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Abstract 
 
 

Induction motors are used worldwide as the “workhorse” in industrial 

applications. Although, these electromechanical devices are highly reliable, they are 

susceptible to many types of faults. Such fault can became catastrophic and cause 

production shutdowns, personal injuries, and waste of raw material. However, induction 

motor faults can be detected in an initial stage in order to prevent the complete failure of 

an induction motor and unexpected production costs. Accordingly, this thesis presents 

two methods to detect induction motor faults. The first method is a motor fault diagnostic 

method that identifies two types of motor faults: broken rotor bars and inter-turn short 

circuits in stator windings. These two types of faults represent 40 to 50% of all reported 

faults. Moreover, this method identifies the motor fault’s severity through the 

identification of the number of broken bars and the number of turns involved in an inter-

turn short. The second method is a motor fault monitoring method that classifies the 

operating condition of an induction motor as healthy or faulty. The faulty condition 

represents any number of broken bars. This method has two major advantages. First, this 

is a robust technique, which is trained with datasets generated by time-stepping finite 

element methods in order to monitor faults of real induction motors in operation. Thus, 

the high cost associated with destructive tests to generate the training sets is not required. 

Second, it will be demonstrated here that this method, which is trained with simulated 

data of only one motor, can be used to monitor faults of real motors even with different 

design specifications. This establishes the scalability of this method. Both methods are 

validated through experimental tests. 
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CHAPTER 1 
 

Introduction 

Chap

I 
ter 1 Introduction 

NDUCTION MOTORS are complex electro-mechanical devices utilized in 

most industrial applications for the conversion of power from electrical to 

mechanical form. Induction motors are used worldwide as the workhorse in industrial 

applications. Such motors are robust machines used not only for general purposes, but 

also in hazardous locations and severe environments. General purpose applications of 

induction motors include pumps, conveyors, machine tools, centrifugal machines, 

presses, elevators, and packaging equipment. On the other hand, applications in 

hazardous locations include petrochemical and natural gas plants, while severe 

environment applications for induction motors include grain elevators, shredders, and 

equipment for coal plants. Additionally, induction motors are highly reliable, require low 

maintenance, and have relatively high efficiency. Moreover, the wide range of power of 

induction motors, which is from hundreds of watts to megawatts, satisfies the production 

needs of most industrial processes.  
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However, induction motors are susceptible to many types of fault in industrial 

applications. A motor failure that is not identified in an initial stage may become 

catastrophic and the induction motor may suffer severe damage. Thus, undetected motor 

faults may cascade into motor failure, which in turn may cause production shutdowns. 

Such shutdowns are costly in terms of lost production time, maintenance costs, and 

wasted raw materials. 

The motor faults are due to mechanical and electrical stresses. Mechanical 

stresses are caused by overloads and abrupt load changes, which can produce bearing 

faults and rotor bar breakage. On the other hand, electrical stresses are usually associated 

with the power supply. Induction motors can be energized from constant frequency 

sinusoidal power supplies or from adjustable speed ac drives. However, induction motors 

are more susceptible to fault when supplied by ac drives. This is due to the extra voltage 

stress on the stator windings, the high frequency stator current components, and the 

induced bearing currents, caused by ac drives. In addition, motor over voltages can occur 

because of the length of cable connections between a motor and an ac drive. This last 

effect is caused by reflected wave transient voltages [1]. Such electrical stresses may 

produce stator winding short circuits and result in a complete motor failure. 

According to published surveys [2, 3], induction motor failures include bearing 

failures, inter-turn short circuits in stator windings, and broken rotor bars and end ring 

faults. Bearing failures are responsible for approximately two-fifths of all faults. Inter-

turn short circuits in stator windings represent approximately one-third of the reported 

faults. Broken rotor bars and end ring faults represent around ten percent of the induction 
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motor faults. These faults are summarized in Table 1.1. This table presents the surveys 

conducted by the Electric Power Research Institute (EPRI), which surveyed 6312 motors 

[3], and the survey conducted by the Motor Reliability Working Group of the IEEE-IAS, 

which surveyed 1141 motors [2].   

 

Table 1.1 – Percentage of failure by component 
 

Percentage of failures (%) Failed Component 
IEEE-IAS EPRI 

Bearings Related 44 41 
Windings Related 26 36 

Rotor Related 8 9 
Others 22 14 

 

Several alternatives have been used in industry to prevent severe damage to 

induction motors from the above mentioned faults and to avoid unexpected production 

shutdowns. Schedule of frequent maintenance is implemented to verify the integrity of 

the motors, as well as to verify abnormal vibration, lubrication problems, bearings 

conditions, and stator windings and rotor cage integrity. Most maintenance must be 

performed with the induction motor turned off, which also implies production shutdown. 

Usually, large companies prefer yearly maintenance in which the production is stopped 

for full maintenance procedures. Redundancy is another way to prevent production 

shutdowns, but not induction motor failure. Employing redundancy requires two sets of 

equipment, including induction motors. The first set of equipment operates unless there is 

a failure, in which case the second set takes over. This solution is not feasible in many 
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industrial applications due to high equipment cost and physical space limitations.  Thus, 

in this thesis an alternative to these approaches is proposed. 

Specifically, this thesis addresses electrically detectable faults that occur in the 

stator windings and rotor cage, namely inter-turn short circuits in stator windings and 

broken rotor bars. The methods developed in this thesis detect motor faults without the 

necessity of invasive tests or process shutdowns. Moreover, the presented methods 

monitor the operating induction motor continuously, so that human inspection is not 

required to detect motor faults. 

Now that the central problem of this thesis has been presented, a literature review 

about motor fault identification methods including their advantages and disadvantages is 

made.  

1.1 Literature Review 

Significant efforts have been dedicated to induction machine fault diagnosis 

during the last two decades and many techniques have been proposed [4-32]. Thus, a 

brief description of the main techniques presented in the literature, as well as their 

advantages and disadvantages are presented in this section.  

Several fault detection and identification techniques are based on stator current 

spectral signature analysis, which uses the power spectrum of the stator current [10, 20] 

to detect broken rotor bar faults. These fault detection techniques are based on the 

magnitude of certain frequency components of the stator currents. Specifically, a Fast 

Fourier Transform (FFT) of the current is taken. The first spectral peak less than the 
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fundamental frequency is called the low sideband. The magnitude of the low sideband is 

measured and compared to a threshold. The result of this comparison determines if an 

induction motor has broken rotor bars. However, these techniques may fail to detect 

induction motor fault conditions because the sidebands can be masked due to the 

windowing processes used to compute the power spectrum of the current signals, as was 

shown in [27]. 

The analysis of the negative sequence components of the stator current is another 

well-know technique used to detect inter-turn short circuits [21, 22]. This technique is 

based on the detections of the asymmetries produced by a faulty motor with shorted turns 

in the stator winding. Such asymmetries will generate a negative sequence current, which 

is used to detect the fault. A negative sequence is derived from a vectorial interpretation 

of unbalanced three phase currents or voltages [33]. For an induction motor, an 

unbalanced 3-phase stator current can be decomposed as a balanced 3-phase positive 

sequence (ABC) and a balanced 3-phase negative sequence (ACB). Moreover, the 

magnitude of the negative sequence current is proportional to the magnitude of the 

unbalanced effect of the induction motor. Thus, balanced motors have only positive 

sequences. However, some effects can yield misclassification, such as unbalanced power 

supply voltage, certain types of load, and instrument errors, because such effects produce 

negative sequence currents even in healthy motors. Such effects were considered in [21]. 

However, this method still fails to detect faults for induction motors with inherently 

unbalanced windings, as was shown in [26]. 
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Other techniques include vibration analysis, acoustic noise measurement, torque 

profile analysis, temperature analysis, and magnetic field analysis [28, 30]. These 

techniques require sophisticated and expensive sensors, additional electrical and 

mechanical installations, and frequent maintenance. Moreover, the use of a physical 

sensor in a motor fault identification system results in lower system reliability compared 

to other fault identification systems that do not require extra instrumentation. This is due 

to the susceptibility of the sensor to fail added to the inherent susceptibility of the 

induction motor to fail.  

Recently, new techniques based on artificial intelligence (AI) approaches have 

been introduced, using concepts such as fuzzy logic [32], genetic algorithms [28], and 

Bayesian classifiers [18, 34]. The AI-based techniques can not only classify the faults, 

but also identify the fault severity. These methods build offline signatures for each motor 

operating condition and an online signature for the status of a motor being monitored. A 

classifier compares the previously learned signatures with the signature generated online 

in order to classify the motor operating condition and identify the fault severity. 

However, most of these AI-based techniques require large datasets. These dataset are 

used to learn a signature for each motor operating condition that is being considered for 

classification. Thus, a large amount of data is needed to train such algorithms in order to 

cover the most common motor operating conditions, and obtain good motor fault 

classification accuracy. Moreover, AI-based techniques for motor fault classification may 

not be sufficiently robust to classify faults from different motors from those used in the 
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training process. Additionally, these datasets are usually not available, involve 

destructive testing, and considerable time to generate. 

Additionally, a method using the motor internal physical condition based on a so-

called pendulous oscillation of the rotor magnetic field space vector orientation has been 

introduced for motor fault classification [7, 25, 27]. This technique classifies the faults 

and identifies the fault severity of induction motors with broken rotor bars or inter-turn 

short circuit. However, this index identification based technique needs to evaluate each 

new motor to obtain the correct set of indexes in order to correctly classify the faults.  

The two new methods for motor fault classification and monitoring that are the 

subject of this thesis are briefly introduced in the next section.  

1.2 New Methods 

This thesis presents two new methods. The first method is an induction motor 

fault diagnostic technique, which classifies two types of motor faults: broken rotor bars 

and inter-turn short circuits. Additionally, this method identifies the motor fault severity. 

This method will be referred to as the diagnostic method throughout the thesis. The 

second method is an induction motor fault monitoring technique which classifies the 

operating condition of an induction motor as faulty or healthy. This second method is a 

robust technique, because it can be trained with datasets generated by Finite Element 

methods and monitors the faults of real induction motors independently of their power 

ratings, number of poles, level of load torque, and operating frequency. This robustness is 
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demonstrated experimentally in Chapter 5. The second method is referred to as the 

monitoring method throughout the thesis. 

1.2.1 Induction motor fault diagnostic method 

The method presented in this thesis for induction motor fault diagnosis is based 

on the analysis of the envelope of the three phase stator current. This diagnostic method 

can classify two types of induction motor faults: broken rotor bars and inter-turn short 

circuits in the stator windings. Experimental results show that the three phase current 

envelope is a powerful feature for motor fault classification. The envelope signal is 

extracted from the experimentally acquired stator current signals and is used in 

conjunction with machine learning techniques based on Gaussian Mixture Models [34] 

(GMMs) and Reconstructed Phase Spaces (RPSs) [34-36] to identify motor faults.  

In addition, this diagnostic method not only classifies an induction motor as 

healthy or faulty, but also identifies the severity of the fault through the identification of 

the number of broken rotor bars or the number (or percentage) of short-circuited turns in 

stator windings. This constitutes a powerful means of monitoring motor fault severities, 

which could possibly predict the time of onset of complete failure of a motor, and thus 

help prevent unexpected shutdowns of industrial processes. The second advantage of this 

method is that the classification process needs only the three-phase stator current sensors, 

usually available in ac drives. Thus, extra electrical and mechanical installations, sensors, 

and mathematical models of an induction motor are not required.  
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1.2.2 The induction motor fault monitoring method 

The second method presented in this thesis is an induction motor fault monitoring 

technique based on the air gap torque profile analysis, associated with machine learning 

techniques to classify the operating condition of an induction motor as healthy or faulty. 

These machine learning techniques are based on GMMs and RPSs. The important novel 

nature of this approach is two-fold. First, the necessary healthy and faulty motor 

signatures to train this method are obtained from finite element simulations, not from 

experimental data. Second, the signatures can be applied to different classes of induction 

motors through a novel normalization process. A faulty condition represents any number 

of broken rotor bars. The signatures used in the training stage are based on the air gap 

torque profile of an induction motor simulated by a time-stepping Finite Element method. 

In the monitoring stage a new signature is built for the developed torque. This torque is 

calculated online from a new set of three-phase stator voltages and currents acquired 

from an actual induction motor being monitored. A comparison of the signatures obtained 

at the training and monitoring stages classifies the motor operating condition. 

This monitoring method has two main advantages. The first advantage is the 

robustness of the monitoring processes, in which the training stage uses data generated by 

finite element simulations, in order to monitor the operating conditions of real induction 

motors during the actual operating (monitoring) stage. This is accomplished with high 

levels of motor fault monitoring accuracy, as shown by the experimental results given in 

Chapter 5. It should be pointed out that the training process is performed offline, while 

the monitoring process is performed online. These training and monitoring processes 



 Chapter 1: Introduction 
 
 

10

based on data from different sources (simulations and real motors operating data, 

respectively) show the robustness of the method. Thus, high costs associated with 

equipment to emulate the faults or destructive tests to generate datasets to train this 

method are not involved. The second advantage is related to scalability of the monitoring 

process. The signatures for the training and monitoring stages are normalized in 

amplitude. However, the signatures of the monitoring stage are not only normalized in 

amplitude, but also in frequency. This normalization in frequency of the signatures of the 

monitoring stage is a function of the signatures of the training stage. Thus, the signatures 

from the training and monitoring stages for the same motor operating condition have 

similar amplitude and frequency. These signatures with similar amplitude and frequency 

for the same motor operating condition are essential in the monitoring stage to yield high 

level of motor fault monitoring accuracy. Accordingly, the training and monitoring stages 

yield signatures that are independent of motor rated power, number of poles, level of load 

torque, and operating frequency of the real motor that is being monitored. 

Thus, this method constitutes a powerful tool for induction motor fault 

monitoring. This is demonstrated and verified by the experimental results given in 

Chapter 5 of this thesis. 

1.3 Organization of the Thesis 

The remainder of this thesis is organized as follows. Chapter 2 presents the 

necessary background concerning induction machines and ac drives, as well as a 

discussion of induction motor faults. Chapter 3 details the features of induction motors 
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and machine learning techniques used in the new diagnostic method and the new 

monitoring method presented in this thesis. Chapter 4 presents the new fault diagnostic 

method and the new fault monitoring method. Chapter 5 presents experimental 

verification of the new methods and an overall discussion of the results. Chapter 6 

presents the conclusions. 
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Chapter 2 Background 

 

 

CHAPTER 2 
 

Induction Motor and AC Drive 

This chapter presents a basic description of the physical phenomena related to 

induction motors, ac drives, and induction motor faults. Moreover, it explains the 

physical phenomena of faulty induction motors with either broken rotor bars or inter-turn 

short-circuits in the stator windings.  

2.1 Induction Motors 

Induction motors are complex electro-mechanical devices used worldwide in 

industrial processes to convert electrical energy into mechanical energy. Such motors are 

widespread because they are robust, easily installed, controlled, and adaptable for many 

industrial applications, including pumps, fans, air compressors, machine tools, mixers, 

and conveyor belts, as well as many other industrial applications. Moreover, induction 

motors may be supplied directly from a constant frequency sinusoidal power supply or by 

an ac variable frequency drive. These drives are discussed in the Section 2.2. 
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Different types of electric motors are illustrated in Fig. 2.1 [37].  

 

Fig. 2.1 - Types of electric motors. 
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Due to the large range of types and applications of electric motors, the focus of 

this discussion will be on those studied in this thesis. In other words, the focus is on the 

three-phase squirrel cage induction motor, which is a type of asynchronous motor. As is 

common in the literature, a three-phase squirrel cage induction motor is referred to as an 

induction motor throughout this thesis. This type of induction motor is highlighted in Fig. 

2.1 in grey. 

The following section illustrates the main components of an induction motor.  

2.1.1 Induction motor components 

Although an induction motor has several parts as shown in Fig. 2.2, it is 

essentially composed of a squirrel cage rotor and a wound stator [38]. 

The rotor is composed of a squirrel cage, a shaft, and a lamination stack as shown 

in Fig. 2.3. The main part of the rotor is the squirrel cage, which is composed of bars and 

two end rings. The conductive rotor bars are short-circuited on both sides by the end 

rings. Thus, the electric current can circulate from one side to other side of the squirrel 

cage. The bars are enveloped by a laminated iron core, which concentrates the magnetic 

flux from the stator windings in the rotor. This lamination also mechanically supports the 

rotor shaft. The bearings on both sides of the rotor shaft allow the rotor to spin freely 

inside the stator.  
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Fig. 2.2 – A typical 3-phase induction motor [Courtesy of Electromotors WEG SA, 

Brazil]  
 

The stator is composed of three parts: frame, lamination core and windings. The 

frame mechanically supports the stator and the rotor shaft bearings. The windings are 

composed of three equally distributed coils along the stator lamination core, which are 

connected to the three-phase power supply. Only the stator is connected to the power 

supply. The energy for the rotor is delivered by induction by the synchronous rotation of 

the stator magnetic field. The name of the “induction motor” is thus derived from this 

phenomenon. It should be pointed out that there is a space between the stator and the 

rotor which is called the air gap.  
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Fig. 2.3 – A rotor of a squirrel cage induction motor 
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2.1.2 Induction motor operation 

The operating principle of an induction motor is thus based on the synchronously 

rotating magnetic field [39]. The stator is composed of three windings electrically shifted 

120ºe as shown in Fig. 2.4. The three windings are connected to a three phase ac power 

supply.  

 

 

 

Fig. 2.4 – A two-pole induction motor schematic 
 

When a current, I, pass through a coil, it induces a magnetic field with two poles 

(north and south) in this coil. The generated magnetic field H is proportional to the 

current I. The magnetic field H has a sinusoidal spatial distribution characteristic, and 

inverts polarity each half period of 180°e. Thus, three magnetic fields, HA, HB, and HB C, 

are generated when the three phase stator current, IA, IBB, and IC, are applied to the stator 



Chapter 2: Background 
 
 

18

windings. The 120ºe phase-shift of the three phase stator currents yield a 120ºe phase-

shift on the three magnetic fields, HA, HB, and HB C. The path of these magnetic fluxes is 

through the rotor and the stator laminations. The resulting magnetic field at each time 

instant is equivalent to the sum of the magnetic fields, HA, HBB, and HC, at that specific 

time instant. The resulting magnetic field rotates as shown in Fig. 2.5. The time instant 

one (1) of the three phase stator current shown in Fig. 2.5 yields a maximum magnetic 

field HA due to the peak value of phase current A, and a magnetic field HB and HB C with 

amplitude equal to a half of the maximum value. The resulting magnetic field for this 

time instant has the direction of HA. In a similar manner, this same process is repeated for 

the other time instants two (2) though six (6), yielding a synchronously rotating magnetic 

field with constant peak amplitude. Thus, this rotating magnetic field generated by the 

three phase currents applied to the stator windings induces electrical currents in the rotor 

bars, when the magnetic flux from the stator cuts across the rotor bars. These rotor 

currents generate a magnetic field on the rotor with opposite polarity in relation to the 

stator. Since opposite poles attract, the rotor follows the rotating magnetic field of the 

stator resulting in a rotation of the rotor slightly slower than the rotating magnetic field of 

the stator. This difference in rotational speed between the rotating fields of the stator and 

rotor bars is called the slip speed, which will be discussed next in this chapter. In order to 

produce the required torque, only a small slip speed is required to produce the necessary 

rotor current due to the small resistance of the shorted rotor bars [40].  Thus, the rotor 

develops a torque proportional to the product of the stator and rotor currents. 
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Fig. 2.5 – The rotating magnetic field of a two-pole induction motor. The bold dots 
and bold plus markings represent the phase currents during peaking instants. The 
normal dots and plus markings represent the phase currents with amplitudes equal 

to half of the peak value. 
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2.1.3 Parameters of induction motors 

This section defines several well-known parameters of induction motor used in 

the remainder of this thesis.  

2.1.3.1 Voltage and current 

  An induction motor is supplied by a three-phase ac system in which the three-

phase currents are phase-shifted by 120ºe or 2π/3 electrical radians. The three phase 

currents are thus defined as (2.1)[39]. 
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where ia is the current in phase A, ib is the current in phase B, ic is the current in phase C, 

Im is the peak fundamental frequency value of each phase current, ω is the fundamental 

electrical angular frequency in (rad/s), φ is the lag power factor angle in e.rad, and t is 

time (s). Due to the symmetric phase-shift of 120ºe in the phase currents, the sum of the 

three phase currents is zero as given by (2.2). 

 

 0.a b ci i i+ + =  (2.2) 
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The phase voltages are also phase-shifted by 120ºe or 2π/3 e.rad. Considering the 

phase voltage, va, as reference, the three phase voltages are defined as (2.3). 
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where, va is the phase voltage A, vb is the phase voltage B, vc is the phase voltage C, and 

Vm is the peak fundamental frequency value of the phase voltage. In polar form, the three 

phase voltages can be written as (2.4).  
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Again, due to the symmetric phase-shift of 120ºe in the phase voltages, the sum of 

the three phase voltages is zero as given by (2.5). 

 

 0.a b cv v v+ + =  (2.5) 
 

The three-phase voltage system is defined in terms of the phase voltage (vp) or the 

line voltage (vl). The relation between vp and vl is defined in (2.6). 
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 3.l pv v=  (2.6) 
 

 

When the three-phase voltage system is applied to an induction motor, the phase 

currents are phase-shifted from the phase voltages in the lagging direction by the power 

factor angle, φ, which appears to be close to a value of 30º for the classes of 2-hp and 5-

hp motors studied in this thesis, as shown by the phasor diagram in Fig. 2.6, where abV , 

bcV , and caV  are the line-to-line voltages and aV , bV , and cV are the phase voltages.  

 

 

 
Fig. 2.6 – The phasors of the three-phase stator currents and voltages of an 

induction motor. 
 



Chapter 2: Background 
 
 

23

In this case, abV , bcV , and caV  are given by (2.7). 
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It should be pointed out that the peak value of the phase voltage Vm is related to 

the rms value of the phase voltage vrms by a factor 2  as given in (2.8). 
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2.1.3.2 Synchronous speed, asynchronous speed, and slip speed 

  The speed of the magnetic rotating field is the synchronous speed. For a induction 

motor with P poles, the synchronous speed is given in r/min as (2.9). 

 

 120 ,syn
fn

P
=  (2.9) 

 

where, f is the stator frequency in Hertz, and nsyn is the synchronous speed in r/min. 
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However, the rotor rotates at an asynchronous speed, which is slightly slower than 

the synchronous speed. This difference between speeds is called the slip speed and it is 

given as (2.10). 

 ,s sys asynn n n= −  (2.10) 

 

where, nasyn is the asynchronous speed in r/min, and ns is the slip speed in r/min. 

Moreover, the slip speed can also be defined in a per unit system as the slip, spu, as given 

in (2.11). 

 .sys asyn
pu

sys

n n
s

n
−

=  (2.11) 

 
As aforementioned, the synchronous speed of an induction motor connected to a 

constant frequency sinusoidal ac power supply depends on the frequency and number of 

poles. The number of poles is an inherent characteristic of an induction motor, which can 

be typically two, four, six, or eight, etc. On the other hand, the asynchronous rotor speed 

depends not only on the frequency and number of poles, but also depends of the load 

torque. Thus, higher torque results in a higher slip and a slower asynchronous rotor 

speed. Accordingly, an induction motor connected to a constant frequency sinusoidal 

power supply runs only at one asynchronous speed and thus provides no means of speed 

variation/control. In this case, an induction motor can be run only at a constant speed, and 

thus be used in fixed speed applications, such as pumps with constant flow, fans, air 

compressors, conveyor belts with constant speed, mixers, and drills.  
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2.1.3.3 Flux linkage 

  Flux linkage is used in electromagnetic analysis to represent the number of 

magnetic lines crossing an electrical circuit, such as a coil.  The magnetic flux linkage ψ, 

is give as [41]: 

 ,Ndψ φ= ∫  (2.12) 
 
 

where N is the number of turns of a coil, and φ is the magnetic flux in Weber (Wb). Thus, 

the flux linkage is given in Wb-turns. From Faraday’s Law, an electromagnetic force 

(e.m.f), e, is induced in an electrical circuit due to changes with time in the amount of 

flux linkage linking that circuit such that [41, 42]: 

 

 .de
dt
ψ

= −  (2.13) 

 
 

In the same circuit, the flux linkage is proportional to the current, i. In this case, 

the flux linkage is given by: 

 ,Liψ =  (2.14) 
 
 
where L is the self-inductance in Henry. Accordingly, if L is independent of i, the 

following relation can be derived: 
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That is, 

 .d dL
dt dt

iψ
=  (2.16) 

 

Considering the RL series circuit in Fig. 2.7, the voltage equation given in (2.17) 

can be derived [43]. 

 

 div Ri L
dt

= +  (2.17) 

 
 

 

Fig. 2.7 – An RL series circuit 
 

Algebraic manipulations yield the following new expression for flux linkage: 

 

.di dv Ri L Ri
dt dt

ψ
= + = +  

That is, 

,d v Ri
dt
ψ

= −  

or 

( ) .d v Ri dψ = − t  
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Hence, 

 ( ) .v Ri dtψ = −∫  (2.18) 
 
 

Assuming an RL series circuit supplied by a two phase ac voltage supply as 

shown in Fig. 2.8, the voltages and flux linkages of phases a and b can be derived as 

follows: 

.ab a bv v v= −  

That is, 

( ) ( )

( ) ( ) .
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Hence, 

( ) ,ab
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= − +  

or 

( ) ( ).ab
a b ab a b

dd L i i v R i i
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ψ
⎡ ⎤− = = − −⎣ ⎦  

Accordingly, 

 ( ) .ab ab a bv R i i dtψ = − −∫  (2.19) 
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Fig. 2.8 – An RL series circuit supplied by two phases. 
 

The same procedure can be used to obtain the so-called line-to-line flux linkages 

of the phases b to c, ψbc, as well as of the phases c to a, ψca, which can accordingly be 

written as follows, respectively: 

 

 ( ) .bc bc b cv R i i dtψ = − −∫  (2.20) 
 

 

 ( ) .ca ca c av R i i dtψ = − −∫  (2.21) 
 

 

The expressions in (2.19) through (2.21) will be used in the Chapter 3 to 

implement a computation of the air gap torque, and hence torque observer, from 

measured motor terminal currents and voltages. 

 

2.1.3.4 Magnetomotive force (mmf) 

 
The magnetomotive force or mmf is a measure of the strength of a magnetic field. 

Moreover, the mmf is proportional to the number of turns in a coil and the current that 

flows through this coil. Thus, the measure of the mmf in a coil is the ampere-turn or just 

AT of that coil. Thus, 1AT represents 1A circulating in one turn of a coil. Accordingly, 
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more current implies a stronger magnetic field, and more turns also yields stronger 

magnetic field.  

In a three-phase induction motor, the fundamental mmf is given by [44]: 

 

 ( ) ( )1 max
3, cos [AT/pole],
2

F t F tθ θ ω= −  (2.22) 

 
 

where t is time, ω is the angular frequency (velocity) in electrical radians /sec, θ is 

angular displacement of the rotor in electrical radians, and Fmax is the peak value of the 

fundamental component of the mmf, which is given by the following [44]: 

 

 max
4 2 [AT/pole],ph

w
N

F K I
pπ

=  (2.23) 

 
 

where Kw is the winding factor obtained from the electrical design of a motor, Nph is the 

number of series connected turns per phase, p is the number of poles, and I is the rms 

value of the phase current. Even in (2.23), the mmf for an induction motor is still given in 

terms of the number of turns times a current in a similar manner to that of a single coil.  

2.1.3.5 Torque 

Torque is the force needed to turn a shaft times its arm length to the axis of 

rotation. Thus, torque (T) is given by: 

 
 ,T Fr=  (2.24) 
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where F is the force in Newtons (N) applied to a shaft and r is the arm length of the force 

as shown in Fig. 2.9. 

 

 
 
 

Fig. 2.9 – Torque applied to a shaft 
 
 

The torque in an induction motor is produced from the interaction of the resultant 

air gap flux and the mmf (magnetomotive force) of either the stator winding or the rotor 

cage [39]. Torque is produced on the shaft of the motor only if the rotor is running at a 

speed lower than the synchronous speed, i.e. if the slip speed is a nonzero value.  

Many expressions can be used to compute the torque of an induction motor [39, 

43]. Here, the following expression can be used to compute the so-called air gap torque 

profile [19]: 

 ( ) ( ) .
2 3 a b ca c a ab

pT i i i iψ ψ⎡ ⎤= − − −⎣ ⎦  (2.25) 

 
 

Accordingly, substituting from (2.19) and (2.21) the following can be written for 

the air gap torque: 

 

 ( ) ( ) ( ) ( ){ } ,
2 3 a b ca c a c a ab a b

pT i i v R i i dt i i v R i i dt⎡ ⎤ ⎡= − − − − − − −⎣ ⎦ ⎣∫ ∫ ⎤⎦  (2.26) 
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where p is the number of poles and R is the half of the line-to-line resistance for a Y-

connected motor. The first integral represents the flux linkage, ψca, of (2.21), and the 

second integral represents the flux linkage, ψab, of (2.19). 

A typical torque-speed characteristic curve of an induction motor is shown in  

Fig. 2.10. 

 

 

 
Fig. 2.10 – A typical induction motor torque-speed (torque-slip)characteristic curve. 

 

2.2 AC Drives 

The ac drives are electronic devices used to control speed and torque of three-

phase induction motors. An induction motor supplied by an ac drive can operate over a 

wide range of frequency, typically from 0 to 60Hz. This range of frequencies yields rotor 

speeds from 0 r/min to the rated value. Moreover, the ac drive can produce the rated 

torque at any frequency within this range from zero to the rated frequency. This is a 
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powerful characteristic for industrial processes that require torque-speed control. 

Although, the electrical installation of an ac motor-drive system is more expensive than 

an induction motor with a constant frequency sinusoidal power supply, the ac motor-

drive system can control not only the motor speed, but also can control and limit the 

starting torque and current, can adjust the acceleration and deceleration ramps, can 

maintain a constant torque for frequencies from zero to the rated frequency, and protect 

the motor against over voltages and over currents.  

The ac drives consist of three main parts, namely: three-phase full wave rectifier, 

dc bus filter, and pulse width modulation (PWM) inverter. The block diagram of the 

power stage of an ac drive is shown in Fig. 2.11.  

 

 

Fig. 2.11 – A functional block diagram of an ac drive 
 
 

The three-phase full wave rectifier converts the three-phase as voltage of the 

power supply into dc voltage. Although ac drives are usually supplied by a three-phase 

power supply, there are also ac drives supplied by single phase ac power supplies to 

control three-phase induction motors. The power electronic devices used in this portion 

of the ac drive can be either diodes or SCR (silicon controlled rectifier) [39, 45]. 
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Although the output of a rectifier is dc, it is not ideal, i.e. the dc voltage contains ripples. 

Thus, a dc bus filter at the second stage is used to reduce the ripple content of the dc bus 

voltage. The third and last stage is a PWM inverter which converts the dc voltage from 

the dc bus filter into three-phase balanced ac voltage. The operating frequency and 

magnitude of this three-phase ac voltage applied to the motor terminals can be controlled 

in order to maintain the developed torque of the motor constant from zero to rated 

frequency. The power electronic devices that constitute the switches in a PWM inverter 

for ac drives are in most cases the so-called IGBT (insulated gate bipolar transistor) [39, 

46, 47], due to their high current capability, very low control power, high frequency 

commutation, and low losses. The schematic circuit switching-element diagram of an ac 

drive is shown in Fig. 2.12. 

 

 

Fig. 2.12 – A circuit schematic diagram of an ac drive 
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The PWM technique generates rectangular wave forms with modulated width in 

order to obtain variable voltage and frequency to supply an induction motor. The control 

stage of an ac drive generates a triangular and a sinusoidal wave as shown in Fig. 2.13.  

 

 

Fig. 2.13 – The PWM control signal and phase Va voltage. 
 
 

The triangular wave is called carrier wave Vcarrier and its frequency is called the 

carrier frequency. The carrier frequency typically assumes values of 4, 8, 12 or 16 kHz. 

According to Fig. 2.13, the phase voltage Va of a PWM inverter output is positive each 

time that the sine wave from the control stage Vcontrol is greater than the triangular wave, 

and zero otherwise. This control yields a rectangular wave in Va with modulated width, in 

which the fundamental component is a sine wave as shown in Fig. 2.13.  

The amplitude and frequency modulation of Vcontrol is used to control the 

amplitude and frequency of Va. The amplitude modulation of Vcontrol results in pulse width 

modulation in Va in such a manner that the amplitude of the fundamental component of 
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Va will follow the amplitude modulation of Vcontrol. Accordingly, if the amplitude of 

Vcontrol increases, the width of pulses in Va will be larger and the amplitude of Va will also 

increase. Additionally, a frequency modulation in Vcontrol results in a proportional 

modulation in the frequency of Va applied to the induction motor. This modulation 

process described above for Va is repeated to other phase voltages Vb and Vc in order to 

obtain a balanced three-phase ac set of voltages which are phase-shifted by 120º or 2π/3. 

The resulting line voltages Vab, Vbc, and Vca from the output of the ac drive applied to the 

induction motor are also rectangular waveforms.  The phase voltages Va and Vb and the 

resulting line voltage Vab, as well as the fundamental component of Vab of an PWM 

inverter with carried frequency of 1kHz and fundamental component of 60Hz is shown in 

Fig. 2.14. 
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Fig. 2.14 – Typical phase voltages Va and Vb, and line voltage Vab of a PWM inverter 
with carrier frequency of 1 kHz and fundamental component of 60Hz. 
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The ac drives have the capability to develop the rated torque of an induction 

motor for a range in frequency from around 0 Hz to the rated frequency, typically 50 or 

60 Hz. Moreover, such drives can run an induction motor beyond the rated frequency. 

However, in this case the drive can not maintain the rated torque. The typical torque 

curve for an induction motor operating with an ac drive is depicted in Fig. 2.15. Thus, an 

ac drive can start a motor at maximum torque, in such manner that high starting currents 

are not generated. Thus, the life of the induction motor machine can be increased [39].  

 

 

Fig. 2.15 – Typical curve of torque-speed control of an induction motor-drive system 
 

An ac drive can have the following control strategies [39]: 

• Scalar control constant volts per Hertz 

• Vector or field oriented control (FOC) 

• Sensorless vector control (SVC) 
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• Direct torque and flux control (DTC) 

This thesis focuses on the scalar constant volts per Hertz control because part of 

the experimental verifications of the new methods presented in this thesis was obtained 

for ac drives operating under scalar control. 

The most common scalar control method is the open loop constant Volts/Hz 

control. This control strategy yields inferior performance compared to the other 

aforementioned control strategies. However, scalar control is easily implemented. The 

fundamental idea of scalar control is to keep constant the ratio between voltage and 

frequency applied to the induction motor [39]. This constant ratio Volts/Hz results a 

constant air gap flux and consequently a constant torque for constant magnitudes of stator 

and rotor currents for operating frequencies from zero to the rated frequency.  

Scalar controls can operate in open loop and closed loop. The open loop scalar 

control is the most popular control strategy for ac drives due to its simplicity [39]. The 

control of the motor speed and torque are based on reference values. On the other hand, 

the closed loop scalar control yields a better performance that the open loop version, 

because a speed sensor is used to correct the deviation between the reference value and 

real value of speed in order to obtain a more precise control of speed and a faster torque 

perturbation response.  

2.3 Induction Motor Faults 

Although induction motors are reliable electric machines, they are susceptible to 

many electrical and mechanical types of faults. Electrical faults include inter-turn short 
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circuits in stator windings, open-circuits in stator windings, broken rotor bars, and broken 

end rings, while mechanical faults include bearing failures and rotor eccentricities, see 

Fig. 2.3. The effects of such faults in induction motors include unbalanced stator voltages 

and currents, torque oscillations, efficiency reduction, overheating, excessive vibration, 

and torque reduction [4]. Moreover, these motor faults can increase the magnitude of 

certain harmonic components. 

This thesis is focused on two types of electrically detectable induction motor 

faults, namely: inter-turn short circuits in stator windings and broken rotor bars. These 

two types of faults in induction motors are discussed in the next section.  

2.3.1 Broken rotor bars 

As shown in Fig. 2.3, the squirrel cage of an induction motor consists of rotor bars 

and end rings. A broken bar can be partially or completely cracked. Such bars may break 

because of manufacturing defects, frequent starts at rated voltage, thermal stresses, and/or 

mechanical stress caused by bearing faults and metal fatigue [4].  

A broken bar causes several effects in induction motors. A well-know effect of a 

broken bar is the appearance of the so-called sideband components [4, 9, 10]. These 

sidebands are found in the power spectrum of the stator current on the left and right sides 

of the fundamental frequency component. The lower side band component is caused by 

electrical and magnetic asymmetries in the rotor cage of an induction motor [9], while the 

right sideband component is due to consequent speed ripples caused by the resulting 

torque pulsations [4, 16]. The frequencies of these sideband are given by: 
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 ( )1 2 ,bf s f= ±  (2.27) 
 

 

where s is the slip in per unit and f is the fundamental frequency of the stator current 

(power supply). The sideband components are extensively used for induction motor fault 

classification purposes [9, 10, 20, 29, 48]. Other electric effects of broken bars are used 

for motor fault classification purposes including speed oscillations [16], torque ripples 

[19], instantaneous stator power oscillations [24], and stator current envelopes [49].  In 

this thesis, the fault monitoring method is based on torque ripples for broken bar 

detection, while the fault diagnostic method is based on the three-phase stator current 

envelope for classification of broken rotor bars and inter-turn short circuits. These 

induction motor features, stator current envelopes and air gap torque profiles, are 

discussed in the section 2.4. 

2.3.2 Inter-turn short circuits 

Inter-turn short circuits in stator windings constitute a category of faults that is 

most common in induction motors. Typically, short circuits in stator windings occur 

between turns of one phase, or between turns of two phases, or between turns of all 

phases. Moreover, short circuits between winding conductors and the stator core also 

occur. The different types of winding faults are summarizes below as follows [37]: 

• Inter-turn short circuits between turns of the same phase (see Fig. 2.16a), 

winding short circuits (see Fig. 2.16b) , short circuits between winding and 

stator core (see Fig. 2.16c and Fig. 2.16d), short circuits on the 
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connections (see Fig. 2.16e), and short circuits between phases (see Fig. 

2.16f) are usually caused by stator voltage transients and abrasion.  

 

 

 

Fig. 2.16 – Typical insulation damage leading to inter-turn short circuit of the stator 
windings in three-phase induction motors. (a) Inter-turn short circuits between 
turns of the same phase. (b) Winding short circuited. (c) Short circuits between 
winding and stator core at the end of the stator slot. (d) Short circuits between 

winding and stator core in the middle of the stator slot. (e) Short circuit at the leads. 
(f) Short circuit between phases. [Courtesy of Electromotors WEG SA, Brazil] 

 



Chapter 2: Background 
 
 

41

• Burning of the winding insulation and consequent complete winding short 

circuits of all phase windings which are usually caused by motor 

overloads and blocked rotor, as well as stator energization by sub-rated 

voltage and over rated voltage power supplies. This type of fault can be 

caused by frequent starts and rotation reversals. These faults are shown in 

Fig. 2.17a and Fig. 2.17b.  

• Inter-turn short circuits are also due to voltage transients as shown in Fig. 

2.17c that can be caused by the successive reflection resulting from cable 

connection between motors and ac drives. Such ac drives produce extra 

voltage stress on the stator windings due to the inherent pulse width 

modulation of the voltage applied to the stator windings. Again, long cable 

connections between a motor and an ac drive can induce motor over 

voltages. This effect is caused by successive reflections of transient 

voltage [1]. 

• Complete short circuits of one or more phases can occur because of phase 

loss, which is cause by an open fuse, contactor or breaker failure, 

connection failure, or power supply failure. Such a fault is shown in Fig. 

2.17d and Fig. 2.17e. 

• Short circuits in one phase are usually due to an unbalanced stator voltage, 

as shown in Fig. 2.17f. An unbalanced voltage is caused by an unbalanced 

load in the power line, bad connection of the motor terminals, or bad 

connections in the power circuit. Moreover, an unbalanced voltage means 
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that at least one of the three stator voltages is under or over the value of 

the other phase voltages. 

 

 

Fig. 2.17 - Inter-turn short circuit of the stator winding in three-phase induction 
motors. (a) Short circuits in one phase due to motor overload (b) Short circuits in 

one phase due to blocked rotor. (c) Inter-turn short circuits are due to voltage 
transients. (d) Short circuits in one phase due to a phase loss in a Y-connected 

motor. (e) Short circuits in one phase due to a phase loss in a delta-connected motor. 
(f) Short circuits in one phase due to an unbalanced stator voltage. [Courtesy of 

Electromotors WEG SA, Brazil] 
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The motor fault diagnostic method presented in this thesis is developed for inter-

turn short circuits in one phase of the stator windings. This type of fault is referred to as 

inter-turn short circuit throughout the thesis.  

The two induction motor features, three-phase stator current envelope and air gap 

torque profile, which are used for broken bars and inter-turn short circuit classification 

are discussed next.  

2.4 Induction Motor Features Used in the Diagnostic and 
Monitoring Methods 

This section discusses the features of induction motors used in the diagnostic and 

monitoring methods to classify motor faults. The diagnostic method classifies broken 

rotor bars and inter-turn short circuits in stator windings and also identifies the fault 

severity. The classification process of this method is based on signatures that represent 

the healthy and faulty operating conditions of an induction motor. Such signatures are 

built from a feature of induction motors referred to as the envelope of the three-phase 

stator currents. Meanwhile, the monitoring method is a robust technique that classifies the 

operating condition of an induction motor as either healthy or faulty. The classification 

process of this method is the same as that of the diagnostic method. However, the feature 

of induction motors used to build the signatures in this monitoring method is the air gap 

torque profile.  

The three-phase stator current envelope and the air gap torque profile associated 

with broken bars and inter-turn short circuits are discussed in the next two sections. 



Chapter 2: Background 
 
 

44

2.4.1 The three-phase stator current envelope 

An envelope is the geometric “line shape” of a modulation in the amplitude of the 

three-phase stator currents due to motor faulty conditions. Here, in this work, these fault 

conditions are broken rotor bars and inter-turn short circuits in stator windings.  

Broken bars produce in the three-phase stator currents a phenomenon called 

“envelope”. This “envelope” phenomenon is cyclically repeated at a rate equal to twice 

the slip frequency given by 2spuf, where the slip in per unit, spu, is as defined in (2.11), 

and f is the frequency of the power supply, see Fig. 2.18. The principle of the “envelope” 

can be explained through a comparison between the behavior of a healthy and a faulty 

rotor. A healthy rotor has a rotating magnetic field nature that possesses a perfect 

periodic profile over a two pole pitch, leading to a circular trace of the magnetic field’s 

space vector. However, once a rotor develops a single broken bar, the above mentioned 

periodical profile is no longer observed over the two pole pitches of the rotor containing 

the broken bar, due to the fact that no induced current can flow in the broken bar [7, 27]. 

Consequently, the magnetic field’s neutral plane orientation deviates from the position 

for the healthy case, resulting in an angular shifting in the rotor magneto-motive force 

(mmf) waveform. This angular shifting is a function of the number of broken bars and the 

geometric distribution of the broken bars around the rotor. Moreover, this angular shifting 

varies with time in a cyclical manner as explained in [7, 27]. The distortion of the rotor’s 

magnetic field orientation and the resulting local saturation in the rotor laminations 

around the region of the broken bars lead to a quasi-elliptical trace of the magnetic field’s 

space vector. Consequently, these effects modulate in a sequential manner the three phase 
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stator currents. The modulation of the three phase stator current is the so-called envelope. 

In this work, this envelope is the feature used for the induction motor fault diagnostic 

method. The envelope resulting from the modulation of the three phase stator current for 

a period equivalent to one slip cycle for a faulty 5-hp induction motor with four broken 

bars is shown in the experimentally obtained results plotted in Fig. 2.18.  

 

 

Fig. 2.18 - One slip cycle of the three phase stator current envelope for a three-
phase, 460V, 60-Hz, 6-pole, 5-hp squirrel-cage induction motor with four broken 

bars under rated load. 
 

On the other hand, inter-turn short-circuits cause a profile modification of the 

three phase stator current leading to an envelope cyclically repeated at a rate equal to the 

power frequency (f). Moreover, an inter-turn short-circuit mainly affects the stator current 
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of the faulty phase in both profile and peak value.  The other stator currents of the healthy 

phases are affected to a lesser degree. Thus, the stator current profile of each phase is not 

equally effected by the fault. This three phase stator profile modulation is referred to here 

as the envelope. Again, the frequency of repetition of this envelope is the power 

frequency, f. It is not a function of the slip frequency, spuf, which is associated with 

broken bar faults. The resulting envelope of the three phase stator currents for the same 5-

hp induction motor with four inter-turn short-circuits, without broken bars, 

experimentally obtained under rated load is shown in Fig. 2.19. 

 

 

Fig. 2.19 - Three phase stator current envelope for a three-phase, 460V, 60-Hz, 6-
pole, 5-hp squirrel-cage induction motor with four inter-turn short circuits under 

rated load. 
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2.4.2 The air gap torque profile 

 
The air gap torque profile of an induction motor with broken bars is modulated 

proportionally to the three-phase stator current. The three-phase current envelope 

produces oscillations in the torque profile of an induction motor with broken bars that is 

cyclically repeated at the same rate 2spuf of the envelope in faulty motors. Such a 

relationship between the three-phase stator currents and torque can be seen in (2.26), in 

which the air gap torque is dependent of the three-phase stator current. The air gap torque 

profile for the same case-study induction motor of Fig. 2.18 under the same operating 

conditions is shown in Fig. 2.20. It is important to observe the same envelope 

characteristic in both signals, i.e. the frequency of the envelope and the oscillations of air 

gap torque are the same.  

The amplitude of the envelope and of the air gap torque is proportional to the 

motor load. If the motor is loaded, the amplitude of the envelope and of the air gap torque 

increases. Thus, the profile modulations of the envelope and torque are more evident. For 

the no load case, the amplitude of the envelope and the torque oscillations are very low.  

The frequency of the air gap torque oscillations for an induction motor with 

broken bars is twice the slip frequency [50]. Thus, the period of these oscillations Ttorque 

is given by (2.28) and is shown in Fig. 2.20. 

 

 1 ,
2torque

pu
T

s f
=  (2.28) 
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where f is the power supply and spu is the per unit slip. Accordingly, the frequency of the 

air gap torque oscillations for faulty motors is load dependent. Thus, if the motor is 

loaded, the asynchronous speed (rotor speed) decreases, the slip increases, and the period 

of the torque oscillations increases. 
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Fig. 2.20 – Air gap torque profile for a three-phase, 460V, 60-Hz, 6-pole, 5-hp 
squirrel-cage induction motor with four broken bars under rated load, at 

1165r/min. 
 

 
 

In conclusion, a review of basic concepts about induction motors and ac drives, as 

well as two types of induction motor faults, namely broken rotor bars and inter-turn short 

circuits in stator windings has been presented. Moreover, the physical phenomenon 
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associated with each of these faults was described, and two features of the induction 

motor performance resulting from these faults were presented. The feature used in the 

motor fault diagnostic method is the three-phase stator current envelope, while the feature 

used in the motor fault monitoring method is the air gap torque profile.  

The next chapter presents two methods to obtain the rotor speed and the air gap 

torque profile from the stator current and voltage signals, which are part of the 

monitoring method. Additionally, the machine learning techniques, which are used in 

both the monitoring and diagnostic methods, are presented in the next chapter.  

 



Chapter 3: Induction Motor Features and AI Techniques 
 
 

50

Chapter 3 Induction Motor Features and AI Techniques 

 

 

CHAPTER 3 
 

Speed and Torque Observers and 

Machine Learning Techniques 

 
This chapter describes the procedures to implement an air gap torque observer and 

a rotor speed observer. Both observers are used in the monitoring method. Moreover, an 

overview of the machine learning techniques used in both the diagnostic method and the 

monitoring method are presented in this chapter.  

Observers are used to substitute real sensors in several applications, such as 

vector control of ac drives and motor fault classification methods. Vector control of ac 

drives frequently requires speed or position sensors, while motor fault classification 

methods may require torque, speed, vibration, flux linkage, or temperature sensors. 

However, the use of physical sensors in these applications has some disadvantages, which 

include extra installation and maintenance costs, reliability problems, physical 
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limitations, and sensor cost. An alternative to this problem is to substitute these sensors 

by observers that mathematically estimate unknown variables from known variables. 

Thus, speed and torque observers for a motor-drive system can estimate speed and 

torque, respectively, from the available stator current and voltage signals. A torque 

observer and a rotor speed observer are discussed in the next two sections. 

3.1 The Air Gap Torque Observer 

A torque observer estimates the torque profile of an induction motor from stator 

currents and voltages. This estimation can be performed online in the order of 

milliseconds. Thus, a torque meter can be substituted by a torque observer even in 

applications that require fast torque measurements.  

Torque is usually calculated in the literature using several induction motor 

parameters that are not easily obtained [39, 43]. These parameters include the mutual 

inductances between rotor and stator windings, the inertia of the rotor, the rotor speed, 

and the rotor angular displacement. However, a torque observer can be based only on the 

stator voltages and currents of an induction motor [19, 51-55]. The stator currents and 

voltages are signals usually available, especially in motor-drive applications. The main 

equation for an air gap torque observer based exclusively on the stator voltages and 

currents is derived next. 

The air gap torque of a three-phase induction motor is given by [51, 54]: 

 

 ( ) ( ) ( ,
2 3 a c b b a c c b a

pT i i iψ ψ ψ ψ ψ ψ⎡ ⎤= − + − + −⎣ ⎦)  (3.1) 
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where p is the number of poles, ia, ib, and ic are the three-phase stator currents, and ψa, ψb, 

and ψc are the flux linkage of windings a, b, and c, respectively. See Appendix A for 

further details on the torque in (3.1). 

Algebraic manipulations in (3.1) yield (3.2). 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 3

.
2 3

a c b a a b a c c b a

a c a a a b b c a c a b

pT i i i

pT i i i i

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

⎡ ⎤= − − + + − + −⎣ ⎦

⎡ ⎤= − + − − − − −⎣ ⎦

 

 

Hence, one can write the following: 

 

[ ],
2 3 a ca a ab b ca c ab

pT i i i iψ ψ ψ ψ= + − −  

 

where: 

.
ca c a

ab a b

ψ ψ ψ
ψ ψ ψ

= −

= −
 

 

Hence, 

 ( ) ( ) .
2 3 ca a b ab c a

pT i i iψ ψ i⎡ ⎤= − − −⎣ ⎦  (3.2) 
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Substituting the flux linkages of the phases c and a given by (2.21) and the flux 

linkages of the phases a and b given by (2.19) into (3.2), the air gap torque is expressed 

as given in (2.26) and repeated in (3.3) for convenience as follows: 

 

 ( ) ( ) ( ) ( ){ } ,
2 3 a b ca c a c a ab a b

pT i i v R i i dt i i v R i i dt⎡ ⎤ ⎡= − − − − − − −⎣ ⎦ ⎣∫ ∫ ⎤⎦  (3.3) 

 
 

where R is half of the line-to-line resistance, i.e. the phase resistance. Equation (3.3) is 

valid for Y-connected induction motor. However, for a delta connected induction motor, 

R must be divided by three [19].  

 Additionally, from (2.2) the phase current ib can be rewritten as  

 

 ( ).b a ci i i= − +  (3.4) 
 
 

Substituting (3.4) into (3.3), the equation of the air gap torque is expressed as 

(3.5), in which only two voltage sensors and two current sensor are required to calculate 

torque. 

 

 ( ) ( ) ( ) ( ){ }2 2
2 3 a c ca c a c a ab a c

pT i i v R i i dt i i v R i i⎡ ⎤ ⎡= + − − − − − +⎣ ⎦ ⎣∫ ∫ .dt⎤⎦  (3.5) 

 

This expression for torque can be easily computed in MATLAB® [56]. However, 

the integral can yield some difficulty. Thus, two considerations can be made. First, any dc 
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component in the voltages, currents, and flux linkages must be eliminated while the 

torque is being computed. Second, the integral can be computed by numerical integration 

using trapezoidal rule [57]. However, other methods such as rectangle rule and Simpson’s 

rule can also be used [57]. The main key is to calculate the torque for each period of the 

stator phase current, instead of for each single data point or for larger (more than one 

period of current) amount of data. The pseudo-code of the air gap torque observer is 

shown in Fig. 3.1. 

 

 

1. Eliminate dc offset of vca, vab, ia, and ic. 

2. Calculate ψca and ψab, using trapezoidal rule. 

3. Build two vector ψca and ψab with the area calculated for each data point 

4. Calculate the number of data points k for one period of ia. 

5. Sum the k points of ψca and ψab , respectively. 

6. Calculate the air gap torque by (3.5).  

 

Fig. 3.1 – Pseudo-code of the air gap torque observer. 
 

 

The air gap torque of a three-phase, 460V, 60-Hz, 2-poles, 2-hp squirrel-cage 

induction motor with five broken bars simulated using a finite element method (from a  

commercial software MAGSOFT) is shown in Fig. 3.2. This torque signal is directly 

obtained from the simulation. For comparison purposes, the three-phase stator currents 

and voltages obtained from the simulation of the above mentioned 2-hp induction motor 
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were used to calculate the air gap torque using the air gap torque observer. The torque 

signal calculated from the torque observer is shown in Fig. 3.3. The difference (error) 

between the signals of the Fig. 3.2 and Fig. 3.3 is shown in Fig. 3.4. The mean value of 

this error is 0.0443Nm, while the mean value of the torque simulated by FE method is 

4.37Nm and the mean value of the estimated torque calculated by the air gap torque is 

4.32Nm. Meanwhile, the mean square error between the torque simulated by FE method 

and the torque estimated by the torque observer is 0.0343Nm2 and the respective root 

mean square error is 0.1852Nm. Additionally, the per unit error, epu, can be calculated as 

follows: 

 

 ,pu
T Te

T
−

=  (3.6) 

 
 

where T is the air gap torque simulated by FE methods, and is the air gap torque 

estimated by the torque observer. The resulting per unit error, e

T

pu, of the signals shown in  

Fig. 3.2 and Fig. 3.3 is 1.01%, which demonstrates that both signals (T and ) are very 

close. This experiment validates the efficacy of this air gap torque observer for fault 

monitoring purposes. 

T
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Fig. 3.2 – Air gap torque profile for a three-phase, 460V, 60-Hz, 2-pole, 2-hp 
squirrel-cage induction motor with five broken bars under rated load simulated by 

finite element method. 
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Fig. 3.3 - Air gap torque profile for a three-phase, 460V, 60-Hz, 2-pole, 2-hp 
squirrel-cage induction motor with five broken bars under rated load calculated by 

the air gap torque observer using the three-phase stator currents and voltages 
obtained from the simulation. 
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Fig. 3.4 – Error between the air gap torque obtained from finite element simulations 
and the air gap torque calculated by the torque observer using the three-phase 

stator and currents obtained from the simulations. 

3.2 The Speed Observer 

Speed observers typically estimate the rotor speed of an induction motor from 

easily acquired data, such as the three-phase stator voltages and currents. There are 

several methods to estimate rotor speed [39]. These methods can be divided into two 

groups, namely: (1) methods based on motor mathematical models, and (2) methods 

based on power spectral density. The methods based on motor mathematical models are 

the following: 

• Slip calculation [39, 58] 

• Direct synthesis from state equations [39] 

• Model referencing adaptive system (MRAS) [39, 59] 
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• Speed adaptive flux observer [39, 59] 

• Extended Kalman filter (EKF) [39, 60] 

While the methods based on power spectral density are: 

• Rotor Slot Harmonics (RSH) [61-63] 

• Injection of auxiliary signal [39, 64]  

The speed observer used in the monitoring method in this thesis is based on rotor 

slot harmonics (RSH) because this method is easily implemented and is relatively 

accurated. Additionally, it does not require motor parameters and motor mathematical 

models. Moreover, this RSH-based speed observer is insensitive to motor parameter 

changes with frequency, temperature, or any other external disturbance. This speed 

observer uses the fast Fourier transform (FFT) [65] of only one phase stator current to 

detect the rotor speed at any load condition and over a wide range of speeds. Many 

improvements of speed observers based on rotor slot harmonic have been proposed in the 

literature [61-63, 66-69]. The principle of a rotor slot harmonics is discussed next. 

The rotor slots (or bars) produce a variation in the air gap permeance even if the 

slip, s, of an induction motor is zero. Air gap permeance is a measurement of the 

capability of the air gap to facilitate or impede the passage of magnetic flux. For 

clarification, the product of the air gap mmf and the air gap permeance, Pag, [63] produces 

the air gap flux and flux density, BBag. Thus, the air gap permeance interacts with the 

fundamental component of the air gap mmf to yield BagB . However, if the motor is loaded 

implying a slip greater than zero (s > 0), squirrel-cage bar currents circulate in the rotor 



Chapter 3: Induction Motor Features and AI Techniques 
 
 

59

slots resulting in the rotor slot harmonics (RSH) which will also interact with BBag, which 

will be modulated at the rotor slot harmonic frequency fsh (in Hz) given in (3.7) [61-63]. 

 

 0,sh r
Zf f f
p

= ±  (3.7) 

 
 

where Z is the number of rotor bars, p is the number of pole pairs, and fr = sf0 is the rotor 

frequency in Hz, where f0 is the power frequency supply also in Hz. It can be seen from 

(3.7) that fsh is only a function of the rotor speed, while the other terms are constants. 

Then, BBag induces an electro-motive force (emf) in the stator winding in such a manner 

that the rotor slot harmonics are reflected in the stator currents. Thus, a power spectrum 

analysis of the stator currents can be used to identify the RSH in order to obtain the rotor 

speed. With the rotor slot harmonic principle stated, the method to detect the rotor speed 

of an induction motor using a speed observer based on rotor slot harmonic analysis can 

be presented. 

The speed identification process is based on analysis of the FFT of only one phase 

stator current. Thus, the first step is to compute the FFT of any one of the three phase 

stator currents. The first search in the power spectrum of the phase current identifies the 

power frequency supply f0, which is the frequency component with the highest energy. 

The second step determines a window in the power spectrum to search for the RSH. This 

maximum frequency of the searching window fsh0 is given in (3.8). 
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 0 ,sh
Z

0f f
p

α
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (3.8) 

 
 

where α is order of the air gap flux density harmonic that can be 1 or -3 [61-63]. The 

width of the window Δfsh is given in (3.9). 

 

 

0 ,

sh o

syn RATED
sh

syn

Zf sf
p

n n Zf f
n p

Δ =

⎛ −
Δ = ⎜ ⎟⎜ ⎟

⎝ ⎠

⎞  (3.9) 

 
 
where s is the slip, nsys is the synchronous speed, and nRATED is the rated asynchronous 

speed, which is found on the nameplate of an induction motor. Thus, the window is 

defined in the interval [(fsh0 - Δfsh), fsh0]. This window is important to limit the search for 

the RSH to a small range of the power spectrum in order to minimize errors and improve 

computational performance. The third step is the search for the rotor slot harmonic fsh in 

the aforementioned window. The rotor slot harmonic is the frequency with the highest 

energy that is not an integer multiple of the power frequency f0. The last step is to 

calculate the rotor speed fr in Hz and the rotor speed n in r/min. There are two methods to 

calculate the rotor speed. The first method is used for induction motors in which the ratio 

Z/p is an integer. In this case, fr is calculated as follows: 

 

 ( 0 .r sh
p )f f f
Z

α= +  (3.10) 
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The relation between the rotor frequency, fr, and n is given by: 

 

 60 .rn f
p

=  (3.11) 

 
 

Thus, substituting (3.10) into (3.11) yields the rotor speed, n, as follows: 

 

( )0
60

sh
pn f

p Z
α f⎡ ⎤= +⎢ ⎥⎣ ⎦

 

 ( 0
60 .shn f f )
Z

α= +  (3.12) 

 
 

The second method for computing n is used for induction motors in which the 

ratio Z/p is not necessarily an integer. Initially, this method estimate the slip frequency, 

Δfr, as given by (3.13) assuming α=1: 

 

 ( 0 .r sh s
p )hf f f
Z

αΔ = −  (3.13) 

 

Considering that, 

 

 60 ,rn
p

fΔ = Δ  (3.14) 

 



Chapter 3: Induction Motor Features and AI Techniques 
 
 

62

the slip speed, Δn, in r/min can be obtained by substituting (3.13) into (3.14). Thus, Δn is 

obtained as follows: 

( )0
60

sh sh
pn f f

p Z
α⎡ ⎤Δ = −⎢ ⎥⎣ ⎦

 

 

 ( 0
60 .)sh shn f f
Z

αΔ = −  (3.15) 

 

Thus, the rotor speed, n, can be calculated as follows: 
 

 
 .synn n n= −Δ  (3.16) 

 

This method is now illustrated for a three-phase, 2-hp, 2-pole, 36 rotor bars, 

squirrel cage induction motor, operating at 80% of rated torque. The nameplate rated 

speed, nRATED, is 3450 r/min. The power spectrum of the stator current is shown in Fig. 

3.5. The frequency with the highest energy (highest peak in the graph) is the power 

frequency f0 that was identified at 59.96Hz. 

The maximum frequency of the searching window fsh0 is thus calculated as 

follows: 

 

 

0 0

0

0

36 1 59.96
1

2098.6 2100 .

sh

sh

sh

Zf f
p

f

f Hz

α
⎛ ⎞
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⎝ ⎠

⎛ ⎞= −⎜ ⎟
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=

 (3.17) 
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Fig. 3.5 – Power spectrum of the stator current of a three-phase, 2-hp, 2-pole, 

squirrel cage induction motor running at 80% of rated torque. 
 

The width of the window, Δfsh, is thus calculated using (3.9) as follows: 

 

 
3600 3450 36 59.96

3600 1
89.94 90 .

sh

sh

f

f H

−⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

Δ = z
 (3.18) 

 

Accordingly, the window [(fsh0 - Δfsh), fsh0] is [2010Hz, 2100Hz]. This power 

spectrum of the stator phase current restricted to this window is shown in Fig. 3.6. The 

frequency with the maximum energy, which is not an integer multiple of the power 

frequency, f0, was found at 2047.3Hz. 
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Fig. 3.6 – Power spectrum of the window [2010Hz, 2100Hz] for the stator current of 
a three-phase, 2-hp, 2-pole, squirrel cage induction motor running at 80% of rated 

torque. 
 

The ratio Z/p for this motor with Z = 2 and p = 2 is an integer. Thus, the rotor 

speed can be calculated using the two methods mentioned above. The first approach 

using (3.12) gives the result shown in (3.19). 

 

 
( )

( )

0
60

60 2047.3 59.96 3512.1rpm.
36

shn f f
Z

n

α= +

= + =
 (3.19) 

 

The second approach using (3.15) and (3.16) yields the following results: 
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( )

( )

0
60

60 2100 2047.3 87.8
36

sh sh

syn

n f f
Z

n r

n n n

αΔ = −

Δ = − =

= −Δ

pm  

 3600 87.8 3512.2rpm.n = − =  (3.20) 
 

 

Accordingly, both approaches yielded almost identical results. Meanwhile, the 

measured rotor speed for the induction motor of this example operating in the 

aforementioned condition was 3513 r/min. This test was repeated for different motor 

loads and the results are shown in Table 3.1. This table compares the measured speed and 

the estimated speed with the speed observer based on RSH. Moreover, the error between 

these two speeds was computed. 

 

Table 3.1 – Speed estimated by a speed observer for a 2-hp, 2-pole, induction motor. 
 

2hp – 2poles – 60Hz – 36 rotor bars – Sine Excitation 
Torque Measured speed Estimated speed Error (%) 

50% 3545 3533.2 0.33 
80% 3513 3512.2 0.02 
87% 3505 3504.7 0.008 
93% 3500 3498.8 0.03 
100% 3494 3500.6 0.2 

 

The next two sections discuss the machine learning techniques used in the 

diagnostic and monitoring methods. These techniques are called reconstructed phase 

space (RPS) and Gaussian mixture models (GMM). 
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3.3 The Reconstructed Phase Space 

The signatures of the diagnostic and monitoring methods in this thesis are 

Gaussian mixture models obtained from the phase space reconstruction of the signals 

under investigation. These signals are digitized in order to generate a time series, which is 

expressed as follows [34]: 

 

 , 1...n ,x x n N= =  (3.21) 
 

 

where, x, is the time series and xn is the instantaneous value of the signal for each 

sampled data point, n. Each data point is recorded at a rate given by the sampling 

frequency, fs, which results in a constant interval of time between two consecutive data 

points called the time sampling, τs. The sampling frequency fs is expressed as follows: 

 

 1 .s
s

f
τ

=  (3.22) 

 
 

The frequency, fs, must be at least twice the highest frequency of the signal in 

order to avoid aliasing distortions [65]. This factor is called the Nyquist rate. 

Here, Fig. 3.7 shows the phase (a) stator current, ia, of a 5-hp induction motor. 

This signal was sampled at 1kHz, which corresponds to a time sampling of 1ms. 

Therefore, this sampling frequency yielded 1000 data points per second, i.e. one data 

point per millisecond. Each data point is represented in Fig. 3.7 as a dot. Higher 



Chapter 3: Induction Motor Features and AI Techniques 
 
 

67

frequency sampling yields a higher number of data points and higher signal resolution. 

However, the computational requirements to analyze this signal will increase with higher 

signal resolution. Thus, the sampling frequency selection should be based on the required 

resolution of the signal and the desired computational accuracy/performance. Again, the 

resolution of the signal is associated with the Nyquist rate, i.e. fs must be greater than 

twice the highest frequency of the signal. The sampling frequency of the signal shown in 

Fig. 3.7 is 1000Hz and the frequency of the fundamental component of this signal is 

60Hz. Thus, fs is greater than twice the frequency of the signal, and accordingly aliasing 

distortion is not expected.  
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Fig. 3.7 – Stator current sampled at 1kHz. 
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The time series are used to reconstruct the phase space of a signal. A 

reconstructed phase space (RPS) is a technique used to observe the dynamics of a signal 

xn in a dimension greater that one. For instance, the one-dimensional representation of a 

signal is that obtained from a data acquisition system. The RPS projects the dynamics of 

an acquired signal in different coordinates. The number of coordinates to correctly 

reconstruct the phase space of the signal is the dimension, d [34, 35]. Specifically, instead 

of analyzing the dynamics of a signal in the conventional one-dimensional coordinate 

system, the dynamics of this signal can be reconstructed in a higher dimensional order d, 

where each coordinate is delayed in time, τ, from the present observation xn [35]. This 

time τ is called the time lag. Thus, the new coordinates of the RPS are composed by the 

present signal xn and by early observations of the system, such as xn-τ and xn-2τ. 

Accordingly, an RPS is defined as follows: 
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(3.23) 

 
 

where N is the number of data points of the signal, d is the dimension, and τ is the time 

lag.  

The time lag is calculated by the automutual information function, I(τ), which is 

given as follows [35, 70]: 
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where P(xn,xn+τ) is the joint probability density for the for the signal xn and xn+τ, which is 

delayed from xn by a time lag, τ, P(xn) and is the individual probability density for the 

signal xn, at the instant, n, and P(xn+τ) is the individual probability density for the signal 

xn+τ, at the instant, n+τ. Thus, xn and xn+τ are the same signal delayed from each other by a 

time lag, τ. If xn is independent of the xn+τ, then P(xn, xn+τ) becomes P(xn)P(xn+τ), and the 

automutual information is zero. The time lag, τ, that results in the first minimum of the 

automutual information, is chosen as the time delay to reconstruct the phase space of the 

signal, xn. 

The automutual information function is optimal for a dimension of two. Methods 

for calculating τ for higher dimensions are not currently known, thus, the time lag, τ, is 

calculated before the dimension, d. 

In the diagnostic and monitoring methods, the time lag is chosen when the first 

minimum of the automutual information is achieved. The behavior of the automutual 

information function can be shown through the next example. The signal of Fig. 3.8 is the 

normalized stator phase current of a 5-hp induction motor. The automutual information 

method was applied to this signal and the results are shown in Fig. 3.9. From this figure, 

the first minimum of this vector, which defines the time lag was found to be five. 
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Fig. 3.8 – Normalized stator phase current of the 460-V,6-pole, 5-hp induction motor 
with four broken bars. 
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Fig. 3.9 – Automutual information of the stator phase current for the 460-V, 6-pole, 
5-hp induction motor with four broken bars. 
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On the other hand, the dimension d is calculated through the false nearest 

neighborhood (FNN) technique [34, 35, 70, 71]. When an RPS is built with low 

dimension, some neighbor points in the RPS are due to the projection of these points in 

the RPS, instead of the dynamics of the system. Accordingly, the false nearest 

neighborhood technique increases gradually the dimension of the RPS until all the points 

of the signal are unfolded, i.e. the RPS is free of false nearest neighbor points. Further 

increasing the dimension does not provide improvements for the representation of the 

dynamics of the signal through an RPS. Thus, an RPS might be generated with the lowest 

dimension that completely unfolds the signal.  

The false nearest neighborhood technique defines the dimension as follows. First, 

the square distance , Dn(d)2, between two points of the signal is computed as follows 

[70]: 
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where xn(d) is a point is an RPS with dimension, d, and time lag, τ, and xn
NN(d) is nearest 

neighbor point to xn(d). The square distance that represents how far two neighbor points 

have moved from each other is given as follows [70]: 

 

 ( ) ( ) ( ) ( )
22 21 .NN

n n n d n dD d D d x d x dτ τ− −⎡ ⎤+ − = −⎣ ⎦  (3.26) 
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This square distance, Dn(d+1)2-Dn(d)2, is normalized as follows [70]:  
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and the ratio, rT, results, which is compared with a threshold to define if a given point of 

an RPS is a false neighbor. Additionally, the percentage of false nearest neighbors is 

given as follows [70]: 
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where N is the number of data points of the signal. This percentage is further compared to 

another threshold, which typically assumes values between 0.001 to 0.01. This 

comparison yields the appropriated dimension of the RPS that represents the dynamics of 

the signal under investigation. 

Again, the behavior of the false nearest neighborhood technique is demonstrated 

through an example based on the same signal of Fig. 3.8. The false nearest neighborhood 

for the signal of Fig. 3.8 was plotted in Fig. 3.10. The dimension is identified as the first 

dimension with the lowest percentage of false nearest neighbors. Thus, from Fig. 3.10 the 

dimension is identified as three. Higher dimension can be chosen, but this will not 

necessarily reconstruct the phase space with a better representation of the dynamics of the 

system.  
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Fig. 3.10 – False nearest neighborhood of the of the stator phase current for the 5-hp 
induction motor with four broken bars. 

 
 
 

Thus, a RPS is completely defined in terms of the time lag and the dimension. For 

this example, the RPS has time lag five and dimension three. The RPS of the signal 

shown in Fig. 3.8 is presented in Fig. 3.11. Reconstructed phase spaces with a dimension 

higher than three can not be graphically represented. In such a case, the RPS is 

represented through a matrix such as in (3.23), where each column constitutes one of the 

dimensions of the RPS. For comparison purposes, the two-dimensional RPS of a perfect 

sine wave is an ellipse that can change in shape for different time lags.  
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Fig. 3.11 – Reconstructed phase space of the phase stator current of the 5-hp 
induction motor with four broken bars. 

 
 

The reconstructed phase space shown in Fig. 3.11, which has 1000 points 

(N=1000), dimension three (d=3), and time lag five (τ=5), is also mathematically 

expressed in (3.29). 
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Different signals yield different RPSs, and this can be observed in the RPS of the 

three-phase stator current envelope of a 2-hp induction motor with one broken bar shown 

in Fig. 3.12, and in the RPS of the air gap torque of a healthy 2-hp induction motor 

shown in Fig. 3.13.  
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Fig. 3.12 – RPS of the three-phase envelope of the 460-V, 2-pole, 2-hp induction 
motor with one broken bar with τ = 5. 
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Fig. 3.13 - RPS of the air gap torque of the healthy 2-hp induction with τ = 20. 

 

Additionally, a RPS is frequency dependent, i.e. if the same signal is acquired 

with different sampling frequencies and the same time lag is used to build the RPS for 

both signals, the resulting RPSs are not the same. Thus, signal classification approaches 

based on RPS must deal with signals with the same sampling frequency in order to 

simplify this classification process using only one time lag. 



Chapter 3: Induction Motor Features and AI Techniques 
 
 

77

3.4 The Gaussian Mixture Models 

A Gaussian Mixture Model (GMM) is an approach used for density estimation 

[72]. A GMM with M mixtures is defined in (3.30) as follows: 

 

 ( ) ( )
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m m
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p w p x
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= ∑x  (3.30) 

 
 

where M is the number of mixtures of a model, wm is the mixture weight [34] or mixing 

coefficients [72], pm(x) is the density function of the model. The constrains of mixture 

weight is given in (3.31) as follows: 
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where, 
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Moreover, the probability density function of the model yields (3.32) as follows: 

 

 ( ) 1.mp x dx
∞

−∞
=∫  (3.32) 

 

For Gaussian mixture models, x is a Gaussian random variable with a probability 

density function, pm(x). The implementation of this density function can have several 

forms of the covariance matrix, Σm, such as spherical, diagonal, full, and PPCA 
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(probabilistic principal component analysis) [72]. The full covariance matrix is the form 

of the covariance matrix which is used in the diagnostic and monitoring method.  

The full covariance matrix can be any positive definite m×m matrix, Σm. A real 

matrix Σm is positive definite if the symmetric matrix, Σms is Σms=(1/2)( Σm +Σm
T) where 

Σm
T is the transpose of Σm [57]. Moreover, the determinant of a positive definite matrix is 

positive, which implies that a positive definite matrix is nonsingular, i.e. it has an inverse. 

The density function of a full covariance matrix is given by (3.33) as follows [73]: 

 

 ( )
( )

( ) (11
2

2 1 2
1 ,

2

T
mx x

m m
m

p x e
μ μ

π

−− − Σ −
=

Σ

)m
 (3.33) 

 
 

where μm is the mean value and Σm is the covariance of the Gaussian density function of 

each mixture M of the GMM. The covariance is the square of the standard deviation σ. 

Thus, pm(x) is a Gaussian density function represented by x~N(μm,Σm) with mean μm and 

covariance matrix Σm. A GMM with full covariance matrix is shown in Fig. 3.14. This 

figure shows the data points and three GMM parameters: centres, covariance axes, and 

one standard deviation error of each mixture. 
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Fig. 3.14 – The full covariance matrix model. 

 

The parameters of a GMM are estimated using an Expectation-Maximization 

(EM) algorithm [34, 72, 74]. Thus, the estimated mean, mμ , covariance mΣ , and mixture 

weight, , are given in (3.34), (3.35), and (3.36), respectively as follows [34, 72]: mw
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In the next chapter, the diagnostic and the monitoring methods are presented, in 

which the reconstructed phase space is used to build the Gaussian mixture model 

(signatures) for each class, i.e. for each motor operating condition. These GMMs are used 

to classify the induction motor faults in both methods, the diagnostic and monitoring 

method. 
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Chapter 4 Methodology 

 

 

CHAPTER 4 
 

Methods 

In this chapter, the induction motor fault diagnostic method and the induction 

motor fault monitoring method are presented. 

The diagnostic method classifies two different types of electrically detectable 

faults in induction motors: broken rotor bars and inter-turn short circuits in stator 

windings. Additionally, this method identifies the fault severity that is proportional to the 

number of broken bars or the number or percentage of short circuited turns computed by 

this method. This method is trained and tested with the datasets experimentally acquired 

from induction motors. The three-phase stator current envelope is the feature of the 

induction motors, which is used to build the fault signatures in order to classify the motor 

operating conditions.  

On the other hand, the monitoring method classifies the motor operating 

conditions of an induction motor as healthy or faulty, in which a faulty condition 
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represents any number of broken rotor bars. The monitoring method is trained with 

datasets generated using a commercial finite element software package (MAGSOFT) 

based on Finite Elements (FE) methods, and the monitoring method is tested with 

datasets experimentally acquired. The air gap torque profile is the feature of an induction 

motor used to build the signatures of the training and testing stages. This is a robust fault 

monitoring method because this algorithm is trained with only one dataset generated to a 

specific motor and it can monitor the fault of other induction motors independently of 

motor power, number of poles, motor load, and operating frequency. This monitoring 

method has the following two main advantages: 

• The monitoring method is a robust technique to monitor induction motor 

faults, because this method is trained with datasets generated by FE 

simulations in order to monitor the operating condition of real motors. Thus, 

the training and monitoring stages of this method use datasets from different 

sources. The training stage uses datasets from FE simulations instead of 

datasets experimentally acquired, while the monitoring stage uses datasets 

from experimental setups. This characterizes the robustness of this method. 

• This monitoring method uses a novel normalization process. This 

normalization process is used to build fault signatures of the training and 

monitoring stages with similar amplitude and frequency. Thus, the signatures 

of the training and monitoring stages are independent of power, number of 

poles, level of load torque, and operating frequency, or other design 

characteristics of the motor being monitored. This is the case at least for the 
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two motors subject of this investigation. The monitoring method yields a 

relatively high degree of motor fault monitoring accuracy. 

Additionally, the monitoring method has also the following advantages: 

• This monitoring method uses a small training set. The training set consists of 

two datasets (one for the healthy case and one for the faulty case) generated 

for only one induction motor simulated by FE methods, and this training set 

yields signatures that realistically represent the motor operating conditions of 

any other real induction motor, independent of power, number of poles, level 

of load torque, and operating frequency. This method yields a relatively high 

degree of motor fault monitoring accuracy, as will be demosntrated by the 

experimental results in Chapter 5. 

• This method is quickly trained because only two datasets (healthy and faulty) 

are needed in the training process instead of large datasets that include every 

single case related to different motor power, number of poles, motor load, and 

operating frequency. Accordingly, the small amount of training data needed in 

this presented method saves considerable time in generating the training set, 

since an FE simulation and experimentally acquired datasets require 

considerable time to obtain.  

• High costs associated with equipment to emulate the faults through destructive 

methods to generate datasets to train this method are not involved, since this 

AI-based method is trained with datasets generated by finite element (FE) 

methods, instead of datasets experimentally acquired.  
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• This method uses only the three phase stator currents and voltages to build the 

signatures of the real motor and monitor its operating conditions. Thus, this 

method does not need complicated mathematical models of induction motors 

or values of motor parameters that are often difficult to obtain. Even the air 

gap torque (or developed torque) and the asynchronous speed (rotor speed) 

needed during the monitoring process are calculated through torque and speed 

estimators, respectively. These estimators only use experimentally acquired 

stator currents and voltages in addition to parameters that are commonly 

available from the nameplate data of motors.  

Thus, this method constitutes a powerful tool for induction motor fault 

monitoring. Although, the diagnostic and monitoring methods use different procedures to 

obtain the training and testing sets, the training and testing stages of these methods are 

the same. The next section discusses the training and testing stages. 

4.1 The Training and Testing Stages 

The diagnostic and the monitoring methods are based on machine learning 

techniques [75], which consist of two stages: training and testing.  The training stage uses 

the dataset called the training set to train the algorithm. The testing stage uses the dataset 

called the testing set to verify the classification accuracy of the algorithm. During the 

training stage, the diagnostic method uses datasets experimentally acquired, and the 

monitoring method uses datasets simulated by FE methods. However, both methods use 

datasets experimentally acquired in the testing stage.  
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The training set consists of different motor operating conditions, including faulty 

and healthy cases. Thus, from each motor operating condition, a signature is generated 

during the training stage of the diagnostic and monitoring methods. Additionally, the 

resulting trained algorithm is tested on the so-called “unseen signals”, which constitute 

the testing set. The accuracy of the motor fault classifier is defined in proportionality to 

the correctness of the classification of each faulty and healthy case to be identified in the 

testing set. The training signatures must properly represent the features of each motor 

operating condition to result in maximum fault diagnosis accuracy.  

The process of the training and testing stages is based on a previous work detailed 

in [34], in which one can also find the pseudo-code of the approach. The process consists 

of constructing a Gaussian Mixtures Model (GMM) [34] from a Reconstructed Phase 

Space (RPS) [34-36], where the resulting models are the signatures of the motor 

operating condition as outlined in the flowchart of Fig. 4.1. This RPS based approach 

allows for reconstruction of an induction machine’s state structure [71, 76]. The resulting 

fault signatures for the “unseen signals” are classified using a Bayesian maximum 

likelihood classifier [75]. This process has three steps as outlined in Fig. 4.1.  
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Fig. 4.1 – The algorithm of the presented method. (a) Training stage. (b) Testing or 

classification stage. 
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The first step is data analysis in which the input signals from the training set are 

normalized to zero mean and are then scaled to unit standard deviation. Moreover, two 

parameters are calculated to construct the RPS: the time lag, τ,and the dimension, d. The 

time lag is calculated using the first minimum of the automutual information function, 

and the dimension is defined using the global false-nearest neighbor technique [34-36] as 

described earlier in Section 3.3.  

The second step is to learn a GMM of the RPS, i.e. the coordinates of the GMM 

are the d-dimensional RPS. The time lag and the dimension are used to build the RPS for 

each class of motor operating conditions. The GMM is learned with M mixtures for each 

class of motor operating conditions. The number of mixtures is related to the complexity 

of the models. A higher number of mixtures implies a more complex model. Ideally, a 

more complex model provides a higher accuracy in signals classification. However, in 

practice, there exists an optimal number of mixtures for maximum accuracy, and past 

that, the accuracy tends to be lower. Moreover, the parameters of the GMM, as centres 

and covariances, are estimated by an Expectation Maximization (EM) algorithm [34, 74] 

as described earlier in Section 3.4. A GMM of an RPS with dimension two (2), time lag 

nine (9) and eight (8) mixtures is shown in Fig. 4.2. Moreover, two parameters of the 

GMM, centres and covariances, are also shown in Fig. 4.2.  
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Fig. 4.2 – The Gaussian mixture model of the three phase stator current envelope of 
the 460-V, 6-pole, 5-hp faulty induction machine reconstructed phase space with 

eight (8) mixtures, dimension two (2) and time lag nine (9). 
 

The last step is that of motor fault classification. The signature for an “unseen 

signal” is classified using the previously trained GMMs. The RPS of the “unseen signal” 

is constructed with the same dimension and time lag of the previously learned signatures. 

The Bayesian maximum likelihood classifier [75] computes the conditional likelihood of 

the signatures for this “unseen signal”, under each signature (Gaussian mixture model) 

previously learned using the training set as given in (4.1) below [34]: 

 

 ( ) (
( )1 1

|
N

i
n d

)| ,n ip c p
τ= + −

= ∏X cx  (4.1) 

 
 



Chapter 4: Methodology 
 
 

89

where X is the RPS matrix, d is the dimension of the RPS, τ is the time lag of the RPS, xn 

is a point in the RPS, N is the number of data points of the signal, and p(xn|ci) is the 

conditional probability of xn belonging to a class ci. The learned signature with maximum 

likelihood ĉ defines the particular class of motor operating condition (faulty or healthy) 

as given in (4.2) below [34]: 

 

 ( )arg max | .ic p= X c  (4.2) 
 

Again, the algorithm of this overall method is depicted in the functional flow 

chart of Fig. 4.1. In this figure, the results obtained in the training stage are followed by 

the fault classification in the testing stage. 

The training and testing stages discussed in this section are used in the diagnostic 

and monitoring methods to classify the faults of induction motors. The next section 

presents the diagnostic and monitoring method in association with the training and testing 

stages.  

4.2 The Induction Motor Fault Diagnostic Method 

This section presents the induction motor fault diagnosis method and explains the 

procedure used to obtain the three phase stator current envelope signals for broken rotor 

bars and inter-turn short-circuit fault cases.  
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The procedures used here to obtain the three phase stator current envelopes for 

broken bar and inter-turn short circuit cases for learning and classification are identical. 

This procedure can be summarized in the following steps:  

• (1) Low pass filter (LPF) 

• (2) Envelope identification 

• (3) Interpolation 

• (4) Normalization 

These steps are shown in the functional flowchart block diagram of Fig. 4.3.  

The first step is a low pass filter, which is essential for induction motors supplied 

by ac drives. The three-phase stator current of an induction motor supplied by an ac drive 

has high frequency components due to the carrier frequency responsible for the pulse 

width modulation (PWM) of the ac drive, as shown in Fig. 4.4a. Typically, the stator 

current frequency is variable from 0 to 60 Hz and the carrier frequency is a fixed value in 

the range from 4 to 16 kHz. Next, the ripple of the three-phase stator current is isolated as 

shown in Fig. 4.4b. This PWM component is eliminated from the ac current signal by a 

sixth-order lowpass elliptic digital filter with a cutoff frequency of 2 kHz, a passband of 3 

dB, and a stopband of 50 dB [65]. Consequently, this results in the cleaner signal shown 

in Fig. 4.4c. The cutoff frequency was chosen to be 2 kHz because the carrier frequency 

of the ac drive is at least 4 kHz. Accordingly, the ripple is isolated from the three stator 

phase currents without any significant PWM component.  
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Fig. 4.3 - Algorithm of the induction motor diagnostic method. (a) Training stage. (b) Testing or classification stage 
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Fig. 4.4 – The process of obtaining the three-phase stator current envelope. (a) 

Three-phase stator current. (b) Ripple of the three-phase stator current. (c) Filtered 
ripple. (d) Envelope identification. (e) Interpolation of the envelope. (f) 

Normalization of the envelope. 
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The second step, which is the process of “envelope identification”, consists of 

extracting from the three phase currents only the positive peak of each period in each 

phase, as shown in Fig. 4.4d. The procedure to detect the peaks of the three-phase stator 

current consists of eliminating the dc-offset of the aforementioned ripple, detecting the 

zero-crossings, and finding the maximum value between two zero-crossings, which is the 

identification of each positive peak of each period in each phase. Thus, one second of a 

three-phase current signal at 60 Hz has 180 positive peaks.  

In the third step, these few points are interpolated to smoothly represent the 

dynamic behavior of the three phase stator current envelope, as shown in Fig. 4.4e.  

The fourth and last step is the z-score normalization that centers the signal at zero 

mean and scales it to unit standard deviation [77], as given in (4.3) below: 

 

 ,v
normalized

v

vv μ
σ
−

=  (4.3) 

 
 

where, μv is the mean value, and σv, is the standard deviation of the signal, v. A 

normalized three-phase stator current envelope is shown in Fig. 4.4f. Again, these steps 

which are used here to isolate the envelope of the three-phase stator currents of a given 

induction motor supplied by an ac drive can best be visualized by inspection of the 

functional block diagram flowchart of Fig. 4.3. 

After accomplishing these four steps, the identified envelope is used to generate 

the training set to learn the GMMs (signatures) that represent each type of fault, or to 
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generate the testing set in order to classify an unseen input signals by a maximum 

likelihood Bayes classifier [75], as discussed in the previous section.  

Thus, this method creates signatures for each type of fault based on the three 

phase stator current envelope. A signature for each newly acquired input set of three 

phase stator currents, which are called “unseen signals”, is generated and compared with 

all signatures that represent each type of fault learned from the previously acquired 

database. The conditional likelihoods among this new signature and the previously 

learned signatures for each type of fault are calculated. Thus, a maximum likelihood 

Bayes classifier identifies the previously learned signatures with a maximum likelihood, 

which now classifies the fault of the so-called “unseen signal” undergoing the process of 

classification. In this diagnostic method, the classification process yielded high accuracy 

using just a half second of current signal for a 3-phase, 460V, 60-Hz, 6-poles, 5-hp 

squirrel-cage induction motor, which is roughly the time equivalent to a third of a slip 

cycle under normal loads. This will be shown and supported by the experimental results 

presented later in the Chapter 5 of this thesis.  

Additionally, the diagnostic method utilizes only three current sensors, which are 

easily available and implementable in most industrial applications. In most drives this 

current information is readily available and hence no extra current sensors are needed to 

implement this diagnostic method. 
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4.3 The Induction Motor Fault Monitoring Method 

 
The monitoring method, which is not a specific fault identification/diagnostic 

method, is used to classify the motor operating condition of an induction motor as either 

healthy or faulty. The high level algorithm of this method is shown in functional block 

diagram flowchart form in Fig. 4.5, while the detailed steps of algorithm are shown in the 

flowchart of Fig. 4.6.  

 

 
Fig. 4.5 – The high level algorithm of the monitoring method. 
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Fig. 4.6 – Detailed algorithm for the induction motor fault monitoring method 
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The monitoring method is divided in two stages: the training stage and the 

monitoring (testing) stage. 

During the training stage, the monitoring method generates signatures (model) 

from healthy and faulty induction motor simulations in MAGSOFT (FE software). These 

signatures are generated from the air gap (developed) torque profile of each healthy and 

faulty operating condition obtained directly from the simulations. Here, the faulty 

condition is that of a motor with one broken rotor bar case at rated load and speed. The 

algorithm of the training stage has three steps.  

In the first step, datasets with two seconds of the air gap torque profile for faulty 

and healthy cases are obtained directly from MAGSOFT. Each dataset is divided into two 

time series of one second each. This yields two time series of one second each for the 

healthy case and two time series of one second each for the faulty case. The time series of 

the air gap torque for the one broken bar case with a duration of one second is shown in 

Fig. 4.7a. The dc offset of each time series is eliminated in order to avoid filtering errors, 

which results in the time series profile shown in Fig. 4.7b. Subsequently, the high 

frequency components of each time series are filtered by a sixth-order lowpass elliptic 

digital filter with a cutoff frequency of 100 Hz, a passband of 0.1 dB, and a stopband of 

50 dB [65]. This results in the time series shown earlier in Fig. 4.7c.  

The second step is the data analysis, in which the torque signals are normalized by 

the formulation in (4.3). An example of the normalized air gap torque profile is shown in 

Fig. 4.7d. Moreover, two parameters are computed to build the Reconstructed Phase 
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Space of each motor operating condition: time lag (τ) and dimension (d), as described 

earlier in Section 3.3.  

The last step is to learn the signatures. The time lag and dimension, previously 

calculated, are used to build a Reconstructed Phase Space for each class, i.e. for the 

healthy and faulty cases. Thus, a Gaussian Mixture Model of each RPS is learned, and the 

resulting models are the signatures of the motor operating conditions.  
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Fig. 4.7 – The process of obtaining the air gap torque profile for the training stage of 
the monitoring method for the 2-hp induction motor at 60Hz and rated torque with 
one broken bar simulated by finite elements software. (a) Air gap torque from the 

MAGSOFT. (b) Torque without dc offset. (c) Filtered torque signal. (d) Filtered and 
normalized torque signal. 
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Simultaneously, the number of periods of oscillations of the air gap (developed) 

torque profile in one second, NpsFE, must be calculated. Then, three parameters can be 

obtained from MAGSOFT: frequency of the power supply f, number of poles P, and 

asynchronous (rotor) speed nasy. The synchronous speed, nsyn, is given in (2.9) and 

repeated below in (4.4) for convenience:  

 

 120 .syn
fn

P
=  (4.4) 

 
 

Moreover, the slip speed nsFE in r/min is computed as (2.10) and also repeated in 

(4.5) for convenience. 

 .FE syn asyns n n= −  (4.5) 
 

The period of each oscillation of the air gap torque profile TFE of a faulty case is 

related to the slip speed and number of poles as given below in (4.6). The parameter TFE 

is given in seconds. The parameter TFE is equivalent to TRM in Fig. 4.9. 

 

 60 .FE
FE

T
ns P

=  (4.6) 

 

Thus, NpsFE is accordingly given in (4.7) as follows: 

 

 1 .FE
FE

Nps
T

=  (4.7) 

 

The parameter NpsFE is used during the testing stage. 
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On the other hand, the testing stage uses datasets experimentally acquired. The 

testing stage can be divided into the following steps described below. 

For the acquired voltage and current signals from real motors, the air gap torque is 

estimated using a torque observer as demonstrated in equation (3.5) of Section 3.1. An 

example of the resulting air gap torque signal from this torque observer for a 3-phase, 

460-V, 60-Hz, 6-poles, 5-hp squirrel-cage induction motor at rated speed and load is 

shown in Fig. 4.8a.  

The torque signal is divided in time series of a period of one second, and 

subsequently the dc offset is eliminated from that signal as shown in Fig. 4.8b. Moreover, 

the resulting torque without the dc offset is filtered by the same low pass filter used 

during the training stage. The resulting filtered air gap torque signal without dc offset is 

shown in Fig. 4.8c.  

The synchronous speed, nsyn, and the slip speed, nsRM, for the testing set that uses 

data from a real motor (RM) are as given in (4.4) and (4.5), respectively, with the 

replacement of the subscript, FE, by the subscript, RM. Additionally, the period of each 

oscillation of the air gap torque profile, TRM, for a real motor is as given by (4.8) below. 

This TRM is 0.29s in Fig. 4.8a and b, i.e. the period of each cycle of the air gap torque in a 

faulty case is 0.29s. Thus, in one seconds there are 3.5 cycles (1/0.29s = 3.5Hz). The 

value of TRM associated with one slip cycle of a normalized air gap torque signal is 

depicted in Fig. 4.9, and can be expressed as follows: 

 

 60 .RM
RM

T
ns P

=  (4.8) 
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A speed rotor observer based on rotor slot harmonics (RSH) is used to estimate 

the asynchronous (rotor) speed, nasy, as was described earlier in Section 3.2.  
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Fig. 4.8 – The process of obtaining the air gap torque profile for the testing stage of 
the monitoring method for the 5-hp motor at rated speed and load torque. (a) Air 
gap torque obtained from a torque observer. (b) Air gap torque without dc offset. 
(c) Filtered air gap torque signal without dc offset. (c) Air gap torque profile after 

the frequency normalization process. 
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Fig. 4.9 - Air gap torque profile of the 6-pole, 60Hz, 5-hp motor with 4 broken bars 
in which TRM is shown in one slip cycle. 

 

The length (or duration) in seconds of each time series TSlength is accordingly as 

given below in (4.9): 

 

 .length FE RMTS Nps T= ×  (4.9) 
 

 



Chapter 4: Methodology 
 
 

103

The duration, TSlength, is used in the frequency normalization process in order to 

digitally obtain TRM with the same number of data points (samples) as TFE. In other 

words, the duration, TSlength, is used to obtain each time series of the testing set which will 

have the same fundamental frequency component of the training set for healthy and 

faulty cases. For example, the air gap torque for a faulty case in the training set was 

found to contain 2.9 cycles in one second as previously shown in Fig. 4.7d, while the air 

gap torque for a faulty case in the testing set was found to contain 3.5 cycles in one 

second as shown in Fig. 4.8a. Clearly, both signals have different frequencies. However, 

the reconstructed phase space that is used to build the signatures of the motor operating 

condition is frequency dependent, i.e. if the signatures from the training and testing stages 

are not built with signals with the same frequency, susceptibility to misclassification 

increases. Accordingly, the duration, TSlength, was found to be 0.84s in Fig. 4.8c. This 

corresponds to 1688 samples (data points) in order to obtain a torque signal for the testing 

set with 2.9 cycles, which is the same length of the training set. Then, this air gap torque 

signal is truncated at 0.84s (2.9 cycles or 1688 data points). Thus, the signal at the instant 

of time greater than 0.84s up to 1s is discarded. Using upsampling and downsampling 

processes [65], the remaining air gap torque signal of the testing set can be rebuilt with 

the same frequency or number of samples as that of the testing set, thus yielding both 

signals (training and testing) with the same fundamental frequency component as shown 

in Fig. 4.8d. It is well-known that the period of each torque oscillation, TRM, is both load 

and operating frequency dependent, and consequently slip speed dependent. Accordingly, 

this resampling of the torque signals yields a motor fault monitoring method independent 
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of the  level of load torque, operating frequency, power, and number of poles of an 

induction motor.  

The next step is to learn the signatures for each new torque signal. This signal is 

normalized and a new RPS is built with the same time lag (τ) and dimension (d) of the 

training stage. Then, a GMM is learned from this new RPS to obtain a signature for this 

new torque signal.  

The last step is the monitoring, in which the conditional likelihoods of this new 

signature obtained during the testing stage and the previously learned signatures 

generated during the training stage are computed. A Bayesian maximum likelihood 

classifier as given earlier in (4.1) and (4.2) is used to identify the signature of the training 

stage with the maximum likelihood. The class of this signature defines the motor 

operating condition: healthy or faulty.  

This chapter presented the diagnostic method and the monitoring method, which 

are next used to classify and monitor induction motor faults, respectively. In the next 

chapter, the experimental verification of these methods and a discussion of the results are 

presented. 
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Chapter 5 Experimental Verification of the Presented Method 

 

 

CHAPTER 5 
 

Experimental Verification of the 
Methods 

 

In this chapter, the experimental verification of the diagnostic and monitoring 

methods discussed in Chapter 4 is presented. The results given in this chapter validate 

these two methods used for classification and monitoring of induction motor faults. The 

results of each method are followed by a discussion of these results. 

5.1 Results for the Induction Motor Fault Diagnostic 
Method 

A case-study 3-phase, 460-V, 60-Hz, 6-poles, 5-hp squirrel-cage induction motor 

supplied by an ac drive operating under scalar (open-loop) constant Volts per Hertz 

control was tested in the laboratory, as shown in Fig. 5.1. 
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Fig. 5.1 - Laboratory test setup for a 5-hp induction motor data acquisition. 
 

  This motor has a cage with 45 bars, that is 7 ½ bars per pole pitch, and it has 240 

stator winding turns per phase housed in a stator with 36 slots, that is six slots per pole, 

and hence two slots per pole per phase. This motor was tested under healthy and one 

through four broken bars of rotor faulty conditions, as well as one through four inter-turn 

shorts in one phase of the stator windings. Thus, this set of tests yielded nine classes of 

induction motor operating conditions. An external resistor, rf, of 1Ω was used to emulate 

a developing or an “incipient” inter-turn short-circuit in the stator windings as depicted in 

Fig. 5.2. This resistor also restricts the circulating currents in the shorted portion of the 

stator winding to a safe level to avoid permanent motor winding damage. In these tests, 
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the loop current in the shorted turn was not allowed to exceed in rms magnitude three 

times the rated line current of the motor. 

 

 

 
 
Fig. 5.2 - The schematic of stator winding tappings for the tested induction motors. 

 

The three phase stator current was sampled for each class at a 50 kHz sampling 

frequency using the data acquisition board shown in the functional schematic of Fig. 4.3. 

Each class has five seconds of signal which results in 250,000 points each. These five 

seconds of signal were equally divided into 10 samples where each sample is a time 

series. Thus, the procedure depicted in Fig. 4.3 was carried out and the resulting totality 

of ten time series of each class yielded the training set as well as the testing set using a 

cross-validation technique [75, 78]. Cross-validation is a well-known technique used 

when the dataset is not large enough to obtain totally independent training and testing 

sets. The cross-validation splits the same dataset generating different training and testing 



Chapter 5: Experimental Verification of the Presented Method 
 
 

108

sets. The training and test sets were generated by k-fold cross-validation with k=10, see 

[75, 78].  

The experiment carried out for broken bars has five classes (one through four 

broken bars and the healthy case), and for inter-turn short-circuits it has also five classes 

(one through four inter-turn short-circuits and the healthy case). However, the last 

experiment combines all faults plus the healthy case, thus resulting in nine classes.  

Accordingly, the number of samples of the testing set generated using k-fold 

cross-validation is defined by the number of time series per class times the number of 

classes. These samples of the testing set are distributed in k folds. Thus, an experiment 

with five classes, k=10, and ten time series per class has a testing set with 50 samples 

distributed in 10 folds that are to be classified.  

The motor current envelopes obtained from the experimentally acquired motor 

current data represent two types of motor faults: broken rotor bars and inter-turn short-

circuits in stator windings. The experiment for broken bars was carried out for three 

different motor loads, and for two different ac drive output frequencies yielding two 

different motor speeds. While the experiment for the inter-turn short-circuits in stator 

windings was carried out for three values of motor loads at one ac drive output frequency. 

Finally, the last experiment for broken bars and inter-turn short-circuits yielding nine 

classes of motor operating conditions was carried out for three levels of motor loads, also 

at one ac drive output frequency. All experimental results presented below validate the 

efficacy of this method. 
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The above mentioned case-study 5-hp three-phase, squirrel-cage induction motor, 

with one through four broken rotor bar faults was tested in the laboratory. The fault 

classification results for broken bars with the motor running at 60 Hz and three different 

levels of loads are shown in Table 5.1. The results for each combination of mixtures of 

the fault signatures and levels of load torque shown in Table 5.1 were generated using a 

testing set with 50 samples obtained by 10-folds cross-validation. Here, each sample has 

a duration of 0.5s of three phase stator current envelopes. Accordingly, the one through 

four broken rotor bars and the healthy motor case yield five classes of motor operating 

conditions. Again, the motor was tested with three different magnitudes of load which 

correspond to 50, 75 and 100% of the rated torque. It should be pointed out that the rated 

torque is 30Nm. As given in Table 5.1, the accuracy of the resulting fault classification 

for a motor load of 50% and 100% of the rated torque was 100%, i.e. all 50 unseen input 

samples of the testing set were correctly classified independent of the number of mixtures  

 

Table 5.1 - Accuracy of fault classification for a 5-hp, 6-pole, induction motor with 
one through four broken bars at 60 Hz and three different motor loads based on a 

testing set with 50 samples. 
 
 

 Accuracy (%) 
(mean ± standard deviation) 

Motor load as % of Rated Torque Mixtures 50% 75% 100% 
4 100±0 100±0 100±0 
8 100±0 98±6 100±0 
16 100±0 100±0 100±0 
32 100±0 100±0 100±0 
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of the fault signatures. The same level of accuracy was obtained for a motor load of 75% 

of the rated torque with four, 16 and 32 fault signature mixtures. However, a slightly 

lower fault classification accuracy of 98% was obtained and is shown in Table 5.1 for the 

75% of the rated torque case with eight fault signatures mixtures, which means that only 

one of the 50 samples of the testing set was misclassified. Additionally, the presented 

fault classification method not only monitors the faults, thus distinguishing a faulty motor 

from a healthy motor, but also diagnoses the degree of fault severity identifying the 

number of broken bars. Here, the degree of fault severity is proportional to the number of 

broken bars. Furthermore, the presented results were carried out for motor loads over 

50% of the rated torque. However, the accuracy of fault classification for motor loads 

below 50% of the rated torque is slightly lower compared to the accuracies obtained for 

motor loads above 50% of the rated torque. Below 50% of the rated torque, the amplitude 

and profile of the envelopes for any number of broken bars become very similar to the 

healthy case in which the amplitude of the envelope is ideally zero. Thus, when signals 

with similar envelopes are obtained for a given operating condition under healthy and 

faulty operations, the implication is that there will be difficulties building sets of 

signatures that represent efficiently the motor fault operating conditions for accurate 

motor fault classification. In general, this confirms the well-known fact that it is harder to 

diagnose a fault when a motor is lightly loaded [14, 29, 31]. This is an aspect which is 

further elucidated in the Section 5.2 of this chapter.  
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Here, Table 5.2 presents the accuracy of the broken bar fault classification for the 

5-hp motor at rated torque and two different ac drive output frequencies of 40 Hz and 60 

Hz, respectively. The results for 60 Hz are the same as previously shown in Table 5.1. 

The testing set for the results at 40 Hz contains 30 samples instead of 50 samples because 

the original 5s of current signals for each class had to be divided in six samples instead of 

10 samples, thus yielding the three phase stator current envelope for each sample with a 

duration of 0.83s (5s / 6 time series per class). This higher time sample for the 40 Hz data 

compared to the 60 Hz data is necessary to have samples with approximately the same 

number of envelope periods for both cases. This time sample of each input signal which 

is to be classified can be associated with the operating motor frequency in order to 

automatically adjust the length of the time sample to be used in the classification, because 

the motor frequency and the length of the time sample are inversely proportional to each 

other. An accuracy of 97% was obtained and is shown in Table 5.2 at 40 Hz for four and 

eight fault signature mixtures, which means that this method resulted in only one 

 

Table 5.2 - Accuracy of fault classification for a 5-hp, 6-pole, induction motor with 
one through four broken bars at 40 and 60 Hz based on a testing set with 30 

samples. The test was carried out at rated load. 
 

 Accuracy (%) 
(mean ± standard deviation) 

Motor frequency Mixtures 40 Hz 60 Hz 
4 97±10 100±0 
8 97±10 100±0 
16 90±16 100±0 
32 77±16 100±0 
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misclassification out of thirty. Table 5.2 includes results with 90% classification accuracy 

for 16 fault signature mixtures, which means that this method resulted in three 

misclassifications out of thirty. Meanwhile, an accuracy of 77% for 32 fault signature 

mixtures was achieved, which means that this method resulted in seven misclassifications 

for the testing set with 30 samples.  

The second type of motor fault investigated with the diagnostic method is the 

inter-turn short circuit. This type of motor fault has five classes: one through four inter-

turn short-circuits and a healthy case. The accuracy results for classification of the inter-

turn short-circuits in the 5-hp motor at 60 Hz and motor loads of 50, 75 and 100% of the 

rated torque are given in Table 5.3. The motor fault classification is highly accurate with 

a low standard deviation in all cases shown in this table. These results were based on a 

testing set with 50 samples. Thus, a 98% accuracy of classification was achieved, which 

represents only one misclassification out of fifty. Meanwhile, the case with 96% 

classification accuracy represents two misclassification and so forth. The different levels 

of load torque did not result in any loss of accuracy for classification of inter-turn short-

circuits. This lack of effect of load level on classification results of the shorted turn faults 

in comparison to the opposite for the cases with broken bars is physically explained in the 

next section. From Table 5.3, it can be concluded that signatures with 16 mixtures are 

sufficient for achievement of a reasonably high degree of accuracy. However, models 

with eight mixtures can speed up the learning and classification processes without 

significant losses in the fault classification accuracy. These fault classification results and 

associated method constitute a significant contribution for motor fault classification 
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techniques considering that inter-turn short-circuits represent 30 to 40% of the commonly 

occurring motor faults, with the knowledge that in this method at hand only envelopes of 

the three phase stator currents are needed. 

 

Table 5.3 - Accuracy of fault classification for a 5-hp, 6-pole, induction motor with 
one through four inter-turn short-circuits in the stator windings at frequency of 60 
Hz and motor loads of 50, 75 and 100% of the rated torque based on a testing set 

with 50 samples. 
 

 Accuracy (%) 
(mean ± standard deviation) 

Motor load as % of Rated Torque Mixtures 50% 75% 100% 
4 94±10 94±10 92±14 
8 98±6 96±8 98±6 
16 100±0 96±8 98±6 
32 100±0 96±8 98±6 

 

 

The last experiment was carried out for one through four broken bars, one through 

four inter-turn short circuits and the healthy motor case yielding nine classes of operating 

conditions. Thus, these nine classes yielded a testing set with 90 samples generated by a 

10-folds cross-validation method. The accuracy results for classification of the nine 

different motor operating conditions for the above mentioned 5-hp motor at 60 Hz and 

motor loads of 50, 75, and 100% of the rated torque are given in Table 5.4. The data in 

this table also shows that a more accurate classification result was obtained for fault 

signatures with 32 mixtures for any level of motor load over 50% of the rated torque, in 

which case only one of the 90 samples of the testing set was misclassified, thus yielding a 

99% classification accuracy. These results for 32 fault signature mixtures can be better 
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observed in the so called “confusion matrix” [78] given in Table 5.5. The confusion 

matrix reports the performance of a classifier. It is a square matrix with its dimension 

defined by the number of classes. The sum of components of each row must contain the 

same number of samples of the testing set. Each combination of row i and column j 

contain the number of samples of the testing set classified as the class of the respective 

column j. A confusion matrix that represents a perfect classifier is a diagonal matrix. 

Additionally, Table 5.5 demonstrates that only one fault was classified as a broken bar 

fault, when it should have been classified as an inter-turn short-circuit. For clarification, it 

should be pointed out that the headings for the confusion matrix of Table 5.5 are defined 

as follows: 1BB ≡ one broken bar, 2BB ≡ two broken bars, 3BB ≡ three broken bars, 

4BB ≡ four broken bars, H ≡ healthy, ST1 ≡ one turn short circuited, ST2 ≡ two turns 

short-circuited, ST3 ≡ three turns short-circuited, and ST4 ≡ four turns short-circuited. 

These results demonstrate the relatively high degree of accuracy of fault classification 

associated with use of this diagnostic method. 

 

Table 5.4 - Accuracy of fault classification for a 5-hp, 6-pole, induction motor with 
one through four broken bars or one through four inter-turn short-circuit in stator 

windings at frequency of 60 Hz and motor loads of 50, 75 and 100% of the rated 
torque based on a testing set with 90 samples. 

 

 Accuracy (%) 
(mean ± standard deviation) 

Motor load as % of Rated Torque Mixtures 50% 75% 100% 
4 91±7 98±5 98±5 
8 97±5 98±5 99±4 
16 97±5 99±4 99±4 
32 99±4 99±4 99±4 
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Table 5.5 - Confusion matrix for the 99% classification accuracy of the 5-hp, 6-pole, 
induction motor with one through four broken bars or one through four inter-turn 
short-circuit in stator windings at frequency of 60 Hz and motor loads of 50, 75 and 

100% of the rated torque based on a testing set of 90 samples and with 32 fault 
signature mixtures. 

 

  Classified faults 
  1BB 2BB 3BB 4BB H ST1 ST2 ST3 ST4 

1BB 10 0 0 0 0 0 0 0 0 
2BB 0 10 0 0 0 0 0 0 0 
3BB 0 0 10 0 0 0 0 0 0 
4BB 0 0 0 10 0 0 0 0 0 

H 0 0 0 0 10 0 0 0 0 
ST1 1 0 0 0 0 9 0 0 0 
ST2 0 0 0 0 0 0 10 0 0 
ST3 0 0 0 0 0 0 0 10 0 

R
ea

l f
au

lts
 

ST4 0 0 0 0 0 0 0 0 10 
 

5.2 Discussion of Results for the Induction Motor Fault 
Diagnostic Method 

In this thesis, a 5-hp induction motor was investigated for monitoring and 

diagnosis of broken rotor bars and inter-turn short-circuits in stator windings under three 

different magnitudes of motor loads. The three phase stator current envelope was found 

here to be a powerful feature of the induction motor for fault classification. Each healthy 

and faulty motor operating condition yielded a signature generated from the three phase 

stator current envelope using Gaussian Mixture Models of Reconstructed Phase Spaces. 

The conditional probability of a fault signature for any “unseen signal” was computed for 

each given signature previously generated during the training stage. Thus, this “unseen 

signal” was classified using the Bayesian maximum likelihood classifier. 
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The three phase stator current envelope for broken bar faults depends on the 

number and geometric distribution of the broken bars. Two motors with identical ratings 

and with the same number of broken bars, but with different geometrical distributions of 

the broken rotor bars may yield a misclassification of this fault, because the signatures 

are learned for a specific number and distribution of broken bars. Different distributions 

for the same number of broken bars may yield different signatures. Thus, a signature 

learned for a specific number and distribution of broken bars can not guarantee a correct 

classification of the same number of broken bars for different geometrical distributions. 

This is an open problem not only for the method presented in this thesis, but also for 

other techniques which analyze the stator currents [7, 10]. 

The diagnostic method is based exclusively on the analysis of the three phase 

stator current envelopes. The inputs of the presented method are only the training and 

testing sets composed from experimentally obtained samples of three phase stator current 

envelopes for different motor operating conditions. Thus, there is no need for any other 

information about the induction motor or its various parameters during the training and 

testing stages. Moreover, mathematical models of the induction machines, or the ac 

drives, or any other mathematical formulation or knowledge about the induction motor 

are not required.  This simplifies the motor fault classification problem because complex 

calculations related to induction motors as well as any specific design information about 

each individual motor for the purposes of fault diagnostics are not involved. However, 

the presented method at this point needs signatures built for each different fault at 

different speeds and torques. This yields many signatures to represent the range of all 
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possible motor operating conditions. Therefore, the number of signatures may be reduced 

if the signatures built for a specific operating condition, for example, rated speed and 

torque, are scaled for any other different operating condition. In this case, the signature 

generated for the rated conditions must be associated with speed and torque in order to 

scale it for use in any other motor operating condition. The speed can be obtained either 

directly from the ac drive, or from a speed sensor, or from a speed observer. The torque 

can be either measured by a torque transducer, or calculated through a torque observer. 

Thus, the signatures can be automatically redefined for any value of speed and torque of 

an induction motor.  

The presented method yielded a high degree of accuracy of motor fault 

classification even with the induction machine running at different levels of load torque. 

This statement is best validated by careful examination of Table 5.4, which presents the 

accuracies of fault classification for nine different healthy and faulty cases of the 5-hp 

induction machine. Moreover, Table 5.4 shows the accuracy of motor fault classification 

for three different levels of load torque and four different numbers of fault signature 

mixtures. Here, the number of mixtures is manually defined through the analysis of the 

classification results. From an investigation of Table 5.4, it can be concluded that 32 

mixtures is the best number of fault signature mixtures because the accuracy remains 

high at 99% for any level of motor load. However, the speed of the training and testing 

stages of the presented method is directly related to the number of fault signature 

mixtures. Thus, the diagnostic method can be more efficiently computed by using fewer 

fault signature mixtures. From further examination of Table 5.4, it can be concluded that 
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accuracy over 97% was obtained with eight fault signatures mixtures for any level of 

motor load over 50% of the rated load, which is deemed reasonable for general industrial 

applications. In this case, eight mixtures satisfy the requirement for both a reasonable 

level of fault classification accuracy and required time of the training and testing 

processes.  

The well-known difficulties normally associated with diagnosing motor faults at 

light loads [14, 29, 31] were also encountered here. It is observed that the accuracy of this 

diagnostic method deteriorated for motor loads under 50% of the rated load values. This 

is not a new difficulty and other methods documented in the literature suffer from similar 

problems [14, 29, 31]. This can be physically attributed to the fact that under light load 

the rotor electric circuit approaches the high impedance associated with the no-load 

condition, in which the effect of any change in the cage impedance can be masked due to 

its weak impact at the stator terminals. Furthermore, from a magnetic field point of view, 

at rated or near rated load the currents in the bars of a squirrel cage act as a magnetic 

shield to the bulk of the rotor iron core, and hence that core remains relatively 

unsaturated or lightly saturated, with a good degree of magnetic circular symmetry (no 

magnetic saturation induced saliency effects). When bar breakages do occur at rated, or 

near rated, load conditions, the magnetic shielding effect of the bars is lost at the location 

of such a bar breakage, with a resulting higher degree of local magnetic saturation 

appearing at that spot. Hence, the rotor’s circular magnetic symmetry is lost and an 

“apparent magnetic saliency or asymmetry” appears in the rotor. This asymmetry rotates 

at slip speed with respect to the synchronously rotating magnetic field, and this 
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asymmetry gives rise to the envelope appearing to enclose the three-phase current 

waveforms. Hence, it is easier to diagnose such a fault using such an envelope under such 

substantial motor loads. This phenomenon which was exploited here is reduced at light 

loads, and hence gives rise to the difficulty in diagnosis below 50% of rated load for the 

5-hp case-study motor. 

Although, a short circuit between turns of two phases and a short circuit in turns 

of all phases due to overload or blocked rotor are possible, an inter-turn short-circuit 

generally occurs first in just one phase. In this case, the stator current envelope of each 

single phase is not modulated equally. The stator current envelope of the healthy phases 

is slightly affected by the faulty phase, while the envelope of the faulty phase is highly 

modulated. Here, an analysis of the stator current envelope of only one phase instead of 

the three phases can not be sufficient to diagnose correctly a faulty condition, particularly 

if this analyzed phase is not the faulty phase. This addresses the reason for the use of a 

three phase stator current envelope instead of a single phase stator current envelope. 

Independent of the phase in which turns are short-circuited, the three phase stator current 

envelope associated with the method presented in this thesis is sufficient to classify inter-

turn short-circuit faults. It should be pointed out that there are no difficulties in diagnosis 

shorted stator turns at light loads, because the fault is exclusively a stator circuit 

phenomenon, which is detectable independent of the level of load, which as mentioned 

above largely affects the circuit of the rotor. 

Additionally, the three phase stator current envelope constitutes an induction 

machine feature that is associated with the method subject of this thesis, and not only 
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helps monitor a healthy and faulty condition, but also diagnoses the number of inter-turn 

short-circuits in stator windings or the number of broken rotor bars. This diagnostic 

method yields important information about the motor operating condition: namely the 

fault severity.  Here, the fault severity is directly related to the number of broken bars or 

the number of turns involved in an inter-turn short circuit.  

5.3 Results for the Induction Motor Fault Monitoring 
Method 

The algorithm of the monitoring method was trained using data obtained using a 

finite element simulation software package, MAGSOFT, for a 2-hp, 2-pole, 60-Hz, 36 

rotor bars, squirrel cage induction motor. The training set represents two motor operating 

conditions: healthy and faulty. The faulty case was obtained for one broken rotor bar. On 

the other hand, the dataset obtained for method verification, the so-called testing set, was 

experimentally acquired in the laboratory for two induction motors. The first was a 2-hp, 

2-pole, 60-Hz, 36 rotor bars, squirrel cage induction motor. The second was a 5-hp, 6-

poles, 60Hz, 44 rotor bars, squirrel cage induction motor. The testing set also represents 

two motor operating conditions: healthy and faulty, in which the faulty case was obtained 

with broken rotor bars. 

The training set is composed of two time series for the healthy case and two more 

time series for the faulty case generated using the finite element software package. Each 

time series consists of one second of the air gap torque samples forming the torque 

profile. Subsequently, the dc component (mean value) of each one of these air gap torque 
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signals was eliminated. These air gap torque signals with zero mean (average) were 

filtered further by a low pass filter as described earlier in Section 4.3. Moreover, each 

time series was generated at a sampling frequency of 2 kHz. Thus, each time series of one 

second contains 2000 data points (samples). 

The testing set for the 2-hp motor is composed of nine time series for the healthy 

case and 27 time series for the faulty case. The 27 time series for the faulty case consist 

of nine time series for each one of the following three cases: one broken bar, three broken 

bars, and five broken bars. The duration or length of each time series is defined by the 

torque normalization process described earlier in Section 4.3. On the other hand, the 

testing set for the 5-hp motor consists of five time series for the healthy case and 20 time 

series for the faulty case. These 20 time series consist of five time series for each one of 

the following faulty cases: one broken bar, two broken bars, three broken bars, and four 

broken bars. Furthermore, the stator phase currents and voltages used to estimate the air 

gap torque signals were acquired in the laboratory at a sampling frequency of 50 kHz. 

Thus, each second of current and voltages contains 50,000 sampled data points. In order 

to obtain a torque signal with the same sampling rate of the training set, these stator phase 

currents and voltages are downsampled by a factor 25. Thus, before the torque 

normalization process, each time series of one second of the testing set has 2,000 data 

points (50,000 data points / 25), which is now equal to the number of data points of each 

time series of the training set.  
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The training and testing sets are totally independent of each other. Thus, a cros-

validation process is not used in the monitoring method to evaluate its motor fault 

classification accuracy.  

The experimental results for motor fault monitoring method are present in Table 

5.6 for three levels of motor load, 50%, 75%, and 100% of the rated motor torque, for 

two different induction motors, each rated at 2-hp and 5-hp, respectively. From Table 5.6, 

one can observe that the presented method yielded a perfect monitoring of 100% 

accuracy for the fault at rated torque, and when the motor load is decreased the accuracy 

also decreases, since a signature that is based on torque signals is load dependent as 

discussed earlier in Section 5.2. An accuracy of 92% for a 5-hp at 50% of rated torque 

means two misclassifications out of 25. Meanwhile, an accuracy of 83% at 50% of rated 

torque and an accuracy of 75% at 75% of the rated load for a 2-hp represent six and nine 

misclassification out of 45, respectively. The relatively good degree of accuracy 

evidenced by these results validates the monitoring method. 

 

Table 5.6 - Motor fault monitoring accuracy for a 2-hp, 2-pole and a 5-hp, 6-pole, 
60-Hz induction motors at a frequency of 60Hz and motor loads of 50, 75 and 100% 

of the rated torque 
 

 Accuracy (%) 
Motor load as % of Rated Torque Power 

Motor 50% 75% 100% 
2-hp 83 75 100 
5-hp 92 100 100 
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5.4 Discussion of Results for the Induction Motor Fault 
Monitoring Method 

The monitoring method is a robust technique used to monitor induction motor 

faults. This method has two important advantages. First, this method is trained with 

datasets generated by a finite element method in order to monitor faults of real motors. 

Thus, the high cost associated with equipment to experimentally acquire data of each 

operating condition (healthy and faulty) of induction motors in order to train the 

algorithm is not necessary. Second, this method uses a novel torque normalization 

process that allows the monitoring of other motors independent of their power, number of 

poles, level of load torque, and operating frequency. In other words, this method is 

trained with only datasets for the 2-hp motor at rated torque and speed, which are 

obtained from finite element simulations.  Accordingly, this monitoring method can be 

used to monitor faults of other motors under various operating conditions even if these 

motors have different power ratings, number of poles, load torque, other design 

characteristics or rated speeds.  

This method uses only the three phase stator currents and voltages to generate the 

signatures of the operating condition of a motor. Thus, complex induction motor models 

and knowledge of parameters that are usually difficult to obtain are not required. The 

current and voltage sensors are usually available in ac drives, where the algorithm of the 

monitoring method can be implemented. Thus, in order to implement this method, extra 

sensors and installations are not required to generate the signatures of the motor operating 

conditions. Even the torque and speed signals that are used to generate the signatures 
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during the monitoring stages were shown to be obtainable through torque and speed 

observers, respectively. The torque observer uses the three phase stator currents and 

voltages in addition to parameters encountered on the nameplates of induction motors. 

The speed observer uses only one stator phase current and induction motor parameters, 

which are also easily available from nameplate data. Again, it should be emphasized that 

the monitoring method needs only stator currents, voltages, and parameters readily 

available for its implementation. 

The current and voltage signals were acquired at 50 kHz and a downsampling 

factor of 25 was applied in order to result in a signal sampled a 2 kHz. Thus, a sampling 

frequency of 2 kHz is sufficient to acquire the three-phase stator currents and voltages for 

the monitoring method, which is a reasonable sampling frequency for ac drives.  

The results shown in Table 5.6 validate the efficacy of the monitoring method in 

classifying the operating conditions of induction motors with different characteristics 

than that motor used during the training stage. This is made possible through use of the 

torque normalization process, which yields a torque signal from the experimental setups 

with fundamental frequency component and normalized amplitude almost identical to the 

torque signal generated by simulation for the training stage. This match in amplitude and 

frequency of both signals from simulation and experimental setups permits the generation 

of signatures with similar characteristics. This is crucial in order to obtain a high degree 

of motor fault classification accuracy, even for motors with different power, number of 

poles, level of load torque, and operating frequency when compared to the training set. 

This torque normalization is physically reasonable because the amplitude of the 
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modulations of the torque signal in a faulty condition is a function of the motor load, 

motor power, and the degree of faulty severity. Thus, the torque normalization in 

amplitude implies that the motor load, motor power, and the degree of faulty severity can 

assume any value, i.e. any change in amplitude of the torque modulation in a faulty 

condition due to load changes, different motor powers, and different faulty severity can 

be compensated for the amplitude normalization process during the monitoring stage. On 

the other hand, the frequency of the modulations of the torque signal in a faulty condition 

is due to the level of load torque and operating frequency. Thus, the process of torque 

frequency normalization during the monitoring stage continuously adapts the sampling 

frequency of the torque signal in order to match the sampling frequency of the torque 

signals that constitute the training set. This frequency normalization is necessary because 

the reconstructed phase space used to build the Gaussian mixture models (signatures) of 

the operating conditions during the training and testing stages are frequency dependent. 

Thus, the torque frequency normalization process adjusts the frequency of the torque 

signal, in order to generate signatures during the monitoring stage that match the 

previously trained signatures during the training stage even for motors with different load 

torque and operating frequency.  Therefore, the information about the operating condition 

(faulty or healthy) of an induction motor is not in the frequency or in the amplitude of the 

air gap torque signal, but rather it is embedded in the profile of the air gap torque signal. 

That is the reason why it is possible that the torque signal can be normalized in amplitude 

and frequency, without loss of information regarding the operating condition of the 

motor.  
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From Table 5.6 it can be observed that the motor fault classification accuracy 

decreases with a decrease in the motor load. The difficulties associated with diagnosing 

motor faults at light loads were previously discussed in Section 5.2 and are again seen 

here in this method. 

Additionally, the signatures of the training and monitoring stages were built with 

two mixtures. This low number of mixtures speeds up the computational processing of 

this method because the computational performance of this method is proportional to the 

number of mixtures of the signatures.  

In this chapter, the experimental verification of the diagnostic and monitoring 

methods was presented. This was followed by an overall discussion of these results. 

These experimental results validate both techniques as powerful tools for motor fault 

monitoring and classification. The next chapter presents the conclusions for the 

diagnostic and monitoring methods presented in this thesis.  
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Chapter 6 Conclusions 

 

 

CHAPTER 6 
 

Conclusions 

In this thesis, two techniques for induction motor fault classification were 

presented. Namely, these techniques are an induction motor fault diagnosis method and 

an induction motor fault monitoring method.  

The first technique is an induction motor fault diagnostic method, which classifies 

two types of induction motor faults: broken rotor bars and inter-turn short-circuits in 

stator windings. This method classifies the faults based on the analysis of the three phase 

stator current envelopes. Motor fault signatures were generated using Gaussian mixture 

models of the Reconstructed Phase Space transforms during the training stage for each 

type of fault. A new signature was generaed during the testing stage for a new acquired 

signal, namely an unseen signal. A Bayesian maximum likelihood classifier was used to 

compute the maximum likelihood of the signature generated for an unseen signal under 

the previously learned signatures in order to classify the type of fault. The high degree of 
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accuracy evidenced through the experimental results suggests that the diagnostic method 

can constitute a powerful tool for induction motor fault diagnosis. Moreover, this method 

not only monitors the operating condition of an induction motor as healthy or faulty, but 

also diagnoses the severity of the fault, that is identifying the number of broken bars or 

the number of turns involved in an inter-turn short-circuit. This characteristic is very 

import to prevent irreversible motor damages, unexpected shutdown of industrial 

processes, and to reduce downtime and cost of production processes.    

The second technique presented in this thesis was an induction motor fault 

monitoring method. This method analyses the air gap (developed) torque profile in order 

to identify the motor operating condition of an induction motor as healthy or faulty, in 

which the a faulty condition represents any number of broken bars. The main advantages 

of this method are two-fold. First, this robust technique is trained with a dataset generated 

by a finite element method in order to classify faults of real induction motors. 

Accordingly, the training and monitoring stages use datasets obtained from different 

sources: simulations and experimental setups, respectively. This evidences the robustness 

of this method. Moreover, the high cost associated with the destructive tests to generate 

the datasets to train the algorithm is not required, because the training set is obtained 

from finite element computational simulations. Second, the torque normalization process 

of the monitoring stage characterizes the scalability of this method. The torque 

normalization process scales the amplitude and frequency of the air gap torque signals, 

which are estimated during the monitoring stage to have similar amplitude and frequency 

of the signatures of the training set. Thus, this method trained for a simulated 2-hp 
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induction motor can monitor the operating condition of any other real motor independent 

of power, number of poles, level of load torque, other design characteristics or operating 

frequency, because the torque normalization process leads to signatures independent of 

these parameters. The experimental results evidence the robustness and scalability of the 

method, which yielded relatively good degree of motor fault classification accuracy. 

In conclusion, the diagnostic method and the monitoring method can be powerful 

tools for induction motor fault classification.  
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Appendix A 
 

The air gap (developed) torque in the DQ-frame of reference is given as follows 

[44]: 
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The Park’s transform is given as follows [44]: 
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where σ is the rotor position angular measure. Thus: 
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Substituting (A1.3) and (A1.4) into (A1.1), results the follow, the air gap torque is 

expressed as given in (A1.5) as follows: 
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Expanding (A1.5), the air gap torque is expressed as follows: 

 

 

 



Appendix A 
 
 

144

 

( ) ( ) ( ) ( )

( )

( )

3 4 2 4
cos sin cos sin cos sin

2 2 9 3 3

2 2 2 2
cos sin cos sin cos sin

3 3 3 3

4
cos sin cos

3

em a a a b a c

b a b b b c

c a c b

p
T i i i

i i i

i i

π π
ψ σ σ ψ σ σ ψ σ σ

π π π π
ψ σ σ ψ σ σ ψ σ σ

π
ψ σ σ ψ σ

= − − − − −

− − − − − − − −

− − − −

⎛ ⎞ ⎡ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢⎝ ⎠ ⎣ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

4

3

π

( ) ( ) ( ) ( )

( )

4 2 4 4
sin cos sin

3 3 3 3

2 4
cos sin cos sin cos sin

3 3

2 2 2 4
cos sin cos sin cos sin

3 3 3 3

c c

a a a b a c

b a b b b c

i

i i i

i i i

π π π
σ ψ σ σ

π π
ψ σ σ ψ σ σ ψ σ σ

π π π π
ψ σ σ ψ σ σ ψ σ σ

− − − −

+ + − − −

+ − + − − + −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

( )

2

3

π

π
−

4 2 4 4
cos sin cos sin cos sin

3 3 3 3
.c a c b c ci i i

π π π π
ψ σ σ ψ σ σ ψ σ σ+ − + − − + −

4

3

π
−

⎞
⎜ ⎟

⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎤
⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦

(A1.6) 

 
 
Hence: 
 
 

 

( ) ( ) ( ) ( ){

( ) ( )

( ) ( )

( ) ( )

3 4

2 2 9
cos sin cos sin

2 2cos sin cos sin
3 3

4 4cos sin cos sin
3 3

2 2cos sin cos sin
3 3

2cos
3

em

a b

a c

b a

b b

a a
p

T

i

i

i

i

iψ

ψ

ψ

ψ

ψ

σ σ σ σ

π πσ σ σ σ

π πσ σ σ σ

π πσ σ σ σ

πσ

=

−

−

−

−

⎛ ⎞ −⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ −
⎝

( ) ( )

2 2 2sin cos sin
3 3

4 2 2 4cos sin cos sin
3 3 3 3

4 4cos sin cos sin
3 3

2 4cos sin
3 3

b c

c a

c b

i

i

i

ψ

ψ

ψ

π πσ σ σ

π π π πσ σ σ σ

π πσ σ σ σ

π πσ σ

−

−

−

⎡ ⎤
3
π⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜
⎝ ⎠ ⎝

4 2cos sin
3 3

4 4 4 4cos sin cos sin .
3 3 3 3c ciψ

π πσ σ

π π π πσ σ σ σ−

⎡ ⎤⎛ ⎞ ⎛ ⎞− − −⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − − ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎭

(A1.7) 



Appendix A 
 
 

145

Considering the following trigonometric identity: 

 

 ( )sin cos sin cos sin ,A B B A A B− = −  (A1.8) 
 

 

the equation (A1.7) can be rewritten as follows: 
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Hence, 
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Thus, (A1.10) yields the following: 
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That is: 
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Hence, the air gap torque in (A1.12) can be written as follows: 
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which results in (3.1). 
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