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Abstract – In this paper, stator and rotor failures in squirrel-cage 

induction machines are modeled using the magnetic equivalent 

circuit (MEC) approach. Failures associated with stator winding 

and rotor cage are considered. More specifically, stator inter-turn 

short circuit and broken rotor bar failures are modeled. When 

compared to conventional modeling techniques, the MEC 

modeling approach offers two main advantages: 1) relatively high 

speed of execution, and 2) high accuracy. The developed MEC 

model is validated here with respect to the experimental tests and 

time-stepping finite-element simulations for healthy and various 

faulty conditions. 
 

Index Terms – Induction machines, magnetic equivalent circuit 

(MEC), fault modeling, rotor faults, stator winding faults. 

I. INTRODUCTION 

UMEROUS induction machine models have been 

developed over the years. These models range from the 

simplest T-equivalent circuit models, described in [1], to more 

sophisticated ones such as: multiple coupled circuit models [2], 

magnetic equivalent circuit models, also known as the 

permeance network models, [3]-[7], and the finite-element 

(FE) models [8]. Application of the specific model to a specific 

task depends on the level of desired accuracy, computational 

time, as well as the complexity of the physical phenomenon 

that needs to be captured in the solution. In fault simulation 

studies, the complexity of the model depends on the type of 

fault that needs to be studied. For simulation of stator winding 

and rotor cage failures, the magnetic equivalent circuit (MEC) 

modeling approach offers a good balance between the 

execution time and solution accuracy. Magnetic equivalent 

circuit models provide reasonably accurate results and 

relatively fast computation time, when compared to the time-

stepping finite-element (TSFE) models. Finite-element models, 

in general, provide a higher degree of space discretization, and 

hence a more accurate solution, when compared to the MEC 

approach. However, the computational times required by such 

TSFE models are significantly longer due to their complexity. 

The magnetic equivalent circuit modeling approach has been 

successfully used to model a variety of electric machines under 

various healthy and faulty conditions [3]-[6]. More 

specifically, the MEC modeling approach has been used to 

model induction machines under a variety of steady-state and 

transient conditions in  [3] and  [4].  A three-dimensional MEC  
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Fig. 1. Simplified MEC representation of:  (a) double-layer stator winding. (b) 

rotor slot (without deep-bar effect). 

model has been used in the study of  inter-bar currents  and the 

resulting axial fluxes in healthy and faulty induction machines 

in [5]. In [6] the MEC model has been shown to yield accurate 

results under a variety of operating conditions: no-load, rated-

load, unbalanced excitation, and broken end-ring conditions.  

In this paper, the development and validation of an MEC 

model that can simulate both stator inter-turn short circuit 

faults and broken (cracked) rotor bar faults are presented. The 

MEC model is verified by comparison of its results with TSFE 

simulations and experimental data for a case-study 5-hp 

squirrel-cage induction motor. 

II. INDUCTION MACHINE MODELING –                 

MAGNETIC EQUIVALENT CIRCUIT (MEC) APPROACH 

In this section, development of a magnetic equivalent circuit 

(MEC) model for fault simulation studies is discussed. In this 

work, the model has been developed using the formulation 

outlined in [3]. The MEC modeling approach allows one to 

incorporate space-harmonics due to discrete winding 

distributions, stator and rotor slotting, as well as saliency 

effects caused by saturation of the magnetic materials in the 

stator and rotor cores [3] and [4]. Moreover, deep-bar effects 

can be included in the solution to provide a more realistic 

transient model of the machine [3]. 

A case-study 5-hp, 60-Hz, 6.8-A, 1165-r/min, 0.777-p.f., 

squirrel-cage induction machine, with 36 stator slots and 45 

rotor slots/bars, has a double-layer stator winding with the 

layout phase designations shown in Table I. In Table I “Outer” 

refers to the part of the stator slot closest to the air-gap, 

whereas “Inner” refers to the part of the slot closest to the 

stator back-iron/yoke. Moreover, this machine has two slots 

per pole per phase, and a total of 36 coils, with 20 turns per 

coil, leading to 240 turns per phase. 

A stator slot with a double-layer winding, such as any of the 

slots shown in Table I, can be represented by a simplified 

N
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Fig. 2. MEC representation of the 5-hp induction machine (with closed rotor slot). 

magnetic equivalent circuit [4] shown in Fig. 1 (a). Assuming 

steady-state operation with no deep-bar effects, the rotor slot 

can be modeled as shown in Fig. 1 (b).  

It should be highlighted that the MEC modeling approach 

can be utilized for various transient simulations if the rotor slot 

is divided into a sufficient number of sections in order to 

accommodate deep-bar effects [3]. Another approach of 

including the deep-bar effect is by updating the reactance of 

the rotor bar (depending on the rotor speed) at every time-step 

of the simulation.  

In order to include the saturation effects, the reluctance 

values representing the regions of the machine where the 

magnetic material is present can be varied, depending on the 

values of the flux densities in the individual stator and rotor 

teeth. It should be noted that in Figs. 1 (a) and (b), the indices, 

m and n, are used to distinguish between the various individual 

stator and rotor teeth reluctances, which may vary if saturation 

needs to be considered. 

A complete MEC model of the induction machine is 

depicted in Fig. 2. From this figure it should be noted that the 

MEC model is assembled such that every tooth on the stator is 

coupled to every tooth on the rotor, and vice versa. Air-gap 

reluctances depend on the relative position of the 

corresponding stator and rotor teeth. More specifically, an air-

gap reluctance is a function of the area of overlap of stator and 

rotor teeth. From Fig. 2 one can proceed with the development 

of the system of algebraic equations governing the nodal 

magnetic scalar potentials (msps/mmfs). The nodal-potential 

method can be used to generate the required equations. To 

avoid possible numerical difficulties in a computer simulation 

associated with possibilities of dealing with infinite air-gap 

reluctances one should inverse the reluctance values to obtain 

the  corresponding   permeance  values.  The nodal  mmfs used  

to generate the equations are:   
(m)1F ,    

(m)2F ,    
(n)3F ,    

(n)4F , 

where the index, m, identifies a stator tooth and the index, n, is 

used  to  identify a rotor tooth.  Hence,  in the case-study motor 

with a number of stator slots, NS=36 slots, rotor slots, NR=45 

slots, the index, m, varies from 1 to 36, and the index, n, varies 

from 1 to 45. Considering Fig. 2 with the reluctances 

substituted for with the corresponding permeances, one can 

develop four sets of nodal equations as follows:  
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where,  the vector/array of rotor teeth fluxes,
'

 RΦ , is expressed 

as follows: 

 
(1) (2) (3) ( )1

' T
R R R R[ ]

NR
R

−
= Φ Φ Φ ΦΦ L  (2) 

In  order  to  provide  a  relationship  between  the  nodal   mmf 

vectors, 
1

FFFF , 
2

FFFF , 
3

FFFF , 
4

FFFF , and the corresponding individual 

stator and rotor tooth mmf vectors, 
S

FFFF , 
R

FFFF , produced by the 

current carrying coil sides, two additional sets of equations 

have to be introduced. From the magnetic circuit of Fig. 2 

these equations can be derived as follows: 

2 1 SSS
= − + ΦF F FF F FF F FF F F ℜℜℜℜ    (3) 

'

3 4 RRR
= − − ΦF F FF F FF F FF F F ℜℜℜℜ    (4) 

where,
(1) (2) (3) ( -1)

' T
4 4 4 44

[  0]
NR

= LF F F FFFFF .  Also, Sℜℜℜℜ , 

and, Rℜℜℜℜ , are the diagonal matrices of the stator and rotor teeth  

reluctances. In order to derive a relationship between the stator 

phase flux linkages,  λa,   λb,   λc, and the individual stator tooth

TABLE I. STATOR WINDING LAYOUT OF THE 5-HP SQUIRREL-CAGE INDUCTION MACHINE. 

 Inner A+ C- C- B+ B+ A- A- C+ C+ B- B- A+ A+ C- C- B+ B+ A- A- C+ C+ B- B- A+ A+ C- C- B+ B+ A- A- C+ C+ B- B- A+

Outer A+ A+ C- C- B+ B+ A- A- C+ C+ B- B- A+ A+ C- C- B+ B+ A- A- C+ C+ B- B- A+ A+ C- C- B+ B+ A- A- C+ C+ B- B-

Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36  



 

 

fluxes,   SΦ , and the stator line currents,     ia,    ib,    ic, and the 

individual  tooth  mmfs, 
S

FFFF ,  one  has  to  consider  the  stator 

winding layout provided in Table I. An analytical approach to 

developing the relationships between the stator phase flux 

linkages and individual stator teeth fluxes, and the stator phase 

currents and individual stator teeth mmfs, based on parameters 

such as: the type of winding, the number of slots, the number 

coils per pole per phase, the winding connection, etc., has been 

developed in [3]. For this case-study 5-hp squirrel-cage 

induction machine, with a double-layer winding given in  

Table I, these relationships are provided in (5) and (6), below:  
'

abc SN=λ w Φ
    (5) 

''
abcS

= w iFFFF
    (6)  

where,   N,  is the number of turns per coil,   and  'w  as well as 

"w ,   have been defined  as  flux and mmf connection matrices 

in  [3].  For  the  squirrel-cage  rotor  the  procedure  is  greatly 

simplified.   In a squirrel-cage rotor,  the teeth fluxes,  RΦ , are 

equal to the  rotor loop flux linkages,   Rλ   and  the  rotor teeth 

mmfs,  
R

FFFF ,  are  equal  to  the  rotor loop currents,   Ri . 

A complete system of equations that governs the magnetic 

equivalent model, with phase linkages, λa, λb, λc, and rotor teeth 

fluxes,   RΦ , as inputs, and phase currents,   ia,   ib,   and  ic, as 

outputs,  is  given  in  (7).  In  (7),  kk×I ,  refers  to  an  identity 

matrix  of  appropriate  dimensions  and,  1−×kkI ,  refers  to  an 

identity matrix with the last column eliminated/truncated. The 

system of equations given in (7) can be simplified as has been 

done in [4]. The expression for electromagnetic torque can be 

derived, based on electromechanical energy conversion 

principles, from the MEC model directly and is given as 

follows: 
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Fig. 3. Stator winding under inter-turn short circuit fault conditions.  

n) (m,AGP , is the air-gap permeance between the  m
th

 stator  tooth 

and the n
th

 rotor tooth. The parameters of the MEC model for 

the case-study 5-hp induction machine are provided in the 

appendix. It should be noted that if saturation of the magnetic 

material does not need to be considered, the value of the 

relative permeability, µR = 11000, in the linear region of the  

B-H curve, can be used for reluctance and permeance 

calculations. 

A. Stator Winding Faults (Inter-Turn Short Circuits) 

In order to simulate stator inter-turn short circuit faults two 

tasks have to be accomplished:  

1) additional state variables have to be included to account 

for the shorted/faulty turns (fault flux linkage, λf, and 

faulty loop current, if), 

2) the mmf and flux connection matrices, 'w  and "w , 

have to be modified accordingly. 

Assuming that the inter-turn short circuit failure occurs in 

phase-a of a wye-connected machine, the transient electric 

circuit model of the machine can be represented as shown in 

Fig. 3. In Fig. 3, rs is the stator per phase resistance (provided 

in Table A-I of the appendix), rf, is the fault resistance 

representing the stage of partial insulation failure before the 

occurrence of a complete solid-short between the turns, 
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Fig. 4. Squirrel-cage rotor showing rotor loop currents. 

rst=(Nst/Nph)rs, is the resistance of  the shorted  portion  of  the  

winding, where Nst is the number of shorted turns, and Nph is 

the number of turns per phase,  and the factor, µ=(Nph-Nst)/Nph, 

is the ratio of the remaining (healthy) number of turns to the 

total number of turns per phase. Furthermore, assuming that 

the inter-turn short circuit failure occurs in a portion of the first 

coil of phase-a (slots 1 and 6 of Table I), the connection 

matrices can be accordingly modified as given in (9). 

B. Rotor Faults (Broken/Cracked Bar) 

An electric connection of a squirrel-cage rotor is shown in 

Fig. 4. Depicted in Fig. 4 are bar resistances, rb, and end ring 

connector resistances, rer, of the squirrel-cage rotor (provided 

in Table A-I of the appendix). One simple way of simulating 

rotor broken bar faults in the MEC model is by increasing the 

resistance,  rb(Nr), corresponding to the broken (or cracked) bar.  

A functional block diagram of the complete MEC model 

coupled to the electrical and mechanical systems associated 

with the motor and its load is given in Fig. 5. It should be 

pointed out that the MEC block in Fig. 5 directly outputs the 

currents and developed torque from knowledge of the flux 

linkages and the rotor position. It should also be mentioned 

that the developed MEC model has been implemented in a 

MATLAB/Simulink (SimPowerSystems) environment. 

Accordingly, the developed MEC model is applicable to 

simulation of a motor supplied from direct-line sinusoidal 

excitation or from PWM-type drive, hence, enabling 

simulation of a complete motor-drive-controller system, if 

such a comprehensive simulation is needed. 

 

TABLE II. STEADY-STATE PERFORMANCE UNDER HEALTHY CONDITIONS  

(MEC SIMULATIONS AND EXPERIMENTAL TESTS). 

100% (30Nm) MEC Experimental Test 

Current, [Arms] 6.10 6.15 

Speed, [r/min] 1166 1165 

Power factor, [%] 82.9 79.7 

75% (22.5Nm) MEC Experimental Test 

Current, [Arms] 4.83 4.75 

Speed, [r/min] 1175 1175 

Power factor, [%] 76.8 74.2 

50% (15Nm) MEC Experimental Test 

Current, [Arms] 3.91 3.95 

Speed, [r/min] 1184 1182 

Power factor, [%] 67.5 66.5 

IV. MODEL VALIDATION – SIMULATION AND 

EXPERIMENTAL RESULTS 

The developed MEC model has been verified by comparing 

the results of the simulations with experimentally obtained 

data under sinusoidal supply excitation for healthy and various 

faulty conditions as given next. 

A. Healthy Operation 

Here, simulation and experimental results are presented for 

the machine operating at healthy, steady-state conditions. 

Depicted in Figs. 6a and 6b are the frequency spectra of the 

phase-a current,  ia, obtained from the MEC simulation and the 

experimental test. Also, provided in Table II are the tabulated 

data of the steady-state performance characteristics under 

healthy conditions at different levels of load. 

B. Stator Winding Faults (Inter-Turn Short Circuits) 

Here, the simulation and experimental results for the 

machine operating under the conditions of stator inter-turn 

short circuit failure are presented. Depicted in Figs. 7a, 7b, and 

7c are the time-domain profiles of the phase-a current, ia, 

shorted loop current, if, and the current passing through the 

fault resistance, irf, for the conditions of two shorted turns, 

Nst=2, and fault resistance, rf = 0.1Ω, obtained via the MEC 

simulation, the TSFE (developed in MAGSOFT-FLUX 2D) 

simulation and experimental test, respectively. It should be
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Fig. 5. Block diagram of a complete squirrel-cage induction machine MEC model. 
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(a) MEC Simulation (supplied with measured voltages). 
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(b) Experimental Test 

Fig. 6. Frequency spectrum of phase-a current, ia, under healthy, rated conditions (30Nm, 1165r/min): (a) MEC Simulation 

(supplied with measured voltages) and (b) Experimental Test. 

0.275 0.28 0.285 0.29 0.295 0.3
-50

-25

0

25

50

Time, [s]

C
u
rr

en
t,
 [

A
]

 

 

     (a) MEC Simulation 
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     (b) TSFE Simulation 
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     (c) Experimental Test (rf =0.103Ω) 

Fig. 7. Time-domain profiles of phase-a current, ia, shorted loop current, if, and fault resistance current, irf, under conditions of two 

turns shorted, Nst=2, through rf=0.1Ω (30Nm, 1165r/min): (a) MEC Simulation, (b) TSFE Simulation and (c) Experimental Test. 
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Fig. 8. Fault resistance current, irf, as a function of fault 

resistance, rf, for two shorted turns, Nst = 2. 
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Fig. 9. Fault resistance current, irf, as a function of fault 

resistance, rf, for two shorted turns, Nst = 6. 
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(a)  MEC Simulation (supplied with measured voltages) 
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(b) Experimental Test 

Fig. 10. Frequency spectrum of phase-a current, ia, under one broken bar condition (30Nm, 1165r/min): (a) MEC (b) Experiment 
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Fig. 11. Lower side band, LSB, component as a function of number of 

broken bars, rated load (30Nm, 1165r/min). 

pointed out that the currents, ia, if, and irf, in Figs. 7a, 7b, and 

7c, are related by the following relationship, irf = ia - if, see Fig. 

5. Furthermore, the higher harmonic content in the currents, if 

and irf, are partially the result of the concentrated nature of the 

shorted turns in space, thus no harmonic filtering due to 

winding factor effects is present. Also, the fact that in the 

strictly two-dimensional TSFE and MEC models end-leakage 

inductance effects are not included, while in the actual test 

results such end-leakage inductance effects are inherently 

embedded in the physical nature of the equipment, leads to the 

noticeable harmonic overestimation in the fault currents of 

Figs. 7a and 7b when compared to the experimental results of 

Fig. 7c.  

In addition, shown in Figs. 8 and 9 is the dependence of the 

current passing through the fault resistance, irf, on the value of 

fault resistance, rf, for both the MEC and TSFE models, and 

the experimental tests for, Nst=2, and, Nst=6, shorted turns. 

Here, it should be noted that in the experimental tests the fault 

current has been limited to ~20Arms in order to avoid 

permanent damage to the stator winding. From Figs. 7, 8 and 9 

one should note that at the initial stages of a fault, the fault 

current is inversely proportional to the fault resistance. 

C. Rotor Faults (Broken/Cracked Bars) 

Here, simulation and experimental results are presented for 

the machine operating under the conditions of broken rotor bar 

failure. Depicted in Figs. 10a and 10b are the frequency spectra  

of the phase-a currents, ia, for the conditions of one broken bar 

obtained via the MEC simulation and experimental test. Shown 

in Fig. 11 is the dependence of the lower side band (LSB) 

component [9] on the number of broken rotor bars obtained 

from both the MEC simulations and experimental test data. 

V. CONCLUSIONS 

The developed magnetic equivalent circuit model shows 

good agreement with both experimental data and time-stepping 

finite-element simulations. Hence, the developed magnetic 

equivalent circuit model can be used in comprehensive, 

nondestructive studies of stator inter-turn short circuit and 

rotor broken bar failures in induction motors. Also, the 

developed MEC model can be used as a software test-bed for 

simulation and development of fault diagnostics and fault 

mitigation algorithms. 

APPENDIX 

TABLE A-I. RELEVANT MEC MODEL PARAMETERS. 

PARAMETER STATOR ROTOR 

Stator Resistance, rs, [Ω/phase] 1.34  

Rotor bar resistance, rb, [µΩ]  57.1 

Ring resistance bar-to-bar, rer, [µΩ]  3.20 

Tooth reluctance, ℜ , [H-1] (2.71×107)/µR (2.69×107)/µR 

Tangential permeance, TANP , [H] 4.44×10-7 2.70×10-7  
(assumed constant) 

Yoke/backiron permeance, YOKEP , [H] 1.27×10-3 1.20×10-2 

Maximum value of air-gap permeance, PAGMAX, 

[H] 
4.21×10-6 

µR = relative permeability (assume µR=11000 in linear region) 
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