Introduction to Microcontrollers III

Timing Functions
Delay5u.a11, Delay1m.a11
µp Laboratory #3
µP Laboratory #2 Hints

Data Entry:

• Use the pushbutton routine from count.a11 or count_br.a11 (WAIT0 and WAIT1 loops)
• Consider using Indexed addressing for entering data loops
• Store numbers to $D000-$D007
• Display numbers to output PortB ($1004)
μP Laboratory #2 Hints

Data Sum:

• Assume number located at $D000-$D007
• Consider using Indexed addressing for accessing each memory location
• Use AccA or AccB for temporary storage of sum
μP Laboratory #2 Hints

Data Sum :

• Assume number located at $D000-\$D007
• Need two loops for sorting
• Consider using Indexed addressing for your loops
Sort Routine

Initialize counters
Compare contents of location i with i+1
If contents of i is less than contents of i+1, swap; otherwise increment counter
If inner loop is done increment outer loop counter
If outer loop is done, end; otherwise reset inner loop counter and begin again
Swap Routine

AccA

AccB

IndexX

Counter i = $D000

$03 D000

$08 D001

D002

D003

D004

D005

D006

D007
Swap Routine

ldaa 0,x

AccA
$03

AccB

IndexX
$D000

Counter i = $D000
Swap Routine

ldaa 1,x

AccA $03
AccB $08

IndexX $D000
Counter i = $D000
Swap Routine

Compare AccB to AccA

AccA $03

AccB $08

IndexX $D000

Counter i = $D000

$03 D000
$08 D001

© J. Chris Perez 2001
Swap Routine

staa 1,x

AccA $03
AccB $08
IndexX $D000

Counter i = $D000

D000
D001
D002
D003
D004
D005
D006
D007

© J. Chris Perez 2001
Swap Routine

stab 0, x

AccA 03

AccB 08

IndexX $D000$

Counter i = $D000$

Then, increment IndexX…

© J. Chris Perez 2001
What about timing functions?

- Sometimes you want to put a delay in your program. The HC11 has advanced features that use a real-time clock. Refer to chapter 10 of the HC11 Reference Manual for information on usage.
- An alternative is the use of delay subroutines: delay5u.a11 and delay1m.a11
Timer
Application 1: delay5u.a11

Delay = X * 5 μs

Load X with the number of times you want to delay for 5 μs.
This program uses the JSR instruction to call the subroutine: DELAY5U.

The actual subroutine consists of loops of instructions that just take up computer time.
Timer
Application 2: delay1m.a11

Delay = X * 1 ms
Load X with the number of times you want to delay for 1 ms.

* DELAY1M.A11 N*1ms Delay Routine
* AUTHORS DATE COMMENTS
* JACOBSON/SEVCIK 2/26/90 VERSION 1.0
*
* DESCRIPTION
* THIS ROUTINE GENERATES INTERNAL DELAYS IN MULTIPLES OF ONE (1) MILLI-SECOND. THE
* USER ENTERS THE DURATION OF THE DELAY (ms) INTO THE X REGISTER
*
* PARAMETERS
* - X REGISTER CONTAINS DURATION (ms)
* - INTERRUPTS ARE NOT AFFECTED
* - SHORTEST DELAY IS 1 ms (X =1)
* - RESOLUTION IS 1 ms
* - MAXIMUM DELAY IS 655,36 ms (X = 0)

 **
 **
 *

© J. Chris Perez 2001
TEST ROUTINE
* user must enter a value into X, then run
ORG $COOO
* change operand of next instruction to change
* the delay
TEST ldx #100 ;FOR 100 ms DELAY
 JSR DELAY1M ;CALL ROUTINE TO TEST
 JMP $E00A ;JUMP TO BUFFALO WHEN DONE
**
* DELAY1M N*1ms subroutine
**
DELAY1M: PSHA
* Primary Loop
DELWT2 LDAA #199;199 * 2ND LOOP = 1ms
 NOP
DELWT3 DECA ;SECONDARY LOOP = 1ms/199
 NOP
 BRN DELWT3 ;BRANCH NEVER = 3 CYCLE NOP
 BNE DELWT3 ;CONTINUE UNTIL 199 --> 0

 DEX ;# OF 1ms LOOPS
 BNE DELWT2 ;CONTINUE UNTIL IX = 0

PULA
RTS
**
* END DELAY1M
**

This program uses the JSR instruction to call the subroutine: DELAY1M.

The actual subroutine consists of 2 loops of instructions that just take up computer time. Notice: PSHA, PULA
Laboratory µP3: Count-down Timer

Pre-lab:
Design a circuit using the HC11EVB that will meet the following specs:
1. A two-digit BCD number will be entered.
2. Display the number on 7 segment displays as it counts down to zero @ 1.00Hz
3. Make an audible noise for the last 1 second before reaching zero.
4. When the number reaches zero, drive a relay closed (Output an active high signal)
5. Use the HC11EVb as the primary controller.
6. Use a minimum number of extra Ics
7. The two-digit bumber will be entered using an 8-position dip switch of two BCD switches.

Pre-compile all source code. Bring source code listings (on paper) and floppy disk containing the files to lab. The files should be error free at the beginning of the lab period.

Include flow charts for your source code.