
MEEP C++

Scattering by Cylinders Using MEEP

Technical Report # 51

J. Richie June 6, 2013

Summary

In this work, software that simulates the scattering by a cylinder (two-dimensional case) is investigated
using the MIT program MEEP. MEEP is a finite difference-time domain numerical method applied to
Maxwell’s equations. The algorithm typically uses a “marching-in-time” approach; however, direct solvers,
particularly in the frequency domain, can be implemented as well.

The MEEP code can be executed by using a script written in the libctl language 1. libctl is a variation
of the Scheme language. A python interface is also available, but has not been investigated. The libctl

interface has been used and has been found to be convenient when creating video clips of the fields in the
problem. Video clips are created by taking snapshots (as GIF files), and using gifsicle 2 to concatenate
the GIF files into an animation.

The MEEP code also allows for a native C++ interface as well. In this document, the C++ interface is
described as part of the purpose for the work. The C++ interface is most convenient because all of the field
quantities are readily available within the structure of a C++ program.

The problems solved here all involve scattering from a cylinder. The cases of a perfectly conducting
cylinder and a dielectric cylinder are described. The incident fields considered are a plane wave and a
monopole line source in the vicinity of the cylinder. In all cases, the electric field is parallel to the axis of
the cylinder (the z axis) and hence, TMz fields are present.

The scattered field is found for plane wave cases by simulating both the problem (i.e., the incident field in
the presence of the cylinder) and the incident field with no scatterer present. The incident field is subtracted
from the total field during simulation to obtain the scattered field. For monopole line source incident fields,
the total field is reported. No incident field only simulation is performed.

The results have been disappointing. No suitable convergence toward the exact far field pattern has been
observed at this time. Likely sources of error have been identified but have not been correctable at the
present time.

1 http://ab-initio.mit.edu/wiki/index.php/Libctl
2 http://www.lcdf.org/gifsicle/

2

1. Introduction.

This document describes programming MIT MEEP [1]. MIT MEEP is a finite difference-time domain
(FD-TD) code that can be executed using scripts (in the Scheme language via libctl) or as a library that
can be called using a C++ interface. Here, the C++ interface is used. The MEEP code is also documented
online3.

The FD-TD method is applied to Maxwell’s equations by using a difference approximation for the deriva-
tives of the curl equations. A “marching-in-time” procedure is used where the fields are computed over time.
The electric field and the magnetic field are one half time step apart. Thus, the electric field is updated
using the electric field values from one time step prior and the magnetic field values from one half time step
prior to the present time.

The method has been extensively studied. See [2] for a graduate text introduction to the subject, and
[3] for a comprehensive review of the details of the method. The technique has been used for modeling
microstrip, antennas [4], and a variety of other electromagnetic scenarios.

A one-dimensional version used in the MU undergraduate Fields II class as a demonstration of waves on a
terminated transmission also appears in [5]. In the 1–D case, ~E can be mapped to V and ~H can be mapped
to I.

In the case of antenna or scattering problems, the region of interest is typically infinite (or at least extends
to the far field). In these situations, there are two issues. The first is that the space can not be simulated to
the far field. Therefore, a transformation must be applied on the near fields to infer the far field quantities
of interest. Second, the region of interest must be bounded in such a fashion that there is no reflection off
the bounding surfaces. In MEEP, a perfectly matched layer (PML) is used to truncate the solution space
without causing reflections.

Once a solution can be found that also does not allow for reflections off the solution space boundary, a
way to find the far field pattern is needed. Here, the equivalence principle is used. The equivalence principle
states that the tangential fields along some fictitious boundary can be used as equivalent sources. This
fictitious boundary must enclose the actual sources. Then, the equivalent sources can be “radiated” to the
far field using well-known free-space integral relationships.

3 http://ab-initio.mit.edu/wiki/index.php/Meep

3

2. Plane Wave Geometry.

The geometry for the plane wave incident field has been set up using a number of parameters that make
the geometry adjustable to investigate the effect of geometrical parameters (besides the cylinder radius).
The geometry is shown in Fig. 1.

PML

PML

FFe

FFe

FFsize

FFsizePWLE

PWsize

aPwFFboxDist

Figure 1. Geometrical parameters for the plane wave incident field problem.

In Fig. 1, the cylinder is shown with radius a. The surface used by the equivalence principle (denoted the
far-field box) is a square of side FFsize centered about the cylinder. The edge of the solution space is padded
with a region for the perfectly matched layer (PML). A region between the far-field box and the PML layer
has thickness FFe. The distance between the far-field box and the plane wave source is PwFFboxDist. The
padding between the plane wave source and the left edge of the model has thickness PWLE. The parameter
PWsize defines the extent of the plane wave source as a percentage of the full distance. The full distance is
the model size less the two PML regions. That is, if PWsize = 1, then the plane wave extends vertically from
PML layer to PML layer.

4

3. Monopole Geometry.

The geometry for the monopole line source incident field is shown in Fig. 2. Several of the parameters are
the same as the plane wave case. The cylinder radius, the PML layer, the size of the far field box (FFsize),
and the far field box buffer (FFe) are all the same.

For the monopole location, a distance, SrcLoc is used. This is the distance from the edge of the cylinder
to the line source. The structure consisting of the cylinder and the line source is centered in the far field
box. The relation, SrcLoc + 2a < FFbox must be true; the code will abort if FFbox is too small.

a

FFe

FFe

FFsize

FFsize

PML

PML

SrcLoc

Figure 2. Geometrical parameters for the monopole line source incident field problem.

5

4. Software.

In this section, the software that is used to simulate the cylinder scattering problems is described. The
C++ interface to MEEP is documented insofar as it was used in this work. For reference, the source file,
meep.hpp is a header file that includes prototypes for all the public class members that can be used to write
the code.

The software is written in a sequence of source code files in the subdirectory src. The cweb documentation
file is in the top directory with figure files in the fig subdirectory. There is a makefile in the top level directory
and a makefile for the source code in the src subdirectory. The top-level makefile calls the src makefile to
compile the program. The final executable and support scripts/files can be “moved” to a simulation directory
(/sims/meepCpp) as well. There is a results subdirectory that holds the result data used in this document.
Full results are in the /sims/meepCpp directory. Finally, there is a nf2ff subdirectory that holds the code
that computes the near field to far field transformation applied to the analytic near field solution.

The main entry point for the code is defined in the meepCyl.cc file. This file declares prototype functions,
global variables, and variable types. The global information is repeated (as external) in the header file
meepCyl.h.

The first function call from main is to input. The purpose of input is to collect the geometrical parameters
and problem variables from the user. This is typically done using an input pipe with a file that lists all the
input data.

The next function call from main is to ffbox. The purpose of this function is to use the input parameters
to set up the far-field box for the calculations. The far-field box parameters are conveniently stored in the
FFbox structure. The parameters included are the (x, y) location of each point and the multiplication factor
for each point (see the equivalence principle section). An important parameter that is determined in this
step is the number of points used in the far-field (equivalence principle) calculation.

The runMEEP function call then sets up the solution space and executes the simulation. The software
requires that functions be written that can be called to return the value of material constants for any point
in the solution space. The function eps is used to define the cylinder material. A second function, air is
used to define the material parameters (free space) for the incident field simulation.

For plane wave simulations, both an incident field simulation and an object-present simulation are per-
formed in parallel. After enough timesteps, the code collects time-domain data at each of the points defined
in the FFbox structure. This data is stored in a local array of values. For monopole simulations, the total far
field pattern is of interest; therefore, only a total field simulation is executed and no subtraction is performed.

Once the simulation is complete, the data collected toward the end of the run is analyzed. The MEEP
function do harminv is used to convert each time-series to a phasor magnitude and phase. The equivalent
electric and magnetic currents are stored in the FFBox structure.

Finally, the ffCalc function is called to perform the far-field integration. this function implements
the equivalence principle to compute the (normalized, linear) far field pattern for the field. Plane wave
simulations result in the scattered far field; monopole simulations result in the total far field.

6

5. Makefile.

Listed here is the main makefile for the project. This makefile is used directly to create the documentation
for the project. The makefile also calls the src makefile (listed in the next section) to compile the executable
file.

#

master makefile for MEEP w/ C++ interface

#

all: meepCylMake meep-Cpp.dvi

move: meepCylMake

cp src/meepCyl ~/sims/meepCpp; \

cd scripts; cp * ~/sims/meepCpp

meepCylMake:

cd src;make meepCyl

meep-Cpp.dvi: meepCyl.w pwGeo.eps boxFlds.eps monoGeo.eps PEC-rmse.eps \

FFsizeVarFF.eps PW-EPS-ff.eps nf2ffData.eps Pml3.0.eps

cweave meepCyl.w; \

tex meepCyl.tex; bibtex meepCyl ; tex meepCyl.tex; tex meepCyl.tex

pwGeo.eps: fig/pwGeo.fig

fig2dev -L eps fig/pwGeo.fig ./pwGeo.eps

boxFlds.eps: fig/boxFlds.fig

fig2dev -L eps fig/boxFlds.fig ./boxFlds.eps

monoGeo.eps: fig/monoGeo.fig

fig2dev -L eps fig/monoGeo.fig ./monoGeo.eps

PEC-rmse.eps: results/PEC-rmse.plt results/FFsize.data

cd results; gnuplot PEC-rmse.plt; cd ..

FFsizeVarFF.eps: results/FFsizeVarFF.plt results/FFsize2.5.sum \

results/FFsize5.7.sum

cd results; gnuplot FFsizeVarFF.plt; cd ..

PW-EPS-ff.eps: results/PW-EPS-ff.plt results/PwFFboxDist2.0.sum

cd results; gnuplot PW-EPS-ff.plt; cd ..

nf2ffData.eps: nf2ff/three.dat nf2ff/nf2ffData.plt

cd nf2ff; gnuplot nf2ffData.plt; cd ..

nf2ff/three.dat:

cd nf2ff; nf2ffData.sh; cd ..

Pml3.0.eps: results/Pml3.0.plt results/Pml3.0.sum

cd results; gnuplot Pml3.0.plt; cd ..

srcClean:

cd src; make clean; cd ..

clean: srcClean

rm -f *~ *.dvi *.log *.idx *.scn *.tex *.toc meepCyl \

*.aux *.eps *.h5 *.bbl *.blg fig/*.bak scripts/*~

7

6. Makefile – src.

Here is makefile for source code.

MEEPLIBS= -lmeep -lhdf5 -lz -lharminv -lblas -lfftw3 -llapack

LIBS= -lcpp -lm

LOCAL=$(HOME)/bin/local

INCLDIR=$(LOCAL)/include

LIBDIR=$(LOCAL)/lib

CC = g++ -malign-double -Wall

OBJ= meepCyl.o input.o ffbox.o run.o ffcalc.o

all: meepCyl

meepCyl: $(OBJ)

$(CC) $(OBJ) -L$(LIBDIR) -I$(INCLDIR) -o meepCyl $(MEEPLIBS) $(LIBS);

meepCyl.o: meepCyl.cc

$(CC) meepCyl.cc -o meepCyl.o -I$(INCLDIR) -c

input.o: input.cc

$(CC) input.cc -o input.o -I$(INCLDIR) -c

ffbox.o: ffbox.cc

$(CC) ffbox.cc -o ffbox.o $(LIBS) -c

run.o: run.cc

$(CC) run.cc -o run.o $(MEEPLIBS) $(LIBS) -c

ffcalc.o: ffcalc.cc

$(CC) ffcalc.cc -o ffcalc.o $(LIBS) -c

clean:

rm -f *.h5 *.png meepCyl *~ *.o

8

7. Source Code.

Here is the source code. The software is modularized to make the code more readable and changeable,
witnessed by the development of the code. The plane wave, perfectly conducting cylinder case was created
first, subsequent problems (such as the dielectric cylinder and the monopole line source incident field) were
added to the code later.

8. Header File: meepCyl.h.

The header file, meepCyl.h contains the declaration of the global variables (as external) and the definition
of the FFbox structure that is used to store the information on the box used to compute the far field.

#include <math.h>

#include <complex>

;
; /∗ global variables ∗/
;

extern int NumPts , NumTimeSeries , NumTimeSteps ;
extern double CylRad , epsR , epsRel ;
extern double CylCenterX , CylCenterY ;
extern double resolution , delta , courant ;
extern double FFsize , Pml , FFe , PwFFboxDist , PWle , PWsize , SrcLoc ;
extern double FF[361];

;
; /∗ PWflag is 1 if plane wave, 0 if monopole ∗/
;

extern int PWflag ;

;
; /∗ definition of FFbox structure ∗/
; struct FFbox { double x;
double y;
double f ; std ::complex < double > Jeq , Meq ; } ;

extern struct FFbox ∗ffBox ;

9

9. Main Entry: meepCyl.cc.

This is the main entry point for the code. All this portion does is set up the global variables, and then
calls a set of functions that solves the problem. The functions are:

• input
• ffbox
• runMEEP
• ffCalc.

#include <iostream>

#include <math.h>

#include <complex>

#include "std−def.h"

;
; /∗ global variables ∗/
;

int NumPts , NumTimeSeries , NumTimeSteps ;
double CylRad , epsR , epsRel ;
double CylCenterX , CylCenterY ;
double resolution , delta , courant ;
double FFsize , Pml , FFe , PwFFboxDist , PWle , PWsize , SrcLoc ;
double FF[361];

;
; /∗ PWflag is 1 if plane wave, 0 if monopole ∗/
;

int PWflag ;

;
; /∗ definition of FFbox structure ∗/
; struct FFbox { double x;
double y;
double f ; std ::complex < double > Jeq , Meq ; } ;
;
; /∗ definition of FFbox structure ∗/
;

struct FFbox ∗ffBox ;

;
; /∗ other declarations (prototypes) ∗/
;

void input (void);
void ffbox (void);
void runMEEP (int argc , char ∗∗argv);
void ffCalc(void);

;
; /∗ Here is main entry point for code ∗/
;

int main (int argc , char ∗∗argv)
{

10

int Iphi ;

;
; /∗ splash shot for beginning ∗/
;
COUT ≪ "\n\n +−−+\n";
COUT ≪ " | |\n";
COUT ≪ " | MEEP: 2−D circular cylinder scatterers |\n";
COUT ≪ " | |\n";
COUT ≪ " +−−+\n\n\n";
input ();
;
ffbox ();
;
COUT ≪ "\n Number of points along far field box is " ≪ NumPts ≪ "\n";
COUT ≪ "\n\n −−\n\n";
COUT ≪ " MEEP is running\n\n";
;
runMEEP (argc , argv);
;
COUT ≪ "\n\n Number of points in time series (for harminv) is " ≪ NumTimeSeries ≪

"\n\n";
;
ffCalc();
;
COUT ≪ "\n\n −−−−−−−−−−−− Far Field Pattern −−−−−−−−−−−−−−−−−−−\n\n";
for (Iphi = 0; Iphi < 361; Iphi ++) COUT ≪ " FFP: " ≪ Iphi ≪ " " ≪ FF[Iphi] ≪ "\n";
;
return 0;

}

11

10. Input Function: input.cc.

This function is used to set up the geometry of the problem and set the related global variables. Input is
facilitated using the lcpp library [6]. The header file input.h (next section) is also needed to declare string
constants.

#include <iostream>

#include <stdlib.h>

#include "meepCyl.h"

#include "cpp−fcns.h"

#include "std−def.h"

#include "input.h"

void input (void)
{

;
; /∗ input parameters ∗/
;
COUT ≪ "\n\n −−−−−−−−−−−−−−− Problem Parameters −−−−−−−−−−−−−−−−− \n\n";
epsR = getinputd (s0);
PWflag = getinputi (sA);
CylRad = getinputd (s1);
COUT ≪ "\n\n −−−−−−−−−−−−− Geometrical Parameters −−−−−−−−−−−−−−− \n\n";
FFsize = getinputd (s2);
Pml = getinputd (s3);
FFe = getinputd (s4);
if (PWflag ≡ 1) {

PwFFboxDist = getinputd (s5);
PWsize = getinputd (s7);
PWle = getinputd (s6);

}
if (PWflag ≡ 0) SrcLoc = getinputd (sH);
;
; /∗ pixels per distance ∗/
;
COUT ≪ "\n\n −−−−−−−−−−−−− Miscellaneous Parameters −−−−−−−−−−−−− \n\n";
resolution = getinputd (s8);
NumTimeSteps = getinputi (s9);
delta = getinputd (s10);
courant = getinputd (s11);
;
; /∗ derived parameters ∗/
;
if (PWflag ≡ 1) {

CylCenterX = Pml + PWle + PwFFboxDist + (0.5 ∗ FFsize);
CylCenterY = Pml + FFe + (0.5 ∗ FFsize);

}
if (PWflag ≡ 0) {

CylCenterX = Pml + FFe + 0.5 ∗ (FFsize + SrcLoc);
CylCenterY = Pml + FFe + 0.5 ∗ FFsize ;
if ((2 ∗ CylRad + SrcLoc) > FFsize) {
COUT ≪ "FFbox too small\n";

12

exit (1);
}

}
}

11. Header file for input: input.h.

The header file for input.cc contains the string definitions for the input functions.

char s0 [] = " Enter eps_r (negative for metal)";
char sA[] = " Enter 1 for pw, 0 for monopole";
char s1 [] = " Enter the cylinder radius (wavelengths)";
char s2 [] = " Enter the size of the far field box (w/l)";
char s3 [] = " Enter the PML thickness (w/l)";
char s4 [] = " Enter the far field buffer size (FFe, w/l)";
char s5 [] = " Enter the distance, PW −> FFbox (w/l)";
char s6 [] = " Enter left side PW buffer dist. (PWle,w/l)";
char s7 [] = " Enter the PWsize (0−>1)";
char sH [] = " Enter distance cyl to monopole";
char s8 [] = " Enter the FD−TD resolution (cells per w/l)";
char s9 [] = " Enter the number of time steps";
char s10 [] = " Enter delta for far field box points(w/l)";
char s11 [] = " Enter the Courant number (0−1)";

13

12. Far Field Box: ffbox.cc.

This function is used to determine and store the points used in the equivalence principle. The points are
along the far-field box as shown in Fig. 1. From the input function, the size of the box FFsize and the
spacing between points delta are known.

The location of the four corners of the box are computed. The number of points is counted using four (one
for each side) for loops. The number of points is saved as NumPts, a global variable. Memory is allocated for
the ffBox structure. Then, the for loops are executed again to fill in ffBox with x, y locations and a factor
f that is used in the far field calculation.

#include "meepCyl.h"

#include <math.h>

#include <complex>

void ffbox (void)
{

int count ;
double xL, xH , yL, yH , x, y;

;
; /∗ find corners of the box and count number of points to use ∗/
;
xL = (CylCenterX − 0.5 ∗ FFsize);
xH = (CylCenterX + 0.5 ∗ FFsize);
yL = (CylCenterY − 0.5 ∗ FFsize);
yH = (CylCenterY + 0.5 ∗ FFsize);
;
count = 0;
;
for (x = xL; x < xH + delta/2.; x = x + delta) count ++;
for (y = yL; y < yH + delta/2.; y = y + delta) count ++;
for (x = xH ; x > xL − delta/2.; x = x − delta) count ++;
for (y = yH ; y > yL − delta/2.; y = y − delta) count ++;
;
; /∗ Set number of points and allocate memory for ffBox ∗/
;
NumPts = count ;
ffBox = new struct FFbox[NumPts];
;
; /∗ fill in FFbox->x,y,f ∗/
;
count = 0;
y = yL;
for (x = xL; x < xH + delta/2.; x = x + delta) {

(ffBox + count)~x = x;
(ffBox + count)~y = y;
(ffBox + count)~f = 1.0;
if ((x < xL + delta ∗ 0.7) ∨ (x > xH − delta ∗ 0.7)) (ffBox + count)~f = 0.5;
count ++;

}
x = xH ;
for (y = yL; y < yH + delta/2.; y = y + delta) {

14

(ffBox + count)~x = x;
(ffBox + count)~y = y;
(ffBox + count)~f = 1.0;
if ((y < yL + 0.7 ∗ delta) ∨ (y > yH − delta ∗ 0.7)) (ffBox + count)~f = 0.5;
count ++;

}
y = yH ;
for (x = xH ; x > xL − delta/2.; x = x − delta) {

(ffBox + count)~x = x;
(ffBox + count)~y = y;
(ffBox + count)~f = 1.0;
if ((x > xH − delta ∗ 0.7) ∨ (x < xL + delta ∗ 0.7)) (ffBox + count)~f = 0.5;
count ++;

}
x = xL;
for (y = yH ; y > yL − delta/2.; y = y − delta) {

(ffBox + count)~x = x;
(ffBox + count)~y = y;
(ffBox + count)~f = 1.0;
if ((y > yH − delta ∗ 0.7) ∨ (y < yL + delta ∗ 0.7)) (ffBox + count)~f = 0.5;
count ++;

}
}

15

13. runMEEP: run.cc.

This is the function that executes the MEEP code and also does the post-processing to obtain the
equivalent electric and magnetic currents used in the equivalence principle around the far field box. Upon
exit, the Jeq and Meq values for the ffBox structure have been computed and stored.

To compile the software including the MEEP code, one must #include meep.hpp, declare ‘‘using

namespace meep’’ and also initialize the solver by executing initializempi(argc,argv) (this appears
later in the runMEEP function).

The units for the solution space have been set so that one unit (or “block”) is one wavelength. In MEEP,
all constants such as c, ǫo, and µo are one. Thus, the impedance, or ratio of electric field to magnetic field
is also one.

The MEEP code requires that functions be used to return the material properties given a vector at any
(non-PML) location in the solution space. The first of these is eps, which defines the cylinder. Note that
the center of the cylinder is already known and can be used in eps. Also, metal is a special case of dielectric
constant in MEEP. For metal, one uses ǫr = −∞. A second function is also used in the plane wave case
because the incident field is also needed. The function air is used to simulate the incident field without the
cylinder.

First, the grid volume is declared and then two structures are defined, one for the cylinder problem, and
one for the incident field problem (if necessary). Two instances of the fields class are constructed, one for
each problem.

The incident field is created at a frequency of one since fλ = c. The width of the source is set at twice
the MEEP resolution. The width is the time for the source to ramp up to the final amplitude. This is done
to avoid any dispersion formed by a fast turn on of the source.

The simulation is run for 201 time units. One time unit is actually a number of time steps; the number
of time steps in one time unit is twice the declared resolution. After the 201 time units, the simulation
is stepped further; however, at each time step, the amplitude of the electric and magnetic fields along the
far-field box are stored for later processing. This is accomplished using get field. To avoid the small phase
difference between ~E and ~H (due to the half time-step difference), the fields are synchronized before they
are stored. The fields are then restored to their previous state before the next time step is computed.

Once the time-stepping has ended, the data collected along the far-field box is processed. Each set of
data is a time series at a single frequency. What is needed for the far field calculation is the amplitude and
phase of each time series. Previously, this was crudely estimated using the maximum and minimum values
along with the first upward zero crossing.

The function, do harminv is ideally suited to extract the amplitude and phase of each time series.
do harminv reads in the time series and finds the complex frequencies within a given band. In the time
series, the center frequency should be the inverse of twice the resolution and only one component should be
present. The complex amplitudes are determined and stored in the ffBox structure.

;
; /∗ We assume one block is one wavelength in this simulation ∗/
;
;

#include <meep.hpp>

using namespace meep;
#include "meepCyl.h"

16

#include <stdlib.h>

;
; /∗ function to define the dielectric/air regions one for cyl (eps) and one for

noCyl (air) ∗/
;

double eps (const vec&p)
{

double xc = p.x() − CylCenterX , yc = p.y() − CylCenterY ;

if (sqrt (xc ∗ xc + yc ∗ yc) < CylRad) return epsRel ;
else return 1.0;

}

;

double SigmaCyl (const vec&p)
{

double xc = p.x() − CylCenterX , yc = p.y() − CylCenterY ;

if (sqrt (xc ∗ xc + yc ∗ yc) < CylRad) return 0.;
else return 0.1;

}

;

double air (const vec&p)
{

return 1.0;
}

;

double SigmaAir (const vec&p)
{

return 0.1;
}

;
; void runMEEP (int argc , char ∗∗argv){ int count ;

double sx , sy ;
double rtmpx1 , rtmpy1 , rtmpy2 ; complex < double > freq ;
double width , x, y;
double fLo , fHi ;
int i;
int num , j; complex < double > fEz [NumPts][(int) resolution ∗ 2], fHp [NumPts][(int)

resolution ∗ 2]; complex < double > ezTmp [(int) resolution ∗ 2], hpTmp [(int) resolution ∗ 2];

initializempi (argc , argv); /∗ do this even for non-MPI Meep ∗/
;
; /∗ set relative epsilon value ∗/
;
if (epsR < 0) epsRel = −1. ∗ infinity ;
if (epsR > 0) epsRel = epsR ;
;
; /∗ set problem geometry size ∗/
;
if (PWflag ≡ 1) {

sx = 2. ∗ Pml + PWle + PwFFboxDist + FFe + FFsize ;
sy = FFsize + 2. ∗ (Pml + FFe);

17

}
if (PWflag ≡ 0) {

sx = 2. ∗ Pml + 2. ∗ FFe + FFsize ;
sy = 2. ∗ Pml + 2. ∗ FFe + FFsize ;

}
;
;

/∗ set up space and field array for problem with cylinder and without cylinder ∗/
;
grid volumev = vol2d (sx , sy , resolution);
structures(v, eps , pml (Pml),meep :: identity (), 0, courant);

/∗ s.set conductivity (Dz ,SigmaCyl); ∗/
fieldsf(&s); /∗ f.use real fields (); ∗/
;
;
structures0 (v, air , pml (Pml),meep :: identity (), 0, courant);

/∗ s0 .set conductivity (Dz ,SigmaAir); ∗/
fields f0 (&s0); /∗ f0 .use real fields (); ∗/
;
; /∗ print eps function for graphics ∗/
; /∗ f.output hdf5 (Dielectric , v.surroundings ()); ∗/
;
; /∗ set up the incident field ∗/
;
freq = 1.;
width = 2. ∗ resolution ;
continuous src timesrc(freq ,width);
;
; /∗ set up plane wave source ∗/
;
if (PWflag ≡ 1) {

rtmpx1 = Pml + PWle ; /∗ x location ∗/
rtmpy1 = sy − Pml − PWsize ∗ (2. ∗ FFe + FFsize); /∗ y bottom ∗/
rtmpy2 = Pml + PWsize ∗ (2. ∗ FFe + FFsize); /∗ y top ∗/
;
; /∗ traditional volume source ∗/
;
volumesrc volume (vec(rtmpx1 , rtmpy1), vec(rtmpx1 , rtmpy2));
f.add volume source (Ez , src , src volume);
f0 .add volume source (Ez , src , src volume);

}
if (PWflag ≡ 0) {

rtmpx1 = CylCenterX − CylRad − SrcLoc ;
rtmpy1 = sy/2.;
f.add point source (Ez , src , vec(rtmpx1 , rtmpy1));

}
;
; /∗ implement plane wave as set of point sources ;dy = (rtmpy2 − rtmpy1)/2000.;

for (y = rtmpy1 ; y ≤ rtmpy2 ; y += dy) { f.add point source (Ez , src , vec(rtmpx1 , y));
f0 .add point source (Ez , src , vec(rtmpx1 , y)); } ∗/

;
; /∗ Now, run the code and collect scattered data ∗/

18

;
while (f.time () < NumTimeSteps) {

f.step();
if (PWflag ≡ 1) f0 .step();

}
f.output hdf5 (Ez , v.surroundings ());
count = 0;
while (f.time () < NumTimeSteps + 1) {

f.step();
if (PWflag ≡ 1) f0 .step();
for (i = 0; i < NumPts ; i++) {

x = (ffBox + i)~x;
y = (ffBox + i)~y;
if (PWflag ≡ 1) fEz [i][count] = f.get field (Ez , vec(x, y)) − f0 .get field (Ez , vec(x, y));
if (PWflag ≡ 0) fEz [i][count] = f.get field (Ez , vec(x, y));
if ((i < NumPts/4) ∨ ((i ≥ 2 ∗ NumPts/4) ∧ (i < 3 ∗ NumPts/4))) {

if (PWflag ≡ 1) {
f.synchronize magnetic fields ();
f0 .synchronize magnetic fields ();
fHp [i][count] = f.get field (Hx , vec(x, y)) − f0 .get field (Hx , vec(x, y));
f.restore magnetic fields ();
f0 .restore magnetic fields ();

}
if (PWflag ≡ 0) {

f.synchronize magnetic fields ();
fHp [i][count] = f.get field (Hx , vec(x, y));
f.restore magnetic fields ();

}
}
else {

if (PWflag ≡ 1) {
f.synchronize magnetic fields ();
f0 .synchronize magnetic fields ();
fHp [i][count] = f.get field (Hy , vec(x, y)) − f0 .get field (Hy , vec(x, y));
f.restore magnetic fields ();
f0 .restore magnetic fields ();

}
if (PWflag ≡ 0) {

f.synchronize magnetic fields ();
fHp [i][count] = f.get field (Hy , vec(x, y));
f.restore magnetic fields ();

}
}

}
count ++;

}
;
; /∗ set the number of time steps variable ∗/
;
if (count 6= (int) resolution ∗ 2) {

master printf ("Number of points in time series incorrect\n");
exit (1);

19

}
NumTimeSeries = count ;
;
; /∗ do the post processing with harminv ∗/
;

int maxBands = 1; complex < double > ∗amps = new complex < double > [maxBands];
double ∗freq re = new double[maxBands];
double ∗freq im = new double[maxBands];

;
;
fLo = 0.75/(2. ∗ resolution);
fHi = 1.25/(2. ∗ resolution);
;
for (i = 0; i < NumPts ; i++) {

for (j = 0; j < NumTimeSeries ; j++) {
ezTmp [j] = fEz [i][j];
hpTmp [j] = fHp [i][j];

/∗ if (i ≡ 0) master printf ("fEz,fHp, %f %f\n", real (ezTmp [j]), real (hpTmp [j])); ∗/
}
;
; /∗ determine Jeq + check for stray frequencies ∗/
;
num = do harminv (ezTmp ,NumTimeSeries , 1, fLo , fHi ,maxBands , amps , freq re , freq im);
(ffBox + i)~Jeq = amps [0];
if (num 6= 1) master printf ("issue in harminv at NumPts = %d\n", i);
;
; /∗ determine Meq + check for stray frequencies ∗/
;
num = do harminv (hpTmp ,NumTimeSeries , 1, fLo , fHi ,maxBands , amps , freq re , freq im);
(ffBox + i)~Meq = amps [0];
if (num 6= 1) master printf ("issue in harminv at NumPts = %d\n", i);

}
}

20

14. Far Field Calculation: ffcalc.c (rnb:03/06/2013).

This function uses the equivalent currents from the MEEP code along with the locations and factor
values (all stored in struct ffBox) to compute the linear far field pattern (normalized). The basis for this
calculation is the equivalence principle. The equivalence principle states that the tangential fields along a
closed surface can be used to find the fields outside that closed surface provided there are no sources outside.

Typically, a second step is to enforce either a perfect electric conducting or perfect magnetic conducting
condition within the closed surface. This is done in diffraction where a metal screen with an aperture is
present. However, in the case studied here, one can not enforce such a condition. Therefore, both the
tangential electric and tangential magnetic fields are needed to find the far field pattern.

n̂

n̂

n̂

n̂

�
�
�
�

����

�
�
�
�

����

Ez

Ez

EzEz

Hy

Hy

Hx

Hx

����

Jz

�� Jz

−Jz

−Jz

−My

M x

My

−Mx

��������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��������������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

������

y

x

Figure 3. Geometry for Meq and Jeq around the far-field box.

Consider the electric field, ~E = Ez(x, y)êz. The equivalent magnetic current is given by

~M = ~E × n̂ (1)

where n̂ is the unit normal vector, as shown in Fig. 3. The vector electric potential can be computed using
the magnetic current. The result can be reduced to two dimensions by integrating over z′:

~F =
ǫ

4π

∫

v

~M(~r ′)
e−jk|~r−~r ′|

| ~r − ~r ′ |
dv′ −→ −j

ǫ

4

∫

x′,y′

~M(~ρ ′)H(2)
o (k | ~ρ − ~ρ ′ |)dℓ′ (2)

The far field relationship between ~F and ~E is given by:

(EF)θ → −jωηFφ

21

as r → ∞. Since we need Fφ, we substitute and take the dot product with êφ:

Fφ(~ρ) = −j
ǫ

4

∫

x′,y′

[Mx(~ρ ′)êx + My(~ρ ′)êy] · êφH(2)
o (k | ~ρ − ~ρ ′ |)ℓ′ (3)

Using the identities:
êx · êφ = − sin φ

êy · êφ = cos φ
(4)

the following rigorous expression is obtained:

Fφ(~r) = j
ǫ

4

∫

x′,y′

[Mx(~ρ ′) sin φ − My(~ρ ′) cos φ]H(2)
o (k | ~ρ − ~ρ ′ |)dℓ′ (5)

To obtain the far field pattern, the ρ dependence is examined. As ρ → ∞,

H(2)
o (| ~ρ − ~ρ ′ |) −→

√

2

πkρ
e−jkρejkρ′ cos(φ−φ′)ejπ/4 (6)

Finally, after some algebraic manipulations, our final result is obtained:

EM
z = −ejπ/4

√

k

8πρ
e−jkρ

∫

x′,y′

[Mx(~ρ ′) sin φ − My(~ρ ′) cos φ] ejkρ′ cos(φ−φ′)dℓ′ (7)

where the superscript M is used to denote that the contribution to the electric field is due to the magnetic
current.

A similar procedure can be used to obtain the contribution from the tangential magnetic field. The
equivalent electric current, J , is given by:

J = n̂ × ~H

where, in the far field,
~E = −jω ~A

The vector magnetic potential is found using

~A(~r) = −j
µ

4π

∫

v′

J(~r ′)
e−jk|~r−~r ′|

| ~r − ~r ′ |
dv′ −→ −j

µ

4

∫

x′,y′

J(~ρ ′)H(2)
o (k | ~ρ − ~ρ′ |)ds′ (8)

where the second expression is specialized to the two-dimensional case, as before. Using the same procedure,
the far field expression for the electric field due to an electric current is obtained:

EJ
z = −ηejπ/4

√

k

8πρ
e−jkρ

∫

x′,y′

Jz(~ρ
′)ejkρ′ cos(φ−φ′)dℓ′ (9)

where the superscript J implies that the electric field contribution is due to the equivalent electric current.
The total far-field contribution is given by:

EFF
z = EJ

z + EM
z (10)

22

The data that is collected from MEEP includes the equivalent electric current at every point on the far-
field box. the equivalent magnetic current is stored as either Mx or My depending on which side of the box
the point resides. Note that each corner of the box is used twice: once for the vertical side and once for the
horizontal side. In addition, the “factor” element in structure ffBox is either 1 or -1, depending again on
the side of the box. However, because the integral goes around the box in a direction, all factors are actually
1. Also, each corner only represents half a Riemann box, so the factor for the corner contributions is 0.5.

To compute the far field from this data, the integrations are approximated using a simple Riemann sum.
This can be modified to more elaborate numerical integration methods by adjusting the factor element of
ffBox. Once the integrations are completed, the values are saved and normalized. Finally, the far field
pattern is printed.

#include <iostream>

#include <math.h>

#include <complex>

#define pi M_PI

;
#include "meepCyl.h"

;
; void ffCalc(void){ ; std ::complex < double > ctmp , sum , ij (0, 1);

double rho , phiP , angle , phi , ffMax ;
int Iphi , i;
double factor , eta , x, y;

;
;
ffMax = 0.;
eta = 1.;
;
for (Iphi = 0; Iphi < 361; Iphi ++) {

phi = (double) Iphi ∗ pi /180.;
;
sum = 0.;
;
for (i = 0; i < NumPts ; i++) {

x = (ffBox + i)~x;
y = (ffBox + i)~y;
factor = (ffBox + i)~f ;
rho = sqrt (x ∗ x + y ∗ y);
phiP = atan2 (y, x);
angle = 2. ∗ pi ∗ rho ∗ cos (phi − phiP);
ctmp = exp(ij ∗ angle) ∗ (ffBox + i)~Jeq ∗ factor ∗ eta ;
;
sum += ctmp ;
;
ctmp = exp(ij ∗ angle) ∗ (ffBox + i)~Meq ∗ factor ;
if ((i < NumPts/4) ∨ ((i ≥ 2 ∗ NumPts/4) ∧ (i < 3 ∗ NumPts/4))) ctmp ∗= sin (phi);
else ctmp ∗= cos (phi) ∗ (−1.);
;
sum += ctmp ;

}
FF[Iphi] = abs (sum);

23

if (FF[Iphi] > ffMax) ffMax = FF[Iphi];
}
;
; /∗ Normalize the pattern ∗/
;
for (Iphi = 0; Iphi < 361; Iphi ++) FF[Iphi] = FF[Iphi]/ffMax ;
}

24

15. Scripts.

There are a number of script files used in the simulations. These are listed here. The script files include
bash shell scripts, awk code, and a number of exact pattern data files.

doPW.sh

This script executes the code and performs a simple calculation to determine the RMSE for the pattern
compared to the analytic (or GMT) solution for the plane wave case.

#

script to run meep on cylinder

#

there are 10 possible parameters:

#

cylinder radius: CylRad

FFsize : FFsize

Pml : Pml

FFe : FFe

PwFFboxDist : PwFFboxDist

PWle : PWle

PWsize : PWsize

resolution : RES

NumTimeSteps : NumSteps

delta : delta

#

To use this script, you need to:

A. comment out the two variables that are being swept in the

code that sets the default values

#

B. set up the default value to be $2 and/or $3 ($1 is output file name)

epsR=-5

Pw1Mono0=1

CylRad=0.5

FFsize=3

Pml=0.25

FFe=0.75

PwFFboxDist=0.5

PWle=0.25

PWsize=1.0

RES=40

NumSteps=200

delta=0.025

courant=0.5

#

name of analytic ff data file

#

Exact=FFgmt.jrd

Exact=rp5e2p56gmt.jrd

25

#

here, set the actual input values

#

default values have RMSE=32.2%

#

Pml=0.175 min RMSE at 28.8% with all others at default

FFsize no clear min RMSE (oscillations)

#

cat inFile.jrd |

sed s/epsR/$epsR/g |

sed s/Pw1Mono0/$Pw1Mono0/g |

sed s/CylRad/$CylRad/g |

sed s/FFsize/$FFsize/g |

sed s/Pml/$Pml/g |

sed s/FFe/$FFe/g |

sed s/PwFFboxDist/$PwFFboxDist/g |

sed s/PWle/$PWle/g |

sed s/PWsize/$PWsize/g |

sed s/RES/$RES/g |

sed s/NumSteps/$NumSteps/g |

sed s/delta/$delta/g |

sed s/courant/$courant/g >$1.in

#

#

#

meepCyl<$1.in>$1.out

grep FFP $1.out |awk -F ":" ’{print $2}’ >$1.dat

paste $1.dat $Exact >$1.sum

awk -f pat.awk $1.sum

inFile.jrd

This file is the template input file used to set up all input parameters using doPW.sh.

epsR

Pw1Mono0

CylRad

FFsize

Pml

FFe

PwFFboxDist

PWsize

PWle

RES

NumSteps

delta

courant

26

pat.awk

This file is the awk script that compares the far field pattern from the GMT solution with the MEEP far
field pattern computed. The RMSE is computed using

√

√

√

√

1

N

∑

φ

(

EGMT (φ) − EMEEP (φ)

EGMT (φ)

)2

(11)

where N is the number of points in the summation. The value of φ is from 0 to 360. Since the endpoints
are the same, the script skips the very first point (φ = 0) and includes φ = 360◦.

It is well known that (11) is easily biased if the exact pattern ($4 in the script) is very small. To avoid
biasing the RMSE error calculation, only points with an exact pattern larger than 30 dB below the peak are
used in the sum of (11).

$1, $3 are phi, $2 is E_{MEEP}, $4 is E_{GMT}

BEGIN {

total=0;

count=0;

}

NR!=1 {

if($4>0.032)

{

temp=($2-$4)/$4;

temp=temp*temp;

total=total+temp;

count++;

}

}

END {

total=total/count;

total=sqrt(total);

printf "%f", total;

}

doMono.sh

This script executes the code and performs a simple calculation to determine the RMSE for the pattern
compared to the analytic (or GMT) solution for the monopole case.

#

script to run meep on cylinder

#

there are 10 possible parameters:

#

cylinder radius: CylRad

FFsize : FFsize

Pml : Pml

FFe : FFe

27

PwFFboxDist : PwFFboxDist

PWle : PWle

PWsize : PWsize

resolution : RES

NumTimeSteps : NumSteps

delta : delta

#

To use this script, you need to:

A. comment out the two variables that are being swept in the

code that sets the default values

#

B. set up the default value to be $2 and/or $3 ($1 is output file name)

epsR=-5

Pw1Mono0=0

CylRad=0.5

FFsize=3

Pml=0.25

FFe=0.75

SrcLoc=0.5

RES=40

NumSteps=200

delta=0.025

courant=0.5

#

name of analytic FF file name

#

Exact=MonoGMT.jrd

Exact=MonoP5r1.jrd

#

here, set the actual input values

#

default values have RMSE = 1.11975

#

#

cat inMono.jrd |

sed s/epsR/$epsR/g |

sed s/Pw1Mono0/$Pw1Mono0/g |

sed s/CylRad/$CylRad/g |

sed s/FFsize/$FFsize/g |

sed s/Pml/$Pml/g |

sed s/FFe/$FFe/g |

sed s/SrcLoc/$SrcLoc/g |

sed s/RES/$RES/g |

sed s/NumSteps/$NumSteps/g |

sed s/delta/$delta/g |

sed s/courant/$courant/g >$1.in

#

#

#

meepCyl<$1.in>$1.out

28

grep FFP $1.out |awk -F ":" ’{print $2}’ >$1.dat

paste $1.dat $Exact >$1.sum

awk -f pat.awk $1.sum

inMono.jrd

This file is the template input file used to set up all input parameters using doMono.sh.

epsR

Pw1Mono0

CylRad

FFsize

Pml

FFe

SrcLoc

RES

NumSteps

delta

courant

29

16. NF2FF.

The near-field to far-field (nf2ff.cc) code computes the analytic solution for a plane wave scattered by a
perfectly conducting cylinder. The electric and magnetic fields around a far-field box similar to the MEEP
code are computed. Then, the near field to far field transformation is applied to the analytically computed
fields.

The analytic expression for the electric field is:

Es
z = Eo

∞
∑

n=−∞

−jn Jn(ka)

H
(2)
n (ka)

H(2)
n (kρ)ejnφ (12)

and for the magnetic field:

Hs
φ =

Eo

jη

∞
∑

n=−∞

(j)−n Jn(ka)

H
(2)
n (ka)

H(2)
n (kρ)

[

n

kρ
H(2)

n (kρ) − H
(2)
n+1(kρ)

]

ejnφ (13)

where a is the radius of the cylinder, and

Hx = −Hφ sin φ Hy = Hφ cos φ (14)

The nf2ff code has a makefile, listed here.

#

makefile for vector spherical wave functions

#

LCL=$(HOME)/bin/local

INCLS=$(LCL)/include

LIB=$(LCL)/lib

CC=g++ -Wall

nf2ff: nf2ff.cc

$(CC) -o nf2ff nf2ff.cc -I$(INCLS) -L$(LIB) \

-lspf -lgsl -lgslcblas -lm

clean:

rm -f *~ nf2ff nf2ff.ffp

30

nf2ff.cc

#include <stdlib.h>

#include <iostream>

#include <complex>

#include "std-def.h"

#include "spec_fns.h"

#define DELTA 0.001

#define NUMPTS 100000

#define TOL 1.e-9

#define FFSIZE 3.

// flag==0 -> Hx, flag==1 -> Hy

/*

Function to compute the Magnetic field near the cylinder at (x,y)

*/

COMPLEX H(double x, double y, int flag)

{

double rho,phi,a,k;

double pi=M_PI,ka,kRho,eta;

int n;

COMPLEX ctmp1,ctmp2,ctmp3,sum;

COMPLEX ij(0,1);

a=.5;

k=2.*pi;

eta=sqrt(4.*pi*1.e-7/8.854e-12);

ka=k*a;

rho=sqrt(x*x+y*y);

phi=atan2(y,x);

kRho=k*rho;

n=0;

ctmp1=pow(ij,-n)/(ij*eta);

ctmp2=j_n(n,ka)/h_n2(n,ka);

ctmp3=(double)n/(kRho) * h_n2(n,kRho) - h_n2(n+1,kRho);

ctmp2*=ctmp3;

ctmp1*=ctmp2;

ctmp1*=exp(ij*(double)n*phi);

if(flag==0)

ctmp1*=(-1.*sin(phi));

if(flag==1)

ctmp1*=cos(phi);

sum=ctmp1;

for(n=1;n<30;n++)

{

31

// +n term

ctmp1=pow(ij,-n)/(ij*eta);

ctmp2=j_n(n,ka)/h_n2(n,ka);

ctmp3=(double)n/(kRho) * h_n2(n,kRho) - h_n2(n+1,kRho);

ctmp2*=ctmp3;

ctmp1*=ctmp2;

ctmp1*=exp(ij*(double)n*phi);

if(flag==0)

ctmp1*=(-1.*sin(phi));

if(flag==1)

ctmp1*=cos(phi);

sum+=ctmp1;

// -n term

ctmp1=pow(ij,n)/(ij*eta);

// ctmp1*=exp(-ij*(double)n*pi);

ctmp2=j_n(-n,ka)/h_n2(-n,ka);

ctmp3=(double)(-n)/(kRho) * h_n2(-n,kRho) - h_n2(-n+1,kRho);

// in above, should it be -n-1 or -n+1 ?

ctmp2*=ctmp3;

ctmp1*=ctmp2;

ctmp1*=exp(ij*(double)(-n)*phi);

if(flag==0)

ctmp1*=(-1.*sin(phi));

if(flag==1)

ctmp1*=cos(phi);

sum+=ctmp1;

if((n>15) && (abs(ctmp1)/abs(sum)<TOL))

n=29;

}

return sum;

}

/*

Function to compute Electric Field near cylinder at (x,y)

should it be + or minus (should be minus)

*/

COMPLEX E(double x, double y)

{

double rho,phi,a,k;

double pi=M_PI,ka,kRho;

int n;

COMPLEX ctmp1,ctmp2,ctmp3,sum;

32

COMPLEX ij(0,1);

a=0.5;

k=2.*pi;

ka=k*a;

rho=sqrt(x*x+y*y);

phi=atan2(y,x);

kRho=k*rho;

n=0;

ctmp1=pow(ij,-n)*j_n(n,ka)/h_n2(n,ka);

ctmp2=h_n2(n,kRho)*exp(ij*(double)n*phi);

ctmp1*=ctmp2;

sum=ctmp1;

for(n=1;n<30;n++)

{

// +n term

ctmp1=pow(ij,-n)*j_n(n,ka)/h_n2(n,ka);

ctmp2=h_n2(n,kRho)*exp(ij*(double)n*phi);

ctmp1*=ctmp2;

sum+=ctmp1;

// -n term

ctmp1=pow(ij,n)*j_n(-n,ka)/h_n2(-n,ka);

ctmp2=h_n2(-n,kRho)*exp(-ij*(double)n*phi);

ctmp1*=ctmp2;

sum+=ctmp1;

if((n>15) && (abs(ctmp1)/abs(sum)<TOL))

n=29;

}

return sum;

}

/*

Main entry point for code, computes 4 sides and integrates

equivalent currents to the far field

*/

int main()

{

int i,flag,count;

double xx,yy;

double x[NUMPTS],y[NUMPTS],factor[NUMPTS],Jmag[NUMPTS],Jphs[NUMPTS];

COMPLEX Mx[NUMPTS], My[NUMPTS];

COMPLEX sum;

33

int iPhi,NumRec;

double phi,eta=sqrt(4.*M_PI*1.e-7/8.854e-12);

// to be safe, first zero all arrays

for(i=0;i<NUMPTS;i++)

{

x[i]=0.;

y[i]=0.;

factor[i]=0.;

Jmag[i]=0.;

Jphs[i]=0.;

Mx[i]=0.;

My[i]=0.;

}

count=0;

/* Side 1 */

flag=0;

yy=-FFSIZE;

for(xx=-FFSIZE; xx<=FFSIZE+DELTA/2.; xx=xx+DELTA)

{

// flag==0 -> Hxx, flag==1 -> Hyy

sum=H(xx,yy,flag);

x[count]=xx;

y[count]=yy;

factor[count]=1.;

// Trapezoidal rule

if(xx< -FFSIZE+DELTA/2.)

{

factor[count]*=0.5;

// COUT<<xx<<" "<<yy<<" "<<"factor "<<factor[count]<<" ";

}

if(xx>FFSIZE-DELTA/2.)

{

factor[count]*=0.5;

// COUT<<factor[count]<<" "<<xx<<" "<<yy<<"\n";

}

Jmag[count]=abs(sum);

Jphs[count]=atan2(imag(sum),real(sum));

sum=E(xx,yy);

Mx[count]=sum;

count++;

if(count>NUMPTS-1) exit(1);

}

/* Side 2 */

flag=1;

xx=FFSIZE;

for(yy=-FFSIZE; yy<=FFSIZE+DELTA/2.; yy=yy+DELTA)

34

{

// flag==0 -> Hxx, flag==1 -> Hyy

sum=H(xx,yy,flag);

x[count]=xx;

y[count]=yy;

factor[count]=1.;

// Trapezoidal rule

if(yy< -FFSIZE+DELTA/2.)

{

factor[count]*=0.5;

// COUT<<xx<<" "<<yy<<" "<<"factor "<<factor[count]<<" ";

}

if(yy>FFSIZE-DELTA/2.)

{

factor[count]*=0.5;

// COUT<<factor[count]<<" "<<xx<<" "<<yy<<"\n";

}

Jmag[count]=abs(sum);

Jphs[count]=atan2(imag(sum),real(sum));

sum=E(xx,yy);

My[count]=sum;

count++;

if(count>NUMPTS-1) exit(1);

}

/* Side 3 */

flag=0;

yy=FFSIZE;

for(xx=FFSIZE; xx>=-FFSIZE-DELTA/2.; xx=xx-DELTA)

{

// flag==0 -> Hxx, flag==1 -> Hyy

sum=H(xx,yy,flag);

x[count]=xx;

y[count]=yy;

factor[count]= -1.;

// Trapezoidal rule

if(xx< -FFSIZE+DELTA/2.)

{

factor[count]*=0.5;

// COUT<<xx<<" "<<yy<<" "<<"factor "<<factor[count]<<" ";

}

if(xx>FFSIZE-DELTA/2.)

{

factor[count]*=0.5;

// COUT<<factor[count]<<" "<<xx<<" "<<yy<<"\n";

}

Jmag[count]=abs(sum);

Jphs[count]=atan2(imag(sum),real(sum));

35

sum=E(xx,yy);

Mx[count]=sum;

count++;

if(count>NUMPTS-1) exit(1);

}

/* Side 4 */

flag=1;

xx=-FFSIZE;

for(yy=FFSIZE; yy>=-FFSIZE-DELTA/2.; yy=yy-DELTA)

{

// flag==0 -> Hxx, flag==1 -> Hyy

sum=H(xx,yy,flag);

x[count]=xx;

y[count]=yy;

factor[count]= -1.;

// Trapezoidal rule

if(yy< -FFSIZE+DELTA/2.)

{

factor[count]*=0.5;

// COUT<<xx<<" "<<yy<<" "<<"factor "<<factor[count]<<" ";

}

if(yy>FFSIZE-DELTA/2.)

{

factor[count]*=0.5;

// COUT<<factor[count]<<" "<<xx<<" "<<yy<<"\n";

}

Jmag[count]=abs(sum);

Jphs[count]=atan2(imag(sum),real(sum));

sum=E(xx,yy);

My[count]=sum;

count++;

if(count>NUMPTS-1) exit(1);

}

NumRec=count;

double k,rho,phiP,angle,pi=M_PI,patMax=0.,pat[361];

COMPLEX ij(0,1),term,trm2,sum1,sum2;

k=2.*pi;

for(iPhi=0;iPhi<361;iPhi++)

{

phi=(double)iPhi*pi/180.;

36

sum1=0.;

sum2=0.;

for(i=0;i<NumRec;i++)

{

// contribution from Jeq

rho=sqrt(x[i]*x[i]+y[i]*y[i]);

phiP=atan2(y[i],x[i]);

angle=k*rho*cos(phi-phiP);

term=Jmag[i]*exp(ij*Jphs[i])*exp(ij*angle)*factor[i];

term*=eta; // to fix uneven contributions

// contribution from Meq

trm2=(Mx[i]*sin(phi)-My[i]*cos(phi));

trm2*=exp(ij*angle)*factor[i];

if(iPhi==228)

{

// COUT<<" "<<abs(term)<<" "<<abs(trm2)<<" "<<abs(sum1)<<" "<<abs(sum2)<<"

"<<abs(sum1+sum2)<<"\n";

}

sum1+=term;

sum2+=trm2;

}

sum=sum1+sum2;

// COUT<<iPhi<<" "<<abs(sum1)<<" "<<abs(sum2)<<"\n";

if(abs(sum)>patMax) patMax=abs(sum);

pat[iPhi]=abs(sum);

// COUT<<iPhi<<" "<<pat[iPhi]<<" "<<phi<<"\n";

}

for(iPhi=0;iPhi<361;iPhi++)

COUT<<" "<<iPhi<<" "<<pat[iPhi]/patMax<<"\n";

// COUT<<"\n\n"<<patMax<<"\n";

return 0;

}

37

17. Simulation Results.

The simulation results have been disappointing. In this section we shall first investigate the near field to
far field transformation described in the Far Field Calculation section of this document. This is followed by
a look at the PEC cylinder case and finally, the dielectric cylinder case. Monopole line source incident field
results may also be described at the end.

All simulations are for a cylinder of radius a = 0.5λ. Far field exact patterns are computed using GMT,
see [7] and [8].

The near field to far field calculation appears to be working; however, there are some unusual effects
apparent in the results. Consider using the exact expressions for the near fields to compute the far fields
using the nf2ff program.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

|E
| (

no
rm

al
iz

ed
}

angle

NF2FF Results

Exact
FFsize=3
FFsize=6

Figure 4. Far Field Pattern results from nf2ff at two different FFsize values.

The results for a perfectly conducting cylinder using the analytic near field expressions are shown in Fig.
4. There are some interesting features of Fig. 4. First, as the size of the far field box increases, the pattern
appears to oscillate faster about the exact value. Second (and this may be fixed in the future), there are two
data points that fall far from the exact value; these two points occur at roughly 38◦ and 228◦.

The results, however, are somewhat encouraging. It does appear that the pattern is converging to the
exact case. It has also been determined that the pattern is not sensitive to the number of points used on the
far field box to do the integration.

38

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

R
M

S
E

Far Field Box Size (wavelengths)

PEC Cylinder: Pattern RMSE

Figure 5. RMSE vs. FFsize.

The dependence of the MEEP results on the
size of the far field box are illustrated by the data
in Fig. 5. One does note the trend toward a
smaller RMSE as the far field box size increases,
along with some oscillations in the RMSE. For
the most part, the results do not converge upon
the pattern, as was expected.

The patterns for the case of FFsize at 2.5 and 5.7 λ are shown in Fig. 6. It can be seen that the oscillations
present in the nf2ff data are also present here; however, the lack of convergence to the exact pattern is also
apparent.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

|E
| (

no
rm

al
iz

ed
}

angle

PEC Cylinder: FF Comparison

FFsize=2.5
FFsize=5.7

Exact

Figure 6. Pattern results for FFsize at 2.5 and 5.7 λ.

A large number of simulations were performed in addition to the very small sample provided above. One
important item of note is that the MEEP code should be run using complex fields; the results were very
unreliable if only real fields were used.

39

Once the time step reaches the point where data is collected, the fields are synchronized and restored after
each step. Because the electric field and magnetic field are combined in the equivalence principle, the phases
of the fields need to be aligned before data is collected.

It was suggested in [2] that using a small conductivity in the free space region would dampen the spurious
ringing of the perfectly conducting scatter case. This was attempted, but no appreciable improvement was
observed. Since the method to specify σ was discovered, the PEC cylinder results were tested using a large
σ instead of ǫr = −∞. No changes were observed.

The simulations included single sweeps of many parameters, including the spacing between points on the
far field box (Delta), the far field buffer size (FFe), the far field box size (FFsize, as discussed earlier), the
thickness of the PML layer, the distance between the plane wave and the left edge (PWle), the plane wave
extent (PWsize), the MEEP resolution, and the distance between the plane wave and the far field box.

Most of the single parameter simulations resulted in flat RMSE results. The PML thickness needs to be
over 0.2λ. The plane wave size did show some small variations, along with changes in the distance between
the far field box and the plane wave. These differences were deemed minor in comparison to the average
RMSE values seen.

The number of iterations in the MEEP simulation was also tested. It was found that allowing the simulation
to continue longer does not alter the RMSE results. Steady state conditions are achieved quite quickly.
Changing the MEEP resolution also showed very insignificant changes in the results.

The cause of poor simulation results is not known; it is believed that the plane wave source is the cause
of much of the error. Careful inspection of the fields in the vicinity of the cylinder indicate that there is a
significant reflection of the plane wave off the y = 0 and y = ymax walls. This is observed by the variation
in the plane wave as y changes for constant x.

A number of ideas were implemented to create a more uniform plane wave; most without success. The
most elaborate and promising idea was to allow the far field box buffer (FFe) to grow very large and keep
the plane wave size small. This was expected to delay the reflections off the upper and lower boundaries. A
two-dimensional sweep of FFe (set the same as the distance between the plane wave and the left edge) and
PWsize was performed. The results were flat, i.e., no difference in RMSE was observed for any case.

40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

|E
| (

no
rm

al
iz

ed
}

angle

Dielectric Cylinder: Far Field Pattern

MEEP
Exact

Figure 7. Pattern results for dielectric cylinder.

Fig. 7 shows the pattern results for a typical dielectric cylinder case (ǫr = 2.56). One can readily see the
oscillations in the MEEP pattern as compared to the exact pattern. In addition, the dielectric cylinder has
side lobes that are quite small compared to the perfectly conducting case. This results in much larger RMSE
values for all simulations.

The simulations performed for the dielectric cylinder are similar to the perfectly conducting case; a sweep
of each individual parameter in the geometry was accomplished. The results were similar to the PEC case.
The two-dimensional sweep to try and clean up the plane wave was not performed.

41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

|E
| (

no
rm

al
iz

ed
}

angle

Monopole Line Source: Far-Field Results

MEEP
Exact

Figure 8. Pattern results for PEC cylinder scattering from a Monopole line source.

A monopole line source at x = −1λ was investigated for the perfectly conducting and dielectric cylinder
cases as well. In the case of a monopole, only the far field box size and far field box buffer size could
be modified. The two-dimensional simulations performed showed poor RMSE that was not affected by
geometrical changes.

Fig. 8 shows a typical far field MEEP pattern compared to the GMT pattern for the same geometry. A
PEC cylinder is present in the case shown. One again sees the now-familiar ringing in the pattern as well as
a sizable error between the exact and MEEP patterns.

The monopole results indicate that there is something besides the plane wave purity that is affecting the
results. To investigate what may be causing additional error, a sweep of the PML thickness from 0.5 to 5 λ
was simulated. The results were flat.

42

18. Future Work.

In the end, the results of the scattering by two-dimensional cylinder structures computed using the MEEP
software was disappointing. There are a few places where the data provided here could be incorrect. The
most likely source of error is the nf2ff calculations.

There are a few other items that could be tested to see if improvements are possible, besides the near
field to far field transformation. One obvious change is to switch the numerical integration from a simple
Riemann sum to a more elaborate numerical integration routine; however, this was briefly attempted with
very little change in the results.

One more possible change to the present technique would be to alter the far field box from a square to a
circle. This is certainly possible; use of a circular boundary in the equivalence principle also appears to be
more “natural” for the calculations.

43

19. References.

[1] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A
flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics

Communications, vol. 181, pp. 687–702, January 2010.

[2] M. N. O. Sadiku, Numerical Techniques in Electromagnetics. New York, NY: CRC Press, second ed.,
2000.

[3] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston, Mas-
sachusetts: Artech House, 1995.

[4] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. New York, NY: John Wiley Sons,
second ed., 1998.

[5] J. E. Richie, “TLINE: Lossless transmission line simulation via the finite difference – time domain
technique,” Tech. Rep. 31, Marquette University, Electromagnetic Simulations Laboratory, Milwaukee,
WI, Feb. 2005.

[6] J. E. Richie, “LCPP: A library for input and output operations,” Tech. Rep. 15, Marquette University,
Electromagnetic Simulations Laboratory, Milwaukee, WI, Mar. 2004.

[7] J. E. Richie, “GMT2PEC,” Tech. Rep. 34, Marquette University, Electromagnetic Simulations Labora-
tory, Milwaukee, WI, Feb. 2007.

[8] J. E. Richie, “GMT2DIEL: The generalized multipole technique applied to two-dimensional dielectric
scatterers,” Tech. Rep. 41, Marquette University, Electromagnetics Simulations Laboratory, Milwaukee,
WI, Aug. 2009.

44

20. Index.

abs : 14.
add point source : 13.
add volume source : 13.
air : 13.
amps : 13.
angle : 14.
argc : 9, 13.
argv : 9, 13.
atan2 : 14.
complex : 8, 9, 13, 14.
continuous src time : 13.
cos : 14.
count : 12, 13.
courant : 8, 9, 10, 13.
COUT: 9, 10.
ctmp : 14.
CylCenterX : 8, 9, 10, 12, 13.
CylCenterY : 8, 9, 10, 12, 13.
CylRad : 8, 9, 10, 13.
delta : 8, 9, 10, 12.
Dielectric : 13.
do harminv : 13.
dy : 13.
Dz : 13.
eps : 13.
epsR : 8, 9, 10, 13.
epsRel : 8, 9, 13.
eta : 14.
exit : 10, 13.
exp : 14.
Ez : 13.
ezTmp : 13.
f : 8, 9.
factor : 14.
fEz : 13.
FF: 8, 9, 14.
ffbox : 9, 12.
ffBox : 8, 9, 12, 13, 14.
FFbox: 8, 9, 12.
ffCalc : 9, 14.
FFe : 8, 9, 10, 13.
ffMax : 14.
FFsize : 8, 9, 10, 12, 13.
fHi : 13.
fHp : 13.
fields : 13.
fLo : 13.
freq : 13.

freq im : 13.
freq re : 13.
f0 : 13.
get field : 13.
getinputd : 10.
getinputi : 10.
grid volume : 13.
hpTmp : 13.
Hx : 13.
Hy : 13.
i: 13, 14.
identity : 13.
ij : 14.
infinity : 13.
initialize : 13.
input : 9, 10.
Iphi : 9, 14.
j: 13.
Jeq : 8, 9, 13, 14.
M_PI: 14.
main : 9.
master printf : 13.
maxBands : 13.
meep: 13.
Meq : 8, 9, 13, 14.
mpi : 13.
num : 13.
NumPts : 8, 9, 12, 13, 14.
NumTimeSeries : 8, 9, 13.
NumTimeSteps : 8, 9, 10, 13.
output hdf5 : 13.
p: 13.
phi : 14.
phiP : 14.
pi : 14.
pml : 13.
Pml : 8, 9, 10, 13.
PwFFboxDist : 8, 9, 10, 13.
PWflag : 8, 9, 10, 13.
PWle : 8, 9, 10, 13.
PWsize : 8, 9, 10, 13.
real : 13.
resolution : 8, 9, 10, 13.
restore magnetic fields : 13.
rho : 14.
rtmpx1 : 13.
rtmpy1 : 13.
rtmpy2 : 13.

45

runMEEP : 9, 13.
sA: 10, 11.
set conductivity : 13.
sH : 10, 11.
SigmaAir : 13.
SigmaCyl : 13.
sin : 14.
sqrt : 13, 14.
src : 13.
src volume : 13.
SrcLoc : 8, 9, 10, 13.
std : 8, 9, 14.
step : 13.
structure : 13.
sum : 14.
surroundings : 13.
sx : 13.
sy : 13.
synchronize magnetic fields : 13.
s0 : 10, 11, 13.
s1 : 10, 11.
s10 : 10, 11.
s11 : 10, 11.
s2 : 10, 11.
s3 : 10, 11.
s4 : 10, 11.
s5 : 10, 11.
s6 : 10, 11.
s7 : 10, 11.
s8 : 10, 11.
s9 : 10, 11.
time : 13.
use real fields : 13.
vec : 13.
volume : 13.
vol2d : 13.
width : 13.
x: 8, 9, 12, 13, 14.
xc : 13.
xH : 12.
xL: 12.
y: 8, 9, 12, 13, 14.
yc : 13.
yH : 12.
yL: 12.

MEEPCYL

Section Page
Introduction . 1 2

Plane Wave Geometry . 2 3
Monopole Geometry . 3 4

Software . 4 5
Makefile . 5 6

Makefile – src . 6 7
Source Code . 7 8

Header File: meepCyl.h . 8 8
Main Entry: meepCyl.cc . 9 9

Input Function: input.cc . 10 11
Header file for input: input.h . 11 12

Far Field Box: ffbox.cc . 12 13
runMEEP: run.cc . 13 15
Far Field Calculation: ffcalc.c (rnb:03/06/2013) . 14 20

Scripts . 15 24
NF2FF . 16 29

Simulation Results . 17 37
Future Work . 18 42
References . 19 43
Index . 20 44

