Introduction to Microcontrollers III

Timing Functions
Delay5u.a11, Delay1m.a11
μP Laboratory #3

μP Laboratory #2 Hints

Data Entry:
- Use the pushbutton routine from count.a11 or count_br.a11 (WAIT0 and WAIT1 loops)
- Consider using Indexed addressing for entering data loops
- Store numbers to $D000-$D007
- Display numbers to output PortB ($1004)
μP Laboratory #2 Hints

Data Sum:
• Assume number located at $D000-$D007
• Consider using Indexed addressing for accessing each memory location
• Use AccA or AccB for temporary storage of sum

μP Laboratory #2 Hints

Data Sum:
• Assume number located at $D000-$D007
• Need two loops for sorting
• Consider using Indexed addressing for your loops
Sort Routine

Initialize counters
Compare contents of location i with i+1
If contents of i is less than contents of i+1, swap; otherwise increment counter
If inner loop is done increment outer loop counter
If outer loop is done, end; otherwise reset inner loop counter and begin again

Swap Routine

AccA

AccB

IndexX

Counter i = $D000

© J. Chris Perez 2001
Swap Routine

ldaa 0,x

<table>
<thead>
<tr>
<th>AccA</th>
<th>$03</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccB</td>
<td>$03</td>
</tr>
<tr>
<td></td>
<td>$08</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Counter i = $D000

© J. Chris Perez 2001
Swap Routine

Compare AccB to AccA

<table>
<thead>
<tr>
<th>AccA</th>
<th>$03</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccB</td>
<td>$08</td>
</tr>
</tbody>
</table>

Counter i = $D000

| IndexX | $D000 |

Swap Routine

```
staa 1,x
```

<table>
<thead>
<tr>
<th>AccA</th>
<th>$03</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccB</td>
<td>$08</td>
</tr>
</tbody>
</table>

Counter i = $D000

| IndexX | $D000 |

© J. Chris Perez 2001
Swap Routine

stab 0,x

AccA

$03

AccB

$08

IndexX

$D000

Counter i = $D000

Then, increment IndexX...

What about timing functions?

- Sometimes you want to put a delay in your program. The HC11 has advanced features that use a real-time clock. Refer to chapter 10 of the HC11 Reference Manual for information on usage.
- An alternative is the use of delay subroutines: delay5u.a11 and delay1m.a11
Timer
Application 1: delay5u.a11

Delay = X * 5 µs
Load X with the number of times you want to delay for 5 µs.

* DELAY5U.A11
* AUTHORS JACOBSON/SEVCIK
* DATE 2/26/90
* COMMENTS VERSION 1.0

* DESCRIPTION
* THIS ROUTINE GENERATES INTERNAL DELAYS IN MULTIPLES OF FIVE (5) MICRO-SECONDS. THE
* USER ENTERS A MULTIPLIER (16-BIT) INTO THE X INDEX REGISTER WHICH DETERMINES THE NUMBER
* OF FIVE MICRO-SECOND INTERVALS

* PARAMETERS
* - X REGISTER CONTAINS MULTIPLIER
* - INTERRUPTS ARE NOT AFFECTED
* - SHORTEST DELAY IS 10 us (X < 3)
* - RESOLUTION IS 5 us
* - MAXIMUM DELAY IS 327680 us (X = 64K)

DELAY5U: DEX ;CORRECT FOR JSR/RTS
DEX ;OVERHEAD
NOP
NOP
DELWT1: DEX ;DECREMENT MULTIPLIER
NOP
NOP
BNE DELWT1
RTS

This program uses the JSR instruction to call the subroutine: DELAY5U.

The actual subroutine consists of loops of instructions that just take up computer time.
Timer Application 2:

delay1m.a11

Description

THIS ROUTINE GENERATES INTERNAL DELAYS IN MULTIPLES OF ONE (1) MILLI-SECOND.

PARAMETERS

- **X REGISTER** CONTAINS DURATION (ms)
- INTERRUPTS ARE NOT AFFECTED
- SHORTEST DELAY IS 1 ms (X = 1)
- RESOLUTION IS 1 ms
- MAXIMUM DELAY IS 655,36 ms (X = 0)

Test Routine

TEST ROUTINE

* user must enter a value into X, then run
ORG SCO00
* change operand of next instruction to change
* the delay
TEST
ldx #100 ;FOR 100 ms DELAY
JSR DELAY1M ;CALL ROUTINE TO TEST
jmp $E00A ;JUMP TO BUFFALO WHEN DONE

DELAY1M

PSHA
* Primary Loop
DELWT2: LDA #199;199 * 2ND LOOP = 1ms
NOP
DELWT3: DECA ;SECONDARY LOOP = 1ms/199
NOP
BRN DELWT3 ;BRANCH NEVER = 3 CYCLE NOP
BNE DELWT3 ;CONTINUE UNTIL 199 --> 0
DEX ;# OF 1ms LOOPS
BNE DELWT2 ;CONTINUE UNTIL IX = 0
PULA
RTS

This program uses the JSR instruction to call the subroutine: DELAY1M.

The actual subroutine consists of 2 loops of instructions that just take up computer time. Notice: PSHA, PULA

© J. Chris Perez 2001
Laboratory µP3: Count-down Timer

Pre-lab:
Design a circuit using the HC11EVB that will meet the following specs:
1. A two-digit BCD number will be entered.
2. Display the number on 7 segment displays as it counts down to zero @ 1.00Hz
3. Make an audible noise for the last 1 second before reaching zero.
4. When the number reaches zero, drive a relay closed (Output an active high signal)
5. Use the HC11EVB as the primary controller.
6. Use a minimum number of extra Ics
7. The two-digit number will be entered using an 8-position dip switch of two BCD switches.

Pre-compile all source code. Bring source code listings (on paper) and floppy disk containing the files to lab. The files should be error free at the beginning of the lab period.

Include flow charts for your source code.