci$ed bound.

When no rigid requirement is imposed on false acceptance/rejection errors, the num-
ber of hyperspheres can be chosen to minimize the overall classi$cation error, namely,
the sum of false acceptance and false rejection errors. Similarly, the number of hyper-
spheres could be chosen such that an appropriately weighted sum of the false acceptance
and false rejection errors is minimized.

As a $nal remark, the region occupied by the split hyperspheres is not necessarily
a subset of the region covered by the original hypersphere. Therefore, in this study,
after every hypersphere splitting operation, the new class region is selected as the
intersection between the original hypersphere and the new hyperspheres generated from
the hypersphere splitting process.

4. Simulation and experimental results

This section tests the eMectiveness of the proposed post-processing methods. Prior
to the application of the post-processing methods, the training method of Yen and
Liu [12], which was based on an algorithm for linear inequalities [7], was $rst used
to solve the classi$cation problem. In implementing the MSH method, the maximum
and minimum learning rates (i.e., �max and �min of Eq. (6)) were chosen as 0.04 and
0.0001, respectively. The MSH method was terminated when the distance between hy-
persphere centers of the successive iterations was less than 10−4 or when the number
of iterations exceeded 10,000. The false acceptance and false rejection errors are re-
ported as measures of the eMectiveness of the post-processing methods, where the error
is de$ned as the ratio of the incorrectly classi$ed testing samples to the total number
of testing samples.

Example 1. This example considers a two-dimensional classi$cation problem, illus-
trated graphically in Fig. 1. In this problem, c1 samples are inside an ellipse that

304 C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of hyperspheres

0

2

4

6

8

10

12

14
C

la
ss

ifi
ca

tio
n

er
ro

rs
 (

%
)

False rejection error
False acceptance error

Fig. 5. Classi$cation errors for Example 1.

contains 500 training samples. Two circles, each of which contains 250 training sam-
ples, enclose samples of the other class. The circles found by the training method
(dashed lines) and the MSH method (solid lines) are depicted in Fig. 2. To test the ef-
fectiveness of the proposed post-processing methods, 50,000 rejection area samples and
50,000 c1 samples were randomly generated to test the classi$cation errors of the c1
circles. In a similar manner, classi$cation errors of the c2 circles were also computed.

Before the application of the proposed post-processing methods, the false acceptance
and false rejection errors of the hyperspherical classi$er were 44.36% and 0.00%, re-
spectively. With the minimum spanning circles, the false acceptance error is reduced
dramatically to 12.51%. In contrast, the false rejection error increases only slightly
to 0.41%. Next, the HC method was applied to increase the number of hyperspheres
one-at-a-time. As functions of the number of hyperspheres, false acceptance and false
rejection errors are plotted in Fig. 5. The $rst $ve results of the corresponding hy-
persphere splitting process are plotted in Figs. 6–10, respectively. As shown in these
$gures, the redundant regions of these circles have a general decreasing tendency as
the number of circles goes up.

C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312 305

-1.2 -0.8 -0.4 0 0.4 0.8 1.2
X1

-0.8

-0.4

0

0.4

0.8
X

2

Fig. 6. The $rst result of the splitting process for Example 1.

-1.2 -0.8 -0.4 0 0.4 0.8 1.2
X1

-0.8

-0.4

0

0.4

0.8

X
2

Fig. 7. The second result of the splitting result for Example 1.

As shown in Fig. 5, the false acceptance error is reduced drastically as the num-
ber of hyperspheres increases from 2 to 4. This phenomenon can be explained by
Figs. 2, 6 and 7, which show that the empty region inside the hyperspheres is

306 C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312

-1.2 -0.8 -0.4 0 0.4 0.8 1.2
X1

-0.8

-0.4

0

0.4

0.8
X

2

Fig. 8. The third result of the splitting process for Example 1.

-1.2 -0.8 -0.4 0 0.4 0.8 1.2
X1

-0.8

-0.4

0

0.4

0.8

X
2

Fig. 9. The fourth result of the splitting process for Example 1.

decreased signi$cantly as the number of hyperspheres increases from two to four. In
particular, Fig. 7 uses two circles to enclose c2 samples and thus closely approximates
the optimal decision boundary associated with c2. As a consequence, with four circles,

C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312 307

-1.2 -0.8 -0.4 0 0.4 0.8 1.2
X1

-0.8

-0.4

0

0.4

0.8
X

2

Fig. 10. The $fth result of splitting process for Example 1.

the false acceptance error reduces further to 2.02%, whereas the false rejection error
increases mildly to 1.60%. Continuing this hypersphere generation process, it is dis-
covered that the overall classi$cation error is minimized by using eight hyperspheres.
The corresponding false acceptance and false rejection errors are 0.47% and 2.07%,
respectively.

In order to demonstrate the relative advantage of the proposed approach, this work
also uses a MLP to solve the same problem. In training the MLP, the desired outputs
for the c1 and c2 samples are speci$ed as [1 0] and [0 1], respectively. In standard
operation, the MLP assigns a sample to c1 provided that the $rst output is larger
than the second output of the MLP and so forth. However, in order to control the false
acceptance error, this work also requires that the larger output value of the MLP should
be no less than a threshold value. Otherwise, the sample is rejected. By varying the
threshold value, the MLP possesses the Gexibility to control the relative magnitude of
false acceptance and false rejection errors. The operating curves obtained by the MLP
and hyperspherical classi$er are plotted in Fig. 11. The $gure shows that the proposed
approach provides signi$cantly better overall results than the MLP. Speci$cally, when
both classi$ers have the same false acceptance error, the false rejection error obtained
by the hyperspherical classi$er is much smaller than that of the MLP.

Example 2. This example considers a speaker veri$cation problem with the goal of
determining whether a given utterance is produced by a claimed speaker. In creating the
database, 10 persons were asked to utter the phrase “kong juy gong cherng” meaning
“control engineering” in Chinese. The 8 kHz speech was pre-emphasized with 30 ms
Hamming windows shifted every 15 ms. Based on the acoustic parameter selection

308 C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312

0 10 20 30 40 50
False acceptance error (%)

0

10

20

30

40

50

60
F

al
se

 r
ej

ec
tio

n
er

ro
r

(%
)

Hyperspherical classifier
Multilayer perceptron

8 hyperspheres

Fig. 11. The operating curves of Example 1.

method proposed by Wolf [10], this example uses 16 feature variables to characterize
every set of 400 sets of data taken from each speaker.

The speakers were divided equally into known and unknown class groups. A hy-
perspherical classi$er-based speaker veri$er was designed for the $ve speakers of the
known class group. In building these speaker veri$ers, 200 sets of samples were taken
from each member of the known class group to form the training set. The remaining
1000 known class group samples (200 samples from each person) were used to test
the generalization capability of the hyperspherical classi$ers. In addition, 2000 sets of
unknown class samples (400 samples from each speaker) were used to test the rejection
capability of the classi$ers.

For the known class group, without any post-processing, the hyperspherical classi$er
obtains a false acceptance error of 0.075% and a false rejection error of 0.3%, both
small enough to be considered very satisfactory. However, the need for false acceptance
error suppression comes from the unknown class group whose members are completely
unseen during the training phase of the tested classi$ers. Without any post-processing,

C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312 309

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of hyperspheres

0

1

2

3

4

5

6

7

8
C

la
ss

ifi
ca

tio
n

er
ro

rs
 (

%
)

False rejection error
False acceptance error - UNKNOWN data

Fig. 12. Classi$cation errors for Example 2.

the hyperspherical classi$er incurs a 19.93% false acceptance error in performing veri-
$cation for the unknown class group speakers. The MSH method reduces this error to
7.18%. At the same time, the false rejection error increases to 1.3%. Since this level
of false acceptance error is still not satisfactory for many practical speaker veri$cation
applications, the hypersphere splitting method was then applied. The resulting false
acceptance and false rejection errors are plotted in Fig. 12 as functions of the number
of hyperspheres. As shown in this $gure, at the cost of increasing false rejection error,
the false acceptance error can now eMectively be suppressed. The overall classi$cation
error is minimized by using nine hyperspheres, which yields 3.10% false rejection error
and 3.35% false acceptance error. However, if the false acceptance error is required
to be smaller than 3%, the classi$er should have 12 hyperspheres and the false re-
jection error will increase to 4.4%. Similarly, if the satisfactory false acceptance error
is required to be smaller than 2% (1%), the required number of hyperspheres is 19
(29), and the false rejection error would increase to 6.2% (9.0%). These four operating
points are also marked in Fig. 13.

310 C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312

0 2 4 6 8 10 12 14 16 18 20
False acceptance error (%)

0

10

20

30

40

50

60

70

80
F

al
se

 r
ej

ec
tio

n
er

ro
r

(%
)

Hyperspherical classifier
MLP

9
12

19
29 hyperspheres

Fig. 13. The operating curves for Example 2.

This problem has also been solved by an MLP. The operating curves obtained by
the MLP and hyperspherical classi$er are plotted in Fig. 13. This $gure demonstrates
that the hyperspherical classi$er clearly outperforms the MLP.

5. Future work and conclusion

This paper introduces two post-processing methods for hyperspherical classi$ers.
Based on the self-organization approach, the $rst method, denoted here as the MSH
method, $nds minimum radius hyperspheres that contain the data points. By using a
clustering method to $nd a number of uniformly distributed samples as the cluster
reference points, the second post-processing method, the HC method, generates several
smaller hyperspheres that contain the data points that were originally covered by a
single hypersphere. By de$ning the new class region as the intersection of the class
region found by the training method and the interior regions of the hyperspheres found
by the post-processing methods, the approach is able to remove redundant class regions

C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312 311

from the hyperspherical classi$ers. As demonstrated by the experimental studies, this
improves the false acceptance error signi$cantly.

The proposed methods have several distinct features. First, due to their post-
processing nature, they can be used in conjunction with any hyperspherical classi-
$er training method. Second, by adjusting the number of hyperspheres generated by
the HC method, one can control the relative magnitudes of the false acceptance and
false rejection errors of the hyperspherical classi$ers. Third, the methods do not require
a priori knowledge of the statistical model of the patterns to be classi$ed.

The proposed MSH method uses the minimum hypersphere to avoid the possibility
of redundant class regions and thus tries to make the false acceptance error as small as
possible. For some applications this may not be an optimal solution. A possible future
research direction is to explore this inGexibly of the MSH method. In particular, by sys-
tematically increasing the radii of the hyperspheres obtained by the MSH method, one
could develop a more Gexible tool to balance the false acceptance and false rejection
errors of the hyperspherical classi$ers. In addition, by analyzing the results obtained
by the HC method, another research direction could be to develop a systematic outlier
rejection strategy.

Acknowledgements

This research was supported in part by National Science Council of Republic of
China under Grant Number NSC 87-2212-E-110-007.

References

[1] L.J. Bass, S.R. Schubert, On $nding the disc of minimum radius containing a given set of points, Math.
Comput. 21 (1967) 712–714.

[2] B. Bathelor, Practical Approach to Pattern Classi$cation, Plenum Press, New York, 1974.
[3] A. Datta, Computing minimum spanning circle by self-organization, Neurocomputing 13 (1996) 75–83.
[4] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classi$cation and Scene Analysis, Wiley, New York, 2000.
[5] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company,

New York, 1998.
[6] D.W. Hearn, J. Vijay, ELcient algorithms for the (weighted) minimum circle problem, Oper. Res. 30

(1982) 777–795.
[7] Y.-C. Ho, R.L., Kashyap, An algorithm for linear inequalities and its application, IEEE Trans. Electron.

Comput. 14 (1965) 683–688.
[8] D. Relly, L. Dow, C. Erlbaum, A neural model for category learning, Biol. Cybernet. 45 (1982)

35–41.
[9] B.A. Telfer, D.P. Casasent, Minimum-cost associative processor for piecewise-hyperspherical

classi$cation, Neural Networks 6 (1993) 1117–1130.
[10] J.J. Wolf, ELcient acoustic parameters for speaker recognition, J. Acoust. Soc. Am. 51 (1971)

2044–2056.
[11] K. Woods, W. Bowyer, Generating ROC curves for arti$cial neural networks, IEEE Trans. Med. Imag.

16 (1997) 329–337.
[12] C-W.V. Yen, T.-Z. Liu, A competitive learning process for hyperspherical classi$ers, Neurocomputing

17 (1997) 99–110.

312 C.-W. Yen et al. / Neurocomputing 57 (2004) 295–312

Mark L. Nagurka received B.S. and M.S. degrees in mechanical engineering and
applied mechanics from the University of Pennsylvania in 1978 and 1979, respec-
tively, and a Ph.D. from MIT in 1983. He came to Marquette University (Milwau-
kee, Wisconsin, USA) in 1996 after teaching mechanical engineering at Carnegie
Mellon University (Pittsburgh, Pennsylvania, USA), where he also served as a
senior research engineer at the Carnegie Mellon Research Institute. His research
interests include mechatronics, vehicle dynamics, control system design, and biome-
chanics.

Chen-Wen Yen received a B.E. degree in mechanical engineering from Tamkang
University in 1982 and M.E. and Ph.D. degrees in mechanical engineering from
Carnegie-Mellon University in 1986 and 1989, respectively. Following graduation,
he joined the faculty in the Department of Mechanical Engineering at Sun Yat-Sen
University. The focus of his research work is the application of neural networks to
pattern recognition problems.

Chieh-Neng Young received B.E. and M.E. degrees in mechanical engineering from
National Sun-Yat University in 1999 and 2001, respectively. He is now a Ph.D.
candidate in the same department. His research interests include learning in arti$cial
neural networks and pattern recognition.

	A false acceptance error controlling method for hyperspherical classifiers
	Introduction
	Hyperspherical classifiers
	Proposed methods
	Simulation and experimental results
	Future work and conclusion
	Acknowledgements
	References

