
A Brief Intro to Linux

When you open a shell (i.e. the command line or terminal) in Linux you will start in your home
directory (yeah Linux folks like to call them directories rather than folders)

The prompt is often a dollar sign $

Your home directory is indicated by ~ . To get to you home directory type (don’t type the $)

$ cd ~

or

$ cd

to determine what directory, you are in type

$ pwd

Now let’s create another directory in your home directory

$ mkdir myFirstDir

Note here that mkdir creates a directory and items in italics are user defined, you could have
called the directory a111, project2, hat, etc. Any name is ok as long as it is not a linux command.
To check if something is a linux command type (for example)

$ man myFirstDir

the output is:

No manual entry for myFirstDir

Now let’s look at what is in your home directory using

$ ls

The result is

myFirstDir

if you type

$ls -l

You’ll see more info, for example

drwxrwxr-x 2 moorej moorej 10 Sep 19 08:35 myFirstDir

This tells you that myFirstDir is a directory (i.e. the line starts with d), it tells about your read
and write permissions and when the directory was created. Now move to that directory using

$ cd myFirstDir

Note that if you start typing myFi and then hit Tab it will fill in myFirstDir, if there are multiple
options hit Tab twice and they will be displayed

Now let’s create a file

$ touch myFirstFile.txt

Note that this creates an empty file. Linux does not care too much about extensions, you could
have called this myFirstFile.dat, myFirstFile.log, or simply myFirstFile. Let’s do that

$ touch myFirstFile.dat
$ touch myFirstFile.log
$ touch myFirstFile

Now type

$ ls

To see your files

myFirstFile myFirstFile.dat myFirstFile.log myFirstFile.txt

if you only wanted to see files with extension .log you can use the wildcard *

$ ls *.log

myFirstFile.log

To edit these files you can use a text editor. Vim and Emacs are popular, I recommend emacs.

$ vim myFirstFile.txt
Or
$ emacs myFirstFile.txt

I’ll leave it as an exercise for the user on how to operate these text editors. For now, use

$ cat ‘hello’ >> myFirstFile.txt

To add the text ‘hello’ to myFirstFile.txt

Now you can see the context with

$ more myFirstFile.txt

hello

If you only wanted to see the end of the file, try

$ tail myFirstFile.txt

If you wanted to continuously look at the end of the file (this is great for watching Abaqus’s
progress) use

$ tail -f myFirstFile.txt

Control c kills the tail -f command.

You can also look for text in the file using

$grep hello *

myFirstFile.txt:hello

This tells you that the text hello was in file myFirstFile.txt.
If you want to copy myFirstFile.txt to a new file called mySecondFile.txt use

$ cp myFirstFile.txt mySecondFile.txt

If you want to remove myFirstFile.dat then you can use the rm command. BE CAREFUL rm will
remove the file, it will be gone, it will not go to a recycle bin for later use. Linux will not ask you
“are you sure you want to remove this file?” It will be very much gone. BE CAREFUL.

$ rm myFirstFile.dat

Now let’s look at what we have

$ls

myFirstFile myFirstFile.log myFirstFile.txt mySecondFile.txt

Another note of caution: if you copy a file to another file name (for example cp myFirstFile.log
to mySecondFile.txt, it will overwrite mySecondFile.txt, the previous content of
mySecondFile.txt will be gone, be careful)

This is probably a good time to recommend using git. Git will track all file changes and the
history of the code you write. You can create an account of github or bitbucket and use these as a
repo to store you tracked changes.

Finally let’s look for a file

$ cd ..

This will go back one directory. Now let’s look for myFirstFile.txt

$find . -name myFirstFile.txt

./myFirstDir/myFirstFile.txt

And there it is. The find command can take a long time, so try to get as close to the directory of
the file you are looking for as possible.

Finally, to exit the terminal use

$ exit

Linux is super powerful, and you can do much much more than is discussed here, but these
commands will get you going. The learning curve can be slow, but many find they prefer the
control on the command line over GUI point-and-click after a while. Have fun.

