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Permanent magnet synchronous machines (PMSMs) have high efficiency, high 

power density, high torque-to-inertia ratio, and fast dynamic response. These features 

make this kind of machines very attractive for electric vehicle (EV) applications. 

However, because of their nature, i.e., constant magnet flux provided by magnets, these 

machines have a narrow constant power speed range (CPSR). This limitation is a strong 

drawback for application of PMSMs in electric vehicles, where high speed is the top 

requirement. Two different approaches can extend the maximum speed under constant 

power: (1) Increasing a drive’s output voltage, and (2) implementing flux-weakening 

(FW) control methods. However, a conventional drive’s output voltage is limited by its 

dc bus. Furthermore, FW control methods are constrained by the maximum output 

voltage of a drive. In this work, a new approach is demonstrated to obtain a wider CPSR 

range by implementing a Z-source inverter as a motor-drive. Such a Z-source inverter 

can provide highly boosted voltage and is immune to dead time and shoot through 

issues. In addition, in this thesis, a constant power FW control algorithm is developed 

and simulated for this new approach.  

In order to state the research objective of this thesis, a basic background is 

presented at the beginning. Then, the mathematical models of PMSMs are deduced, 

where the motor model in a d-q frame is a foundation of the vector control method. 

With the purpose of increasing the CPSR, it is necessary to give a thorough analysis 

about the control principles of PMSMs for different operation conditions. Initially, the 

maximum torque per ampere (MTPA) control is described in detail in the constant 

torque region. Then, the FW control is explained in the constant power region. To 

simulate the control operations of PMSMs in different regions, a conventional motor-

drive system model is presented with its mechanical loads. Meanwhile, a closed-loop 

control, which implements MTPA control at low speeds and FW control at high speeds, 

is implemented to operate the conventional inverter in the motor-drive system.  

As recommended in many previous investigations, Z-source inverters are 

selected to replace conventional inverters for higher output voltages. Hence, Z-source 

inverters are investigated and simulated here with special control methods. In order to 

replace a conventional inverter in a motor-drive system, a novel control algorithm is 

developed to control boost voltage operation of Z-source inverters. A new motor-drive 

system, which implemented a Z-source inverter, is simulated with closed-loop MTPA 

and FW control. Comparison between the two control methods shows that a wider 

CPSR and better performance can be obtained by utilizing Z-source inverters
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Chapter 1 

Introduction 

1.1  Background of the Problem 

For the last couple of decades, interior permanent magnet synchronous 

machines (IPMSMs) have attracted great attention in various industry applications, 

particularly for the electric vehicle (EV) propulsion systems. The reasons for IPMSMs’ 

attractiveness stem from their high power density, high efficiency, wide speed range, 

fast torque-speed response, and decreasing price of permanent-magnet (PM) materials 

[1, 2]. For traction and residential drive applications, such as EVs, machines tools, and 

washing machines, IPMSM-drive systems normally require wide speed range as well 

as high efficiency and high torque to inertia ratio, especially at low speeds [3, 4]. 

Research on drives controlling permanent-magnet synchronous motors (PMSMs) for 

use in the aforementioned applications has become more and more common in recent 

publications [5-10].  

In order to obtain satisfactory motor performance under various conditions, 

many studies about control strategies have been reported in the literature. One high 

efficiency control strategy, the maximum torque per ampere (MTPA) control [11], is 

widely used in industry application for its high torque output, efficient utilization of the 

dc bus, and minimization of copper losses. For the high speed operations in IPMSM-

drives, it is necessary to have the flux-weakening (FW) control which increases a 

motor’s speed range by reducing the flux density and flux in its air-gap [12]. For traction 

applications in Evs, IPMSM-drives are designed to provide a constant drive torque up 

to a base speed and then to provide torque which is inversely proportional to speed up 

to a maximum speed as shown in Figure 1.1 [13]. In the other words, IPMSM-drives 

are controlled by a MTPA method at low speeds and a FW method at high speeds.  



2 

 

 

Figure 1.1: Typical characteristic curves of torque/power vs. speed of IPMSMs. 

In practical applications, most drives for electric automobiles, trains, and buses 

require a wide constant power speed range (CPSR) as shown in Figure 1.1, which is 

widely used to evaluate an EV’s performance. Thus, it is of great significance to 

enhance the FW ability for IPMSMs. The following section outlines the FW control of 

PMSMs in variable frequency drives, and the approach to improve the FW performance 

from the inverter side. 

1.2  Review of Literature 

1.2.1   Control of Permanent Magnet Synchronous Motors  

Permanent magnet synchronous motors are brushless motors which use rotating 

permanent magnets and stationary phase coils. The stator of a poly-phase (or three-

phase) PMSM is essentially of the same structure as that of a poly-phase induction 

motor or a poly-phase synchronous motor. The phase currents produces a rotating 

magneto-motive force (MMF) in the air gap, whose trajectory is more or less a circle 

in the d-q frame. However, in the rotors of PMSMs, the PM materials can be mounted 

on or in a rotor body, to constitute surface-mounted PMs or interior-mounted PMs. For 
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PM machines, there are five popular PM layouts for the rotors of such machines as 

shown in Figure 1.2, which include a surface-mounted PM (SPM) machine, (a), an 

interior-mounted PM (IPM) machine, (b), a permanent-magnet reluctance machine (c), 

a spoke-type PM machine (d), and a permanent-magnet-assisted synchronous 

reluctance machine I, [14]. The operation speed range is significantly affected by the 

saliency ratio of the inductances ( / qdL L ) of the different rotor types. Ultimately, the 

application determines the viability of a particular machine configuration. In this thesis, 

the discussion and analysis focuses on the flat-bar IPMs, which are widely used in 

industry applications.  

 

  

(a) SPM machine (b) IPM machine 

  

(c) Permanent-magnet reluctance 

machine 

(d) Spoke-type PM machine 

 

(e) Permanent-magnet assistant synchronous reluctance machine 

Figure 1.2: Rotor layouts for PM machines. 
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Generally, there are two types of motor control methods: scalar control and 

vector control, which have been used to control an induction machine, can also be 

applied to PMSMs as well [15]. More specifically, in the scalar control and vector 

control categories, there are three main control algorithms [16]:  

• Volts/hertz control, in open loop  

• Field oriented control (FOC), in closed loop 

• Direct torque control (DTC), in closed loop 

 

Figure 1.3: Motor control classification. 

The classification of these motor control strategies is shown as Figure 1.3. The 

volts/hertz control, which is also called scalar control, is used in relatively simple 

applications such as pumps and fans. PMSMs are energized with a constant volts per 

hertz  ratio which generates a constant airgap flux. The volts/hertz control is a cheap 

and well known method which is widely applied in industry. However, the dynamic 

performance of volts/hertz control leaves something to be desired. The reason is that 

this method controls the magnitude of voltage and frequency instead of the magnitude 

and phase of the current [15]. On the contrary to the simple scalar control, both the FOC 

Variable Frequency Drive 

Scalar Control 

Vector Control 

Volts/Hertz Control 

FOC Control 

DTC Control 
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and DTC are complex vector controls which have fast dynamic response and high 

accuracy. The principle of FOC is that it transfers the three phase time variant stator 

currents to two equivalent dc components in which the torque and flux can be simply 

decoupled and separately controlled [16]. While the DTC employs the stator voltage 

space vectors to directly control the stator flux and the torque [17] according to the 

difference between the reference value and estimated results of torque and flux. 

Compared with the FOC, the DTC has faster dynamic response, however is more 

sensitive to stator resistance. It is difficult to clearly state the superiority of volts/hertz, 

FOC and DTC because of the balance of the merits. Ultimately, the application 

determines which control method should be implemented in a drive.  

For different control objectives, several control strategies, which control the 

PMSM based on the FOC method, can be summarized as follows: 

• MTPA control [18] 

• FW control [18] 

• Unity power factor control [19] 

• Optimal efficiency control[20] 

Compared with unity power factor control and optimal efficiency control, 

MTPA control and FW control are more practical in industrial drives. The reason stems 

from the maximum drive efficiency of MTPA control and wide PMSM operation speed 

range of FW control.  

Since high power density, high efficiency PM motors have become the best 

replacements of internal combustion engines, the control of PM motors for EV 

applications has drawn much attention in recent publications [6, 21]. It is necessary for 

Evs as well as many other applications, to operate over both a wide speed range and 
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high efficiency. Therefore, a control strategy, which uses MTPA control at low speed, 

and FW control at high speed, was demonstrated in [22-24]. 

 

Figure 1.4: Ideal torque vs. speed characteristics for variable speed drives. 

Generally, as shown in Figure 1.4, MTPA control is achieved with full field 

current throughout the speed range up to the base speed, which is the maximum speed 

that can be achieved without FW control [13]. Then, in FW control, holding-on to a 

constant armature current, the armature MMF space vector is re-oriented to a position 

that opposes the MMF of the PM, and hence reduces the total resultant flux in the air-

gap. This is the basic idea of the so-called FW control in such machines. The weaker 

the net resultant air-gap flux the higher the motor speed. That is, in FW control the 

resultant air-gap flux is in inverse proportion to the motor speed.  

The principle of MTPA control is that the maximum torque of a PM motor can 

be generated at a given phase current by keeping a particular torque angle, which is the 

angle between current phasor and positive d-axis direction in the d-q frame. In other 

words, there is a particular d-axis current and q-axis current pair that causes the 

minimum phase current for any torque level. As a result, the MTPA control leads to the 
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maximum motor-drive efficiency since the copper losses are minimized due to the 

minimized phase current.  

The term “flux-weakening” is adopted in preference to the less precise “field-

weakening,” since the rotor MMF (field) of a PM motor is a fixed value dependent on 

PM geometry and material [12]. Precisely speaking, field-weakening can only be 

applied to motors under current controlled MMF (field).Hence, in FW control the 

objective is to reduce the output torque of a motor at speeds above the base speed. The 

reasons for such an objective stem from two major points. First, it is the only way to 

further extend a motor’s speed under limited current and voltage. Second, it is reported 

in many publications, especially related to Evs, that a motor’s load torque is in inverse 

proportion to such motor’s speed. Thus, FW control is widely implemented for PM 

machines in high speed applications.  

The principle of FW control in PMSMs is that the air-gap flux can only be 

weakened by applying a demagnetizing armature current component along the d-axis 

of the permanent magnets. Since the output torque is proportional to product of air-gap 

flux and q-axis current component, such torque can be reduced with FW control.  

Work on FW control has been presented in many publications such as in [25-

27]. Although the objectives are the same, various FW methods have been reported in 

recent years. The early feed forward torque control was modified to achieve FW 

operation as discussed in [12]. In [28], the author presented a six-step voltage control 

method for FW operation which gives the maximum utilization of the dc link voltage. 

Another approach was reported in [24], a voltage compensator and a current regulator 

with feed forward decoupling controller were proposed for the FW operation. In 

practical applications, the FW algorithm used in AC motor drives was first published 

in Kim’s paper [23]. This method has two significant features which are simplicity of 
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implementation and robustness to the variation in the machine parameters. In [24], 

further improvement was achieved based on Kim’s method.    

As mentioned in many publications, one major drawback of all the conventional 

FW methods is that one must pay attention to the magnitude of the back-electromotive 

force (back-EMF), which is proportional to the rotor speed. Since the maximum 

inverter voltage is limited in conventional drives by the dc bus voltage, IPMSM motors 

cannot operate in speed ranges where the back-EMF is higher than the maximum output 

voltage of the drives, again the dc bus voltage. Thus, in EV applications where the dc 

bus voltage is limited, the aforementioned CPSR suffers from the constraint imposed 

by the drive side. The following section of this literature review discusses the limitation 

of conventional drives and introduced the Z-source inverter as an approach to improve 

FW performance and extend the CPSR.  

1.2.2    Z-Source Inverters 

Normally, there are two limitations for all the FW control strategies: maximum 

voltage and maximum current. From the design point of view, the current limitation is 

usually decided by the motor side in a motor-drive system, which depends on its thermal 

dissipation and cooling type. However, the voltage limitation is typically decided by 

the drive side, since the dc bus voltage is limited to given values in conventional drives. 

For example, the dc bus voltage in Evs is normally rated from 200 to 600 volts 

according to the chosen motor [29], and a three-phase input industrial drive usually has 

a 310 volts dc bus. As shown in Figure 1.5, where the dc bus voltage is a reference, the 

maximum output line-to-line voltage of a traditional/three-phase full-bridge inverter is 

about 0.78 of the dc bus voltage value that is 0.78 p.u. for a conventional six step 

inverter with 180 ̊ conduction cycle per switch [30]. This value is 0.612 p.u. in 

sinusoidal pulse width modulated (SPWM) inverters [30]. Meanwhile, it is 0.707 p.u. 
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for space vector pulse width modulated (SVPWM) inverters [27]. Although different 

modulation methods can be selected, the output voltage of conventional voltage source 

inverters are still limited because of the inherent step-down function in such inverters.  

 

           

Figure 1.5: Maximum line-to-line voltage of three-phase full-bridge inverters. 

In the 2004 Toyota Prius hybrid EV, as shown in Figure 1.6, the electric drive 

system contains a conventional inverter for powering a PMSM with a voltage-boost 

circuit that is helpful in both reducing the voltage stresses in the switching devices and 

expanding the motor’s CPSR [31]. On the negative side, the dc-to-dc boosted pulse 

width modulation (PWM) inverter topology suffers from the excess cost and 

complexity associated with the two-stage power conversion.  

 

Figure 1.6: Prius drive system using dc/dc boost converter and PWM inverter. 
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Figure 1.7: System configuration using the ZSI. 

Instead of using a dc/dc boost converter, there are several topologies that can 

boost the output voltage of a drive. The recently presented Z-source inverter (ZSI) [32] 

and its’ extended topologies, quasi-Z-source inverters (qZSIs) [33] are all emerging 

boost inverters which are very suited for many applications, including hybrid Evs and 

fuel-cell vehicles [34]. The dc/dc boost converter in the Prius drive can be replaced by 

an impedance network such as the ZSI as shown in Figure 1.7. One attractive merit of 

such ZSIs and qZSIs is that they can buck/boost the voltage with a single stage 

configuration, which indicates no requirement for any dc-dc converter to boost the dc 

bus voltage [35]. Such advantage can be used to overcome the output voltage 

constraints of conventional drives. Moreover, the ZSIs also demonstrate fault-tolerant 

capabilities to shoot-through faults and voltage sags. Thus, recent publications [36, 37] 

gave more and more attention to motor drives implementing ZSIs.  

There are many classical converters which could achieve extra advantages by 

implementing the impedance network of ZSIs, such as Z-source multilevel inverters 

[38], and Z-source matrix inverters [39].  Moreover, recent publications also modified 

ZSIs for more merits, such as the improved Z-source inverter in [40], and switched 

inductor Z-source inverter in [41]. For simplicity purposes, this thesis will focus on the 
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original ZSIs, while other topologies will be generally discussed in Chapter 3.  

Unlike the traditional PWM inverter with a modulation index as the only control 

degree of freedom, the ZSIs have two control degree of freedom, one using shoot-

through duty cycle and the other one using the modulation index. There are three widely 

used control methods for ZSIs:  

 Simple boost control [32] 

 Maximum boost control [42] 

 Maximum constant boost control [43]  

Other ZSI control methods are also available, for instance, SVPWM [44].  The major 

difference between these methods lies in the harmonic distortion, voltage boost ability 

and voltage stress on switching devices. 

According to the literature review, very few researchers investigated the use of 

FW control with a boosted voltage-source inverter for Evs and other applications. 

Moreover, the literature review also shows very insufficient research on control 

algorithms of ZSIs during the FW operation. Therefore, in order to improve CPSR and 

FW performance, a proper control method of ZSIs has to been developed to support the 

FW operation with boosted voltage.  

1.3 Thesis Contributions and Organization  

In this thesis, a new FW control algorithm for IPMSMs will be presented. The 

principal feature of the proposed algorithm is that it eliminates the dc bus voltage 

constraint to FW operation by implementing a boost converter which is the ZSI. 

Theoretical analysis and simulation will be conducted to verify the feasibility and 

advantages of such control strategy. Compared with the conventional FW strategies, 

the introduced new method can significantly extend the CPSR and corresponding 

torque of IPMSMs. It should be noticed that among such merits are of high importance 
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for traction applications, e.g. Evs.  

There are five chapters in this thesis. The organization is as follows: 

Chapter 1 briefly reviews the background of PMSMs, FW approaches and ZSIs.  

Chapter 2 deduces the conventional FW control algorithms.   

Chapter 3 presents the schematic and operation principle of the ZSIs.  

Chapter 4 demonstrates the control strategies for closed-loop FW control with 

conventional inverters and ZSIs. A new control algorithm will be also presented here.  

Chapter 5 summarizes the accomplishments of this thesis and proposes ideas 

for future work.  
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Chapter 2 

Control of Permanent Magnet Synchronous Motors 

Control techniques are critical to exploit the power capability of PMSMs over 

the entire speed range. This chapter presents details of maximum torque per ampere 

(MTPA) control and flux-weakening (FW) control for IPM motors. Before control 

algorithms are analyzed, a proper motor model is established at the beginning.  

2.1  Introduction 

It should be emphasized that PMSMs are attracting growing attention for a wide 

variety of industrial applications, from simple applications like pumps or funs to high-

performance drives such as machine-tool servos [16]. Normally, most drives for the 

aforementioned applications are designed to achieve high efficiency and wide speed 

range as much as possible.  

In traction applications, it is a physical phenomenon that the load torque is 

usually in inverse proportion to the vehicle speed. Thus, in the low speed range of such 

applications, the MTPA control which gives the maximum torque for a given current 

value is preferred. This method is widely used in control of both induction motors and 

PMSMs. However, in the high speed range of traction applications such as EVs, to keep 

a high drive torque is not as important as that in the low speed region. As the desired 

objective changes to increasing the motor speed, the FW control which extends the 

speed range of the aforementioned applications becomes not only more desired but 

necessary.  

In general, large speed ranges are possible either with SPM machines which 

exhibit little or no saliency because they have surface mounted PMs, even with 

concentrated winding configurations, or with IPM machines which have high saliencies 
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and inset PMs [45]. However, with respect to SPM motors, IPM motors offer the 

advantage of higher inductance values, which implies smaller demagnetization currents 

for the FW operation [46]. Moreover, the mechanical structure of IPM motors is more 

rugged/robust overcoming the centrifugal forces on their rotors at high speeds. Thus, 

IPM motors have become more and more popular for high performance applications, 

i.e. Evs. Since IPM motors are more suited for FW control as explained above, the 

analysis of FW algorithms will focus on such IPM motors. However, in order to give a 

full account of FW control, FW methods used for SPM motors will be introduced as 

well.   

At the beginning of this chapter, a mathematical model of the PMSM is 

introduced in section 2.2. Then, theoretical analysis of steady state controls for the 

entire speed range which include MTPA and FW algorithms are analyzed in section 2.3.   

2.2  The Mathematical model of PMSMs 

In term of phase variables, the electric circuit equations of PMSMs, based on 

Faraday’s law, can be written as follows:   

                                       a
a s a

d
v iR

dt


                                                   (2.1) 

                                       b
b bs

d
v iR

dt


                                                   (2.2) 

                                       c
c cs

d
v iR

dt


                                                    (2.3) 

where (𝑣𝑎, 𝑣𝑏, 𝑣𝑐), (𝑖𝑎, 𝑖𝑏, 𝑖𝑐) and 𝑅𝑠 refer to the phase voltages, phase currents and 

resistance per phase, respectively. Here, the a, b and c phase flux linkage equations are 

[26]:  

                                        
aa ab b a ma c c aa i iL L iL                                       (2.4) 
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b ab bb b ba c c mbi iL L iL                                       (2.5) 

                                        
c ca cb b ca c c mci iL L iL                                        (2.6) 

Where, 𝐿𝑎𝑎, 𝐿𝑎𝑏, 𝐿𝑎𝑐, ····, 𝐿𝑐𝑐, represent the various phase and phase-to-phase self and 

mutual inductances, respectively. Meanwhile, the 𝜆𝑚𝑎 , 𝜆𝑚𝑏 , and 𝜆𝑚𝑐 , refer to the 

components of the phase flux linkages induced  by the PMs.  

 

     

Figure 2.1: D-q coordinate frame of PMSMs.  

In the above equations, the inductances are functions of the rotor position. Here, 

the rotor position angle 𝜃 is defined in term of the angle between the magnetic axis of 

phase (a) and the rotor q-axis as shown in Figure 2.1. Meanwhile, the flux linkages of 

the stator phase windings due to the PMs can hence be expressed as follows: 

                             cospmma                                                                            (2.7) 
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                             cos(2 / 3 ) cos( 2 / 3)pm pmmb                         (2.8) 

                             cos(4 / 3 ) cos( 4 / 3)pm pmmc                       (2.9) 

where, 𝜆̂𝑝𝑚is the amplitude of the flux produced by the PMs and the angle 𝜃 is a time-

varying function of the rotor position,  which can be represented as follows: 

                                          
0edt                                                                (2.10) 

where 𝜔𝑒 is the electrical speed of the rotor magnetic field and 𝜃0 is the initial rotor 

position angle. 

Basically, a PMSM machine can be looked at as a transformer with a moving 

secondary, where the coupling coefficients between the stator and rotor phases change 

continuously with the change of the rotor position [18]. As presented above, the 

machine model can be described by differential equations with time-varying 

inductances which are functions of the rotor position. However, such a model tends to 

be very complex because of the time varying inductance coefficients and associated 

inductance matrix. In the 1920s, R. H. Park [47] presented a new theory for such ac 

electric machine analysis to eliminate the difficulty with the time-varying 

parameters/inductances, which is usually called the d-q Park’s transformation, or the 

two-reaction theory. Through this method, the variables in the three-phase stationary 

reference frame will be transformed to constants in the synchronously rotating reference 

frame, which is also called d-q reference frame. Here, that the d-axis is oriented at an 𝜃 

angle ahead of the phase a-axis, as shown in Figure 2.1. The voltage transformation can 

be written as follows: 
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2 2
cos cos( ) cos( )

3 3

2 2 2
sin sin( ) sin( )

3 3 3

0.5 0.5 0.5
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  

 
  

 
  

    
      
    
       

 
  

                                 (2.11) 

Let T represent the Park’s transformation matrix, and S represent the a, b, and c 

vector of any of the phase variables, current, voltage, and flux linkage. Here, Park’s 

transformation can be written in a generalized form as follows: 

                                    
2

3

d a

q b

co

s s

Ts s

ss

   
   


   
     

                                                                    (2.12) 

where T is: 

           

2 2
cos cos( ) cos( )

3 3

2 2
sin sin( ) sin( )

3 3

0.5 0.5 0.5

T

 
  

 
  

 
  

 
   
 
 
 
  

                                         (2.13) 

With Park’s transformation, the stator voltage equations in d-q frame are [48]:  

                                             d
d d es q

d
v R i

dt


                                                             (2.14) 

                                             
q

q s q de

d
v R i

dt


                                                             (2.15) 

where, 
d  is the d-axis flux linkage and

q  is the q-axis flux linkage, which can be 

expressed as follows: 

                                             
d d pmdL i                                                                            (2.16) 

                                             q q qiL                                                                                            (2.17) 
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Where, 𝐿𝑑 is the d-axis inductance, 𝐿𝑞  is the q-axis inductance, and 𝜆̂𝑝𝑚  is the 

amplitude of flux linkage due to the permanent magnet. According to (2.14) and (2.15), 

a dynamic equivalent circuit of a PMSM in the d-q frame can be drawn as shown in 

Figure 2.2. 

 

Figure 2.2: Equivalent circuit of a PMSM. 

In the steady state at a constant speed 𝜆𝑑  and 𝜆𝑞become time independent, 

hence, /dd dt and /qd dt can be eliminated from the formulation. If the stator 

resistance is negligible or neglected, it follows that the PMSM model can be represented 

by a standard mathematical model in the d-q frame as follows [49]: 

                                            
qd ev                                                                                         (2.18) 

                                            
q e dv                                                                                             (2.19) 

                                            
2 2ˆ

s d qI i i                                                                                    (2.20) 

                                           
2 2ˆ

s d qV v v                                                                                   (2.21) 

where, ˆ
sI and ˆ

sV are the amplitudes of the space vector of the currents and voltages, 

respectively.  

Substitute (2.16) and (2.17) into the d-q voltage equations (2.18) and (2.19) 

above, one can obtain a model directly related to d-q current components as follows: 
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d e q qv L i                                                                                    (2.22) 

                                            ( )pmq e d dv L i                                                                   (2.23) 

In the d-q frame, the input power of a PMSM can be written as: 

                          
3

2

a

in a b c b

c

d

d q

q

i

i

i

P v v v i v v

i

 
         
   

                                         (2.24) 

Assuming the motor losses are negligible, then the input power equals the output power, 

𝑃𝑜𝑢𝑡, of the motor, which can be represented as follows: 

                                                
3

( )
2

d dou qt qv i vP i                                                           (2.25) 

By substituting (2.22) and (2.23) into the upper equation (2.25), one can obtain the 

following: 

                                            
2

( )
3

pme q dout q d qi L L i iP                                      (2.26) 

From the output power equation presented above, the output torque of a PMSM can be 

deduced. First, the electrical speed of PMSMs is equal to the product of the mechanical 

speed times the number of pole pairs, which can be expressed as: 

                                                  
2

e m

p
                                                                                  (2.27) 

where, p is the number of poles. Then (2.25) can be rewritten as follows: 

                                          3

2 2
( )pmm q d q qout di

p
LP L i i                                 (2.28) 

Since the output power is a product of the motor mechanical speed time the 

developed/output torque, the output torque can be obtained as: 

                                          3
( )

2 2
pm q d q

ut

m

o

de qiT L i i
pP

L


                            (2.29) 
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The machine’s dynamic equation can therefore be written as follows: 

                                         
m

e load friction
d

JT T T
dt


                                                    (2.30) 

where, loadT  is the load torque, frictionT  is the motor-load system friction torque, and 

J  is the polar moment of inertia of the rotor and the connected load. 

It is apparent from the above equation (2.29) that the torque expression for 

PMSMs is composed of two components. The first component is called “magnet 

excitation torque” which is proportional to 
pm  and the q-axis current.  The second 

component corresponds to “reluctance torque” due to the difference between the d and 

q axes reluctances (inductances). Since the reluctivity of PM materials is very close to 

that of the air, SPM motors are usually considered to have the same reluctance in both 

d-axis and q-axis, hence the reluctance torque component is zero for these types of 

motors. Meanwhile, IPM motors have lower reluctance along the q-axis than that along 

the d-axis. Therefore, this reluctance torque component has a positive value for such 

IPM motors with a negative d-axis current. This is also one of the merits of utilizing 

the IPM motors for the FW operation where the d-axis current keeps increasing in the 

negative direction. 

2.3 Steady State Control of PMSMs 

The main principle in any machine control is to obtain a desired rotating speed.  

In order to have such desired speed, the drive torque produced by the machine has to 

be controlled. For induction machines, there are three main categories of motor control 

methods, which are: 

• Volts/hertz control [50] 

• Field oriented control (FOC) [51] 
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• Direct torque control (DTC) [52] 

There is no essential difference between the control of induction motors and the control 

of PMSMs. The above control methods for induction machines are also the major 

control methods applicable to PMSMs.  

The volts/hertz control is simple and cheap in implementation. It is usually 

designed as an open-loop control. Thus, a resolver/encoder is not required. However, it 

is not an option for high performance applications because of the fact hat the torque is 

not controllable.  

Among the three types of control methods, the FOC is the best solution for high 

performance drives. This type of control usually has two closed-control loops. The 

outer loop is the speed loop which needs a resolver/encoder for the speed feedback. The 

inner loop is the current loop which controls the torque indirectly. Thus, this method 

has fast torque response and accurate speed control. The main disadvantage of this 

control method is the higher cost in comparison to the volts/hertz control. It has to be 

noticed that the resolver/encoder is not necessary if sensorless FOC schemes/methods 

are applied.  

Instead of controlling torque via the regulation of current, DTC attempts to 

integrate the control of flux and torque in a single switching algorithm, taking 

advantage of the fact that the voltage can be changed extremely fast when the inverter 

electronics switches change state [25]. This approach achieves field orientation without 

any speed feedback. This type of control also has the fastest torque response among all 

the control methods. The major drawback is that the hysteresis controller used in this 

kind of control causes large torque ripples distortion and variable switching frequencies.   

It is difficult to state the superiority of these methods discussed above. 

Ultimately, the application determines which method should be implemented. For high 
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performance applications, the FOC is a promising method which has been widely used 

for a long time. Therefore, next section presents the analysis of the FOC strategies 

which includes MTPA control and FW control for traction and electric appliance drive 

applications.  

 

2.3.1   Field Oriented Control 

 

Figure 2.3: Phasor diagram of a PMSM in d-q frame. 

The concept of FOC was first invented in the beginning of 1970s [53]. This 

method brought forward intensive efforts in investigating high performance control of 

ac drives because of the fact that an induction motor controlled by an FOC 

method/algorithm can be controlled in a similar manner to the control of a separately 

excited dc motor [18]. Such FOC is also known as vector control, decoupling control, 
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and orthogonal control [18]. In general, the principle of FOC schemes implies 

independent (decoupled) control of flux – current and torque – current components of 

a stator current through a coordinated change in the supply voltage amplitude, phase 

angle and frequency. As the flux variation tends to be slow, especially with current 

control, constancy of flux should produce a fast torque response, and consequently 

reasonable speed response [50]. 

The fundamental objective of most FOC algorithms is to control the amplitude, 

phase, and frequency of stator flux linkages. This objective can be achieved by 

controlling the stator current phasor, 𝐼𝑠⃗⃗  as shown in Figure 2.3. In terms of phasor 

components as shown in Figure 2.3, the voltage equation can be expressed as follows: 

                                  
s d qemf s d qs j jR X XV E I I I                                  (2.31) 

where, 𝑉⃗ 𝑠 is the stator phase voltage, 𝐸⃗ 𝑒𝑚𝑓 is the back-EMF in a PM motor, 𝐼 𝑠 is the 

stator current phasor, and 𝑋𝑑/𝑋𝑞 are the d/q axes reactances. The value of the back-

EMF, 𝐸𝑒𝑚𝑓, can be calculated from the flux linkage due to the permanent magnet, 𝜆𝑝𝑚, 

as follows: 

                                                  emf e pmE                                                        (2.32) 

Notice, in the phasor diagram of Figure 2.3, voltages, currents and flux linkages are in 

RMS values.  

To illustrate how the FOC method controls the motor in a motor-drive system, 

a general control structure is presented in Figure 2.4 for a better demonstration. There 

are two loops in the control scheme of Figure 2.4: the inner current loop and the outer 

speed loop. Normally, the current loop is used to obtain a desired torque. Meanwhile, 

the speed loop assures that the actual speed follows the commanded speed.  
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In most controller designs related to FOC logic structure, control algorithms are 

embedded in the speed regulator portion of the speed loop. Thus, the design of the speed 

regulator could be simple or complex according to the various FOC algorithms. Notice 

that there is no reference torque that can be found in Figure 2.4. This does not mean 

that the torque is not controlled. In fact, a reference torque can be generated by the 

speed regulator. Then, current references can be obtained according to this commanded 

reference torque. Moreover, torque feedback can also be added into the speed regulator 

through a torque transducer, not shown in Figure 2.4. To avoid complexities, the general 

speed regulator can be decomposed into the speed regulator which gives the torque 

reference, and the torque regulator which produces the current reference.  In general, 

the speed regulator is the main controller in most FOC logic structures. As to the inner-

loop controller, the current regulator assures that the current follows its reference value 

which is the output of the speed regulator. The design of the current regulator usually 

depends on motor parameters. While, the design of the speed regulator is usually based 

on the nature of the control algorithms. 

In conventional FOC categories, there are several control algorithms/strategies, 

which, namely, are the MTPA strategy, the FW strategy, unity power factor control, 

and optimal efficiency control, etc. [18-20]. For traction applications, the MTPA 

control is the most effective strategy in the low speed regions. While, the FW control 

is necessary in high speed applications. Although MTPA and FW employ different 

algorithms, they are FOC methods in their nature.  

2.3.2   Maximum Torque Per Ampere (MTPA) Control Algorithm 

In order to produce the maximum torque at a given current value, the torque 

expression for PM motors has to be analyzed. For SPM motors, which have no saliency, 
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the reluctance torque is zero. Thus, for SPM motors, the torque expression (2.29) can 

be rewritten as follows [25]: 

                                                    
3

2 2
pm qe i

p
T                                                     (2.33) 

Keeping 𝑖𝑞 = 𝐼𝑠 and 𝑖𝑑 = 0, it is the most convenient approach to control an inverter-

fed SPM motor in order to produce the maximum torque.  

 

Figure 2.5: Torque angle. 

Since IPM motors have larger q-axis reactance/inductance than d-axis 

reactance/inductance, that is, 𝐿𝑞 > 𝐿𝑑, the reluctance torque is present. Therefore, the 

maximum torque becomes a combination of the magnet excitation torque and the 

reluctance torque. From the Figure 2.5, we can write: 

                                  cosd si I                                                                  (2.34) 

                                              sinq si I                                                                 (2.35)      

where, 𝐼𝑠 is the amplitude of the stator phase current of an IPM motor, and β (180° >

𝛽 ≥ 0°) is defined as the “torque angle”, which is the angle between the stator phase 

current vector and the positive direction of  the d-axis as shown in Figure 2.5.  
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By substituting (2.34) and (2.35) into (2.29), one can obtain the following: 

                           ( ) cossi
3

2 2
n sinpm s s se d qLI

p
T L I I                   

or                         
2 sin 2

( )in
3

2 2
s

2
pm s sd qe IT L

p
LI


  

 
  

 
                         (2.36) 

As aforementioned earlier, the developed torque can be seen as a combination of the 

magnet excitation torque, 𝑇𝑚𝑎𝑔, and the reluctance torque, 𝑇𝑟𝑒𝑙, which can be expressed 

as follows: 

                                e mag relT T T                                                                       (2.37)  

where,                  
3

2
s

2
inmag pm s

p
IT                                                               (2.38)  

                             
2 sin 2

( )
3

2 22
rel sd qL LT I

p 
                                                (2.39) 

As the torque angle, 𝛽, changes, the variation of the magnet excitation torque and the 

reluctance torque can be seen in Figure 2.6, which is obtained from the simulation 

results by substituting the parameters in Table 2.1 into the torque equations (2.38) and 

(2.39).  

Motor Parameters 

𝜆̂𝑝𝑚 0.148wb 

𝐿𝑑 0.0054H 

𝐿𝑞 0.0105H 

𝐼𝑠 10A 

Number of poles (p) 6 

Table 2.1: IPM motor parameters for MTPA simulation. 
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Figure 2.6: Developed torque vs. torque angle of IPM motors. 

As shown in Figure 2.6, the torque angle corresponding to the maximum magnet 

excitation torque does not provide the maximum developed torque. Since SPM motors 

don’t have any significant reluctance torque component, the magnet excitation torque 

and the developed torque are equal in SPM motors. Therefore, this also implies that 

IPM motors have higher maximum developed torque than SPM motors.  The torque 

angle which results in the maximum torque of IPM motors can be derived by setting 

the derivative of the torque in (2.36) to zero, which can be expressed as follows: 

                          23
cos ( ) cos2 0

2 2

e
pm s d q s

d pT
I L L I

d
 


                   (2.40) 

For further simplicity, (2.40) can be rewritten as follows: 

                         2 2
( cos ) ( sin )( cos ) ( ) 0pm s ss d q I II L L                (2.41) 

By substituting (2.34) and (2.35) into (2.41), one can obtain: 

                         
2 2( )( ) 0pm d d q d qi i iL L                                                                         (2.42) 

Since 𝑖𝑑
2 + 𝑖𝑞

2 = 𝐼𝑠
2, it follows that 𝑖𝑞 can be expressed as follows: 
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                                         2 2
q s d

i I i                                                                                        (2.43) 

By substituting (2.43) into (2.42), a binominal equation of d-axis current can be written 

as follows: 

                                 
222( ) ( ) 0pm dd q d qd s

iiL L L L I                                (2.44) 

From (2.44), two solutions can be obtained as follows: 
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                                      (2.45)      

Since IPM motors have larger 𝐿𝑞 than 𝐿𝑑, to obtain a positive reluctance torque, one 

has to keep the torque angle larger than 90° , which can be obtained from (2.39). 

Therefore, the projection of 𝐼𝑠 on the d-axis should have a negative value due to such 

torque angle, which also indicates that 𝑖𝑑2 in (2.45) is the expected useful solution.  

From the above, the d- and q-axis currents for MTPA control of IPM motors can be 

expressed as follows: 

                                  

22 2
( )8

4( )

pm q d spm

dm

q d

L L I
i

L L

   



                                         (2.46)      

                                  2 2
qm s dm

i I i                                                                                       (2.47) 

Here, the torque angle, 𝛽, for this maximum torque condition is hence obtained as 

follows: 

                                  arctan( )
qm

m

dm

i

i
                                                                                      (2.48) 

Although voltage constraints are not taken into consideration in the MTPA control, the 
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developed torque is limited by supply current. For each supply current value, there is a 

particular pair of d-axis current and q-axis current that results in the maximum torque 

under that condition. Therefore, the torque angle for the MTPA operation is determined 

not only by motor parameters but also by supply current value. For different supply 

currents, there are different cross points between the current circles and the MTPA 

trajectory as shown in Figure 2.7, which yields different torque angles for MTPA 

operations.   

  

Figure 2.7: The MTPA trajectory for IPM motors 

2.3.3   Flux-Weakening Control Algorithms 

For traction applications in Evs, PMSM-drive systems normally require a wide 

constant power speed range (CPSR). However, a specific power inverter cannot drive 

PMSMs at high speeds because of the fact that the back-EMF is proportional to motor 



31 

 

speed and air gap flux, thus, leading to higher back-EMF values. Once the back-EMF 

becomes larger than the maximum output voltage of the drive, the PMSM will be 

incapable of drawing current and hence incapable of developing torque. Thus, when the 

back-EMF reaches the voltage threshold of a drive, the rotor speed of such a motor 

cannot be increased unless the air gap flux can be weakened. Considering that the rotor 

magnetic field generated by the PMs can only be weakened indirectly through armature 

MMF demagnetization of the PMs, and hence, an extended speed range can be achieved 

by means of FW control. During the FW operation region, a demagnetizing MMF is 

established by the stator currents and winding to counteract the “apparent” MMF 

established by PMs mounted on the rotor. As a result, the resultant air-gap flux is 

indirectly reduced/weakened and correspondingly the motor speed is increased [54].  

 

(a) Torque vs. speed  

 

(b) Power vs. speed 

Figure 2.8: Typical torque and power characteristics of PMSMs.   



32 

 

Without FW control, the back-EMF of a PM motor will keep increasing with 

speed. Therefore, the output voltage of the drive for such a PM motor has to be 

increased to keep desired phase currents. In the constant torque region as shown in 

Figure 2.8, a motor can be accelerated by the maximum torque until the terminal voltage 

of such motor reaches its limit value at 𝜔𝑒 = 𝜔𝑏𝑎𝑠𝑒, which is defined as the base speed 

or corner speed. Such base speed is the highest speed of a PM motor controlled by the 

aforementioned MTPA method.  

Substituting (2.22) and (2.23) into (2.21), one can obtain the following for the 

space vector of the stator terminal voltage, 𝑉̂𝑠: 

                    
2

2ˆ ( ) ( )pme q q e ds dV L i L i                                               (2.49) 

Thus, from (2.49) the electrical speed, 𝜔𝑒, has to satisfy the following expression: 

                  
2 2

( ) ( )

s
e

d d q qpm

V

iL iL





 

                                                      (2.50) 

Hence, the base speed, 𝜔𝑏𝑎𝑠𝑒, can be obtained as follows: 

                  max

2 2
( ) ( )

base

d dm q qmpm

V

iL iL





 

                                                      (2.51) 

where, 𝑉̂𝑚𝑎𝑥 is the amplitude of the maximum output voltage space vector of a drive, 

and 𝑖𝑑𝑚/𝑖𝑞𝑚 are the d/q axes currents for the MTPA operation condition.  

Normally, for all the FW control algorithms, there are two constraints that 

should be considered: namely the maximum current and the maximum voltage. Unlike 

the aforementioned MTPA control, the torque capability in the FW region is determined 

by both current and voltage limitations. In a motor-drive system, the current limitation 

is usually decided by the motor side, which depends on a motor’s thermal dissipation 

and cooling means. However, the maximum voltage is typically decided by the drive 
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side, which has a limited dc bus voltage.  

The current limitation, 𝐼𝑚𝑎𝑥 , which is the amplitude of the maximum phase 

current, can be drawn as a circle in the d-q frame as shown in Figure 2.9, which can be 

formulated in the following fashion: 

                                                   
2 2 2 2

maxd q si i I I                                                                 (2.52) 

 

(a) Current-limiting circle and voltage-limiting ellipse for IPM motors 

 

(b) Current-limiting circle and voltage-limiting circle for SPM motors 

Figure 2.9: Current-limiting and voltage-limiting characteristics of PMSMs.   
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While, the voltage limitation is an ellipse for IPM motors in the d-q frame as shown in 

Figure 2.9 (a), which can be derived form (2.49) as follows: 

                       
  2

2

2

2 22

( )

/( /

( / ) ( )
1

) )(

pm d d

e d e q

q

s s

iL

L L

i

V V 

 
                                        (2.53) 

where, 𝑉̂𝑠 ≤ 𝑉̂𝑚𝑎𝑥, and 𝑉̂𝑚𝑎𝑥 represents the amplitude of the maximum allowable phase 

voltage. However, for SPM motors, the voltage limitation becomes a circle due to the 

fact that 𝐿𝑑 = 𝐿𝑞, as shown in Figure 2.9 (b).  

In the FW control category, there are several strategies used for SPM motors 

and IPM motors. The three commonly used FW control strategies for SPM motors are 

[49]: 

• constant-voltage-constant-power (CVCP) control  

• constant-current-constant-power (CCCP) control 

• voltage and current limited maximum torque (VCLMT) control 

Among the three control strategies above, the VCLMT control is widely used 

FW control strategy for IPM motors. However, the CVCP control and CCCP control 

are more suitable for SPM motors.  

 Constant-voltage-constant-power (CVCP)  control for SPM motors 

Among the three commonly used FW methods for SPM motors, the CVCP 

control is the most widely used method because of its simplicity and low requirement 

for additional hardware in drives. This method keeps a constant voltage and constant 

power by keeping the current vector following the constant power trajectory which is 

line QC in Figure 2.9 (b).  

As a constant power operation, the rated power is defined as the output power, 

𝑃𝑏, at base speed, 𝜔𝑏𝑎𝑠𝑒, as shown in Figure 2.8 (b). Thus, one can obtain the following 
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for 𝑃𝑏: 

                                                   max
( / 2)

base
bP T

p


                                                               (2.54) 

where, 𝑇𝑚𝑎𝑥 is the maximum torque for the MTPA operation. Since the output power 

is constant, the output power, 𝑃𝑏, can be rewritten as follows: 

                                             constant
( / 2)

e
e bP T P

p


                                         (2.55) 

From (2.54) and (2.55), one can obtain the following: 

                                          max constantee baseT T                                                    (2.56) 

For SPM motors, the torque expression as previously obtained in (2.33) is: 𝑇𝑒 =

3

2

𝑝

2
𝜆̂𝑝𝑚𝑖𝑞. As aforementioned in the MTPA control section, the maximum torque for 

SPM motors can be obtained by keeping 𝑖𝑞 = 𝐼𝑠. Thus, the maximum torque, 𝑇𝑚𝑎𝑥, can 

be represented as follows: 

                                              max

3

2 2
pm s

p
T I                                                                 (2.57) 

Substituting (2.33) and (2.57) into (2.56) and rearranging, one can obtain the following: 

                                           constante q base si I                                                          (2.58) 

From (2.58), the d-axis voltage equation (2.22) can be rewritten as follows: 

                                        ( ) constantd e base sq q qv L i L I                            (2.59) 

Since the d-axis voltage is a constant value, in order to keep a constant phase voltage, 

the q-axis voltage has to be constant too. Moreover, since the d-axis voltage component 

keeps its value at the base speed, the q-axis voltage component should keep its value at 

the same base speed as well, which can be represented as follows: 

                                        constantq qbv v                                                                           (2.60) 
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where, 𝑣𝑞𝑏 is the q-axis voltage component at the base speed. Due to the zero d-axis 

current in MTPA operation for SPM motors, 𝑣𝑞𝑏 can be written as follows: 

                                           pmqb basev                                                                                   (2.61) 

Substituting (2.23), which is 𝑣𝑞 = 𝜔𝑒(𝜆̂𝑝𝑚 + 𝐿𝑑𝑖𝑑), and (2.61) into (2.60), one can 

obtain the following: 

                                      ( ) constantpm pme d d baseL i                                    (2.62) 

From (2.58) and (2.62), the d, q current components for the CVCP control can be 

obtained as follows: 

                                           
pm pmbase

d

e d d

i
L L

 


                                                                  (2.63) 

                                           base
sq

e

i I



                                                                                       (2.64) 

It is obvious that the d, q current components are linearly related to each other. This 

relationship can be expressed as follows: 

                                           d
s sq d

pm

L
i I i I


                                                                          (2.65) 

From (2.65), the CVCP trajectory can be drown as depicted in Figure 2.10, which is the 

line QC. 

It should be noticed that the intersection point, M, between the line QC and the 

current-limiting circle, represents the boundary of the CVCP control.  Any operation 

along line section MC violates the current limitation. Thus, the valid CVCP control 

trajectory is within the line QM in Figure 2.10.  
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Figure 2.10: Constant-voltage-constant power control of SPM motors.   

 Constant-current-constant-power (CCCP) control for SPM motors 

The CCCP control keeps a constant current and constant power by changing the 

q-axis voltage component. The control principle of the CCCP control is similar to the 

CVCP control. However, this method normally requires voltage boost capability of 

drives to achieve a desired voltage. Thus, it has very limited utilization.  

Since the CCCP control has a constant output power as the CVCP control, the 

CCCP control also has a constant d-axis voltage as was previously derived in (2.59), 

which can be restated as follows:  

                                  ( ) constantd e base sq q qv L i L I                                     (2.66) 

Thus, the q-axis current can be expressed as in (2.64), which yields the following: 

                                           base
sq

e

i I



                                                                                       (2.67) 

Since the CCCP control keeps a constant phase current value, by substituting (2.67) 

into (2.20), the d-axis current can be written as follows: 
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2 2 2 2s

q e based s
e

I
i iI                                                  (2.68) 

Substituting (2.68) into the q-axis voltage equation (2.23), one can obtain the following: 

                             
2 2( ) spm pm e basee d d eq dv L i L I                           (2.69) 

As the speed, 𝜔𝑒, keeps increasing, the q-axis voltage value, 𝑣𝑞, experiences a slight 

drop and then it keeps increasing as shown in Figure 2.11. Since the d-axis voltage is 

constant, the phase voltage value in the CCCP control depends on the q-axis voltage 

component. As shown in Figure 2.12, the current trajectory of the CCCP control follows 

its current-limiting circle. While, the voltage trajectory changes according to the q-axis 

voltage.  

 

Figure 2.11: The q-axis voltage trajectory of the CCCP control.   
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Figure 2.12: Constant-current-constant power control of SPM motors.   

 Voltage and current limited maximum torque (VCLMT) control for 

IPM motors  

 

The VCLMT control can be employed for both SPM and IPM motors with the 

same operation principle. There is only a slight difference in calculations of d, q current 

components between the two types of PM motors. For simplicity, this section only gives 

the analysis of the VCLMT control for IPM motors.  

As one FW strategy for IPM motors, VCLMT control follows two constraints 

which are the current-limiting circle and the voltage-limiting ellipse, as shown in Figure 

2.9 (a). As the speed increases, with the center of the ellipse remaining the same, the 

voltage-limiting ellipse becomes smaller and smaller as shown in Figure 2.9 (a). The 

𝑖𝑑𝑚  and 𝑖𝑞𝑚 for MTPA control cannot satisfy the voltage constraint above the base 

speed. Therefore, new d, q current components are required to keep the maximum phase 

voltage,  𝑉̂𝑚𝑎𝑥, in the FW region. Such d, q current components can be obtained from 

the voltage constraint equation (2.53) as follows: 
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2

2

a2 m x

2
( ) ( )pmq q d d

e

L L i
Vi


                                              (2.70) 

From the current-limiting circle, Figure 2.9, and (2.52), one can obtain the following: 

                                                   
22

maxq di iI                                                                (2.71) 

By substituting (2.71) into (2.70) and rearranging, a binominal equation of the d-axis 

current can be written as follows: 

            
22 22 2 2 22

max max
( ) 2 ( / ) 0d q d qd d epm pmi iL L L L I V                          (2.72) 

From (2.72), two solution can be obtained as follows: 
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Since the demagnetizing current should be a negative value, the root 𝑖𝑑1 in (2.73) is the 

expected useful solution for the FW operation. From the above analysis of the VCLMT 

strategy, the d- and q-axis currents for the FW control of IPM motors can be expressed 

as follows: 

           
 2 22 22 2 2

max max

, 2 2

( ) ( )( ) /

( )
VCL

eq qdpmd dpm pm

d
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             (2.74) 

                                             
22

, ,maxVCL VCLq di iI                                                                (2.75) 

For the whole speed range of operation, a recommended control strategy for 

IPM motor is the combination of the MTPA control and FW control. The optimal 

current vector trajectory for the MTPA control and the FW control is shown in Figure 

2.13. This strategy implements the MTPA control in the low speed region, which is 

region OA as shown in Figure 2.13, until the base speed. Then, it employs the FW 
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control at region AB, when the speed is above base speed.  

 

(a) 𝜆̂𝑝𝑚/𝐿𝑑 < 𝐼𝑚𝑎𝑥 

 

(b) 𝜆̂𝑝𝑚/𝐿𝑑 > 𝐼𝑚𝑎𝑥 

Figure 2.13: Optimum current vector trajectory in the d, q frame for IPM motors.   
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From the voltage ellipse equation (2.53), the center of the voltage ellipse is 

located at a point C (−𝜆̂𝑝𝑚/𝐿𝑑, 0), as shown in Figure 2.9 and 2.13. Notice that 𝜆𝑝𝑚/𝐿𝑑 

is usually defined as the short-circuit current. Once the maximum inverter current, 𝐼𝑚𝑎𝑥, 

becomes equal to or larger than the short-circuit current, the permanent magnet can be 

fully demagnetized. In another word, the permanent magnet flux, 𝜆𝑝𝑚, can be fully 

cancelled/eliminated. 

With a large size inverter which has 𝐼𝑚𝑎𝑥 > (𝜆̂𝑝𝑚/𝐿𝑑) as shown in Figure 2.13 

(a), the lossless machine is capable of attaining infinite speed. Above a certain speed at 

point B, the maximum torque becomes only voltage limited. Then the current trajectory 

follows the voltage ellipse rather than the current circle for the maximum torque.   

With a small size inverter which has 𝐼𝑚𝑎𝑥 < (𝜆̂𝑝𝑚/𝐿𝑑) as shown in Figure 2.13 

(b), the maximum speed at point B is finite. The maximum torque can be found at the 

intersection between the voltage-limiting ellipse for that speed and the current-limiting 

circle. In most design cases, we only have 𝐼𝑚𝑎𝑥 < (𝜆̂𝑝𝑚/𝐿𝑑), which means that the 

permanent magnet is too strong to be fully demagnetized.  

Since the more demagnetizing current in the negative d-axis direction the deeper 

the flux weakening, the maximum speed of the VCLMT control can be obtained by 

substituting 𝑖𝑑 = −𝐼𝑚𝑎𝑥 and 𝑖𝑞 = 0 into (2.70) as follows: 
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or  
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
                                                  (2.77) 

For a large size inverter, the denominator in (2.77) could be zero. Therefore, the 

theoretical speed is infinite.   
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Chapter 3 

Z-Source Inverters 

Inverters are absolutely necessary components on realizing any modern ac 

motor control applications. This chapter presents details of a unique inverter which is 

the Z-source inverter, including its topologies, operation principles and control methods.  

3.1  Introduction 

The process of converting dc to ac power is called inversion and it is the inverter 

which creates the variable frequency from the dc source which is used to drive an ac 

motor at variable speed [51]. As a new invention, the Z-source inverter (ZSI) was first 

proposed by [32]. The most significant characteristic of such ZSI is its ac voltage boost 

capability, which is not available in conventional inverters. In many applications such 

as photovoltaic power generation, electric/hybrid vehicles, machine tools, etc., the 

voltage was boosted by additional dc/dc converters or transformers which can now be 

replaced by ZSIs. The ZSI also has the same function as conventional inverters. 

Therefore, such inverter topology can be used in various industrial applications.  

The ZSI, shown in Fig. 3.1, is a buck-boost converter which employs a unique 

impedance network to couple the inverter main circuit to the dc link/ dc bus. The name 

“Z-source” also stems from this impedance network preceding the inverter switches 

bridge. Figure 3.2 shows the conventional three-phase voltage-source inverter structure, 

which uses a dc voltage source supported by a relatively large capacitor to feed the 

three-phase bridge. Compared to the conventional inverter topology in Figure 3.2, the 

ZSI has an extra impedance network which consists of two inductors and two capacitors. 
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Figure 3.1: Voltage fed Z-source inverter.   

 

Figure 3.2: Traditional voltage-source inverter.   

The unique feature of the ZSI is that the output ac voltage in theory can be any 

nonnegative value regardless of the dc source voltage. Such an inverter has many 

other advantages that can be listed as follows [32, 36]: 

 Provide ride-through during voltage sags. 

 Improve power factor.  

 Eliminate dead time and reduce harmonics in current waveforms and 

common-mode voltage. 

 The shoot-through switching state will no more cause catastrophic damage. 
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Compared to conventional inverters, the major drawback of the ZSI is the 

impedance network which requires extra cost and large space due to the associated 

bulky inductors and capacitors. However, compared to conventional two-stage power 

conversions for boosting ac voltage, the ZSI has fewer semiconductor switches, lower 

price, and higher efficiency [55]. For instance, Figure 3.3 shows the traditional two-

stage voltage boost structure for fuel-cell applications. The dc-dc boost converter and 

the three phase inverter can be replaced by a ZSI as shown in Figure 3.4.  

 

Figure 3.3: Traditional two-stage power conversion for fuel-cell applications. 

 

Figure 3.4: Z-source inverter for fuel-cell applications. 
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Conventional voltage source inverters (VSIs) and current source inverters (CSIs) 

suffer from similar problems when used in many applications. Specifically, VSIs must 

have a dc bus voltage which is greater than the peak value of the line-to-line output 

voltage of such inverters. Similarly, the input voltage of CSIs has to be less than the 

output voltage. Thus, they are either buck converters or boost converters. However, the 

output voltage of such converters can be varied as desired by coupling the Z-impedance 

network with conventional VSI or CSI topologies. Since the ZSI was introduced in 

2003, many improved topologies based on the original ZSI design have been developed 

and presented. In order to achieve bidirectional power flow, the diode, D1, shown in 

Figure 3.1 can be replaced with a bidirectionally-conducting unidirectionally-blocking 

switch. In addition to the voltage fed ZSI shown in Figure 3.1, a current fed ZSI is also 

feasible, as shown in Figure 3.5 [56]. To reduce the passive component ratings, other 

topologies such as quasi-Z-source inverters (qZSIs) were introduced as shown in Figure 

3.6 (a through d) [33].  

 

MD1

 

Figure 3.5: Current source Z-source inverter.   
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D1

M

 

(a) Voltage source Qzsi with continuous input current 

D1

M

 

(b) Voltage source Qzsi with discontinuous input current 

M
D1

 

(c) Current source Qzsi with discontinuous input current 

M
D1

 

(d) Current source Qzsi with continuous input current 

Figure 3.6: Quasi-Z-source inverters.   
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The Z-source concept can be applied to all circuits of dc-to-ac, ac-to-dc, ac-to-

ac, and dc-to-dc power conversion. The Z-impedance network can be coupled with 

many conventional topologies, such as Z-source matrix converters [57, 58], Z-source 

multilevel inverters [59, 60], Z-source rectifiers [61, 62], etc. Therefore, the Z-source 

concept can be used in various industrial applications, such as photovoltaic power 

generation systems [63], adjustable speed drives [36], dc power supplies [64], etc. In 

order to describe the operating principle and control methods for the Z-source 

converters, this chapter focuses on the analysis of the original ZSI.  

3.2  Operation Principle and Passive Components Design 

The essential operation principle of a ZSI is similar to a dc-to-dc boost converter 

which utilizes a charged inductor, L, to boost the output voltage and utilizes a capacitor, 

C, to sustain a constant output voltage as shown in Figure 3.7.  Notice the reversal of 

the voltage polarity across the inductor from the charging mode to the active mode in 

Figure 3.7.  

 

(a) Charging mode 

 

(b) Active mode 

Figure 3.7: A dc-dc boost converter.   
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In the charging mode of a dc-dc converter as shown in Figure 3.7 (a), the 

inductor current keeps increasing and the diode is not conducting. The output voltage 

across the load is sustained by the capacitor, C. In the active mode as shown in Figure 

3.7 (b), once the switch, S, is opened, the inductor, L, starts to discharge and the diode 

is conducting. Once again, notice the reversal of voltage polarity across the inductor. 

Since the inductor current is on the decline in the discharge operation, the voltage across 

the inductor changes polarity to the direction that supports the dc current, 𝐼𝑑𝑐. Therefore, 

the output voltage/capacitor voltage become higher than the dc supply voltage. Suppose 

the capacitor is relatively large and hence, its voltage is sustained as in the active mode, 

the output voltage of the dc-to-dc boost converter can be seen as a constant which is 

higher than the dc supply voltage.  

From the analysis of the traditional dc-to-dc boost converter, a charged inductor 

is required to achieve the voltage boost capability. Therefore, a special switching mode 

on the inverter bridge is employed, which is turning on both the upper switch and the 

lower switch in one phase leg at the same time as in a shoot-through switching mode. 

Once the two switches in one phase leg are turned on, the load is shorted and the two 

inductors in the ZSI start to be charged. This shoot-through zero state (shoot-through 

state) is forbidden in traditional voltage source inverters, because it would cause a near 

total short circuit across the dc bus.  

Since the shoot-through zero state is required for ZSIs, the total permissible 

switching states are nine for a three-phase ZSI, which includes six active states, two 

zero states, and one shoot-through zero state. While, conventional three-phase voltage 

source inverters only have eight permissible switching states. Table 3.1 presents the 

nine switching states of a ZSI shown in Figure 3.8. Notice that the shoot-through zero 

state can be generated by seven different ways: shoot-through via one phase leg, 



50 

 

combinations of any two phase legs, and all three phase legs. For practical applications, 

shoot-through via all three phase legs yields the least loss on the six switching devices. 

 

      State 

 

Switch 
Active state 

Zero 

state 

Shoot-through zero state 

(generated by seven different 

ways) 

S1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 

S2 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 

S3 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 

S4 1 0 0 0 1 1 1 0 0 1 0 1 0 1 1 

S5 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 

S6 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 

Table 3.1: Nine permissible switching states of ZSIs (1=closed, 0=open.).   

 

Figure 3.8: A three-phase ZSI.   

Assuming that the inductors, 𝐿1  and 𝐿2 , have the same inductance, and the 

capacitors, 𝐶1  and 𝐶2 , have the same capacitance, the Z-source network becomes 

symmetrical. Figure 3.9 presents the equivalent circuits of the ZSI in the three different 

states, namely the active, the zero, the shoot-through zero states of Table 3.1. From the 

symmetry and the equivalent circuits of Figure 3.9, one can obtain the following: 

                           1 2c cv v             1 2l lv v                                                 (3.1) 
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(a) Zero state 

 

(b) Active state 

 
(c) Shoot-through zero state 

Figure 3.9: Equivalent circuits of the ZSI.   
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In the zero state, shown in Figure 3.9 (a), the ZSI works in the open circuit mode. 

The output current of the inverter during the zero state will drop to zero in the steady 

state. Therefore, the current through the two inductors, 𝐿1 and 𝐿2, will drops to zero as 

well, which means the inductors are discharging during the zero state. It also indicates 

that the capacitors, 𝐶1 and 𝐶2, will be charged during the zero state. The diode, 𝐷1, will 

keep conducting until the current drops to zero, which means that the capacitors are 

fully charged and achieve their peak voltage value at that time.  

In the active state as shown in Figure 3.9 (b), the diode, 𝐷1, is conducting and 

the two inductors, 𝐿1  and 𝐿2 , keep discharging. Since the current through the two 

inductors keeps decreasing during their discharging, the two inductors become voltage 

sources, 𝑣𝑙1 and 𝑣𝑙2, to support the current through them. Therefore, one can obtain the 

output voltage of the Z-impedance network, 𝑣𝑖, which is also the voltage across the 

inverter bridge as follows: 

                                         1 2dc l li V v vv                                                                 (3.2) 

From (3.2), it is obvious that the output voltage during the active state becomes higher 

than the dc bus voltage. Due to the symmetry of the Z-impedance network, the voltage 

across the passive components can be obtained as follows: 

                              1 2l l lav v v         1 2c c cav v v                                              (3.3) 

where, 𝑣𝑙𝑎 and 𝑣𝑐𝑎 are voltages across the inductors and capacitors during the active 

state of the ZSI, respectively. From Kirchhoff’s voltage law, the relationship between 

the inductor voltage, 𝑣𝑙𝑎, and the capacitor voltage, 𝑣𝑐𝑎, can be written as follows: 

                                           dcla ca Vv v                                                                     (3.4) 

By substituting (3.3) and (3.4) into (3.2), one can obtain the following: 

                                     2 2dc la ca dci V v v Vv                                                  (3.5) 

In the shoot-through zero state as shown in Figure 3.9 I, the diode, 𝐷1, is not 
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conducting and the two inductors, 𝐿1 and 𝐿2, keep charging by the two capacitors, 𝐶1 

and 𝐶2 respectively. Figure 3.9 I also shows two current loops that indicate the direction 

of the power transmission. If only one phase-leg is shorted, the current through this 

phase-leg is two times the charging current, 𝑖𝑐, in the shoot-through zero state. However, 

the voltage across the inverter bridge, 𝑣𝑖, is zero, which can be expressed as follows: 

                                                0iv                                                                                  (3.6) 

Due to the symmetry, one can obtain the follows:  

             1 1l cv v              2 2l cv v          1 2l l lsv v v              1 2c c csv v v           (3.7) 

where, 𝑣𝑙𝑠 and 𝑣𝑐𝑠 are voltages across the inductors and capacitors during the shoot-

through zero state of the ZSI, respectively.  

Assuming the two capacitors, 𝐶1 and 𝐶2, are large enough to sustain a constant 

voltage during a switching cycle, the voltages, 𝑣𝑐𝑎 and 𝑣𝑐𝑠, across the two capacitors in 

different states can be rewritten as follows: 

                                            cca cs Vv v                                                                     (3.8) 

The average voltage of the inductors, 〈𝑣𝑙〉 , over one switching period, T, should 

be zero in the steady state. Thus, one can write the following: 

                                     0s als la
l

v vT T
v

T

  
                                                    (3.9) 

where, 𝑇𝑠 and 𝑇𝑎, are the time intervals for the shoot-through zero state and the active 

state during one switching period, respectively. Notice that the zero state is not 

considered during the steady state operation. Therefore, the switching period, T, can be 

expressed as follows: 

                                                  
s aT T T                                                                 (3.10) 

By substituting (3.8) into (3.4) and (3.7), one can obtain the following: 

                                     la c dcv V V            ls cv V                                             (3.11) 
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Then by substituting (3.11) into (3.9), the equation (3.9) can be rewritten as follows: 

                            
)(

  0
s adc dcc

l

VV VT T
v

T

   
                                      (3.12) 

or 

                                               
ac

a sdc

V T

V T T



                                                           (3.13) 

Similarly, the average dc-link voltage across the inverter bridge, 〈𝑣𝑖〉 , can be obtained 

as follows: 

                                  
is ias a

i

v vT T
v

T

  
                                                   (3.14) 

where, 〈𝑣𝑖𝑠〉  is the average voltage across the inverter bridge during the shoot-through 

zero state and 〈𝑣𝑖𝑎〉  is the average voltage across inverter bridge during the active state. 

From (3.5), (3.6) and (3.8), one can obtain the following: 

                     0is isv v                22ia ca dc c dcv v V V V               (3.15) 

By substituting (3.15) into (3.14), the average dc-link voltage across the inverter bridge, 

〈𝑣𝑖〉 , can be rewritten as follows: 

                 
0 ( ) ( )2 2s a ac dc c dc

i
V V V VT T T

v
T T

     
                    (3.16) 

By substituting (3.10) and (3.13) into (3.16), one obtains the following: 

                 

2
a s

a c c

aa
i c dc

a s a s

T T
V VT

TT
v V V

T T T T

 
  
   

 
               (3.17) 

Since 𝑇𝑎 − 𝑇𝑠 < 𝑇𝑎, it is obvious that the average voltage across the inverter bridge, 

〈𝑣𝑖〉 , is higher than the dc supply voltage, 𝑉𝑑𝑐. From (3.15), the peak value of 𝑣𝑖 is 𝑣𝑖𝑎. 

By substituting (3.13) into the 𝑣𝑖𝑎 expression in (3.15), one can rewrite the peak value 

of 𝑣𝑖 as follows: 
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          22
a a s

ia c dc dc dc dc dci
a s a s

T T T
v V V V V V VBv

T T T T


       

 
        (3.18) 

where, B is defined as the boost factor which is resulting from the shoot-through zero 

state. Since 𝑇 = 𝑇𝑠 + 𝑇𝑎, the boost factor, B,  can be simplified as follows: 

                                  
1

1

1 2 sa s

T
B

TT T
T

  




                                               (3.19) 

Notice that if the shoot-through time, 𝑇𝑠, is zero, which means no shoot-through zero 

state, from (3.17), the average voltage across the inverter bridge, 〈𝑣𝑖〉 , is equal to the 

dc supply voltage, 𝑉𝑑𝑐. Moreover, from (3.13), the two capacitors will have the same 

voltage as the dc supply. Once the shoot-through time, 𝑇𝑠, is set to zero, the boost factor, 

B, is equal to 1, which can be obtained from (3.19). Therefore, in such a condition, the 

inverter works as a conventional three-phase full-bridge inverter without the voltage 

boost capability. It should also be noticed that according to [65] the shoot-though duty 

ratio, 𝑇𝑠 𝑇⁄ , cannot exceed 0.5 or the system becomes unstable. Therefore, the shoot-

through duty ratio, 𝑇𝑠 𝑇⁄ , ranges from 0 to 0.5 and the boost factor, B, is from 1 to 

infinity.   

The peak voltage across the inverter bridge, 𝑣𝑖, is the equivalent dc-link voltage 

of the inverter. The output peak phase voltage, 𝑣𝑎, from the inverter can be expressed 

as follows: 

                                             
2

i

a

vMv                                                                        (3.20) 

where, M, is the modulation index. By substituting (3.18) into (3.20), one can obtain 

the following: 

                               
2 2

dc dc

a

V V
M B Gv                                                            (3.21) 
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where, G is defined as the voltage gain, which has a range that 0 < 𝐺 < ∞.  

In practical applications, the two capacitors in the Z-impedance network are 

limited by cost and space. Therefore, they cannot be too large and the voltage ripples 

have to be considered. The actual capacitor voltage waveform and inductor current 

waveform during the active state and the shoot-through state can be schematically 

presented as shown in Figure 3.10 [66].   

 
(a) Capacitor voltage 

 
(b) Inductor current 

Figure 3.10: Steady state waveforms of Z-network passive components. 



57 

 

In order to design the capacitors and inductors for the Z-impedance network, a 

linear approximation to the voltage and current waveforms of Figure 3.10 can be 

represented as shown in Figure 3.11.  

 
(a) Capacitor voltage 

 
(b) Inductor current 

Figure 3.11: A linear approach for capacitor voltage and inductor current. 

Accordingly, the voltage equation of the inductors and the current equation of 

the capacitors can be expressed as follows: 
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l

l

id
Lv

dt
                     

c
c

vd
Ci

dt
                                   (3.22) 

where, 𝐿, is the inductance value, 𝐶, is the capacitance value, 𝑖𝑙  and 𝑖𝑐  are inductor 

current and capacitor current, respectively. With linear variations of the waveforms 

shown in Figure 3.11, (3.22) can be rewritten as follows: 

                             
l

l
I

v L
t





                    

c
c

V
i C

t





                                  (3.23) 

Considering the shoot-through state which has ∆𝑡 = 𝑇𝑠, the inductance and capacitance 

values can be obtained from (3.23) as follows:  

                ( ) / (2 )ls s lvL T I           ( ) / (2 )cs s ciC VT                 (3.24) 

where, 〈𝑣𝑙𝑠〉  is the average inductor voltage during the shoot-through state, and 〈𝑖𝑐𝑠〉  

is the average capacitor current during the shoot-through state. From (3.7) and (3.13), 

one can obtain the following: 

                                                 ls
a

c dc

a s

T
v V V

T T
 


                                         (3.25) 

Since the average capacitor current over a complete switching cycle in the steady state 

is zero, the average capacitor current can be presented as follows: 

                                 0
cs ca

c
s ai i

i
T T

T

  
                                       (3.26) 

where, 〈𝑖𝑐𝑠〉  is the average capacitor current in the shoot-through state and 〈𝑖𝑐𝑎〉  is the 

average capacitor current in the active state. Assuming the average inductor current can 

be held to a constant value, 〈𝑖𝑙〉 , one can obtain the following from Figure 3.9: 

                         cs li i                       outca li I i                         (3.27) 

where, 𝐼𝑜𝑢𝑡  is the output current to the inverter bridge during the active state. By 

substituting (3.27) into (3.26) and rearranging, the average inductor current, 〈𝑖𝑙〉 , can 
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be obtained as follows: 

                                              
a

out

a

l cs

s

T
I

T T
i i 


                                                     (3.28) 

Substituting (3.25) and (3.28) into (3.24), the inductance and capacitance can be 

rewritten as follows: 

      ( ) / (2 )s l
a

dc

a s

T
V

T
L I

T
T


             ( ) / (2 )a

out

a s

s c

T
I

T T
C VT


           (3.29) 

or 

 ( ) / (2
/1

1
)

2 /

s
dc

s

s l

TT
V

T
L T I

T





      ( ) / (2

2
)

/1

1 /

s
o ct su

s

TT
I

T
C T

T
V





          (3.30) 

Therefore, the inductance and capacitance for the impedance network can be calculated 

according to these parameters including the desired voltage ripple and current ripple, 

as well as shoot-through time, shoot-through duty ratio, dc supply voltage, and output 

current. 

3.3  Control Methods for Z-Source Inverters and Simulation Results 

Since the ZSI has a special shoot-through state, the control methods for ZSIs 

are different from any other method for conventional inverters. In order to control ZSIs, 

there are three commonly used methods based on the various PWM techniques:  

 Simple boost control [32] 

 Maximum boost control [42] 

 Maximum constant boost control [43] 

 

 Simple Boost Control 

In the simple boost control, there are two additional reference waves, which are 

two straight lines. The upper line has a reference value which equals the amplitude of 
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the sinusoidal wave as shown in Figure 3.12. Similarly, the lower line has a value which 

equals the negative amplitude of the sinusoidal wave as shown in Figure 3.12. Once the 

value of the carrier wave (triangular wave) becomes either larger than the upper line or 

smaller than the lower line, the shoot-through operation will be implemented. However, 

between the two straight lines, the operation follows the conventional PWM technique 

as shown in Figure 3.12.  

 

Figure 3.12: Simple boost control waveforms. 

The modulation index, M, in the PWM technique is defined as follows: 

𝑀 =
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑤𝑎𝑣𝑒

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑤𝑎𝑣𝑒
                                                                           

From Figure 3.12, it is obviously that the longer the shoot-thought time, the lower the 

modulation index. Therefore, in the simple boost control, the relationship between the 

modulation index, M, and the shoot-through duty ratio, 𝑇𝑠/𝑇, can be written as follows: 

                                                    1sT
M

T
                                                                             (3.31) 
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From (3.19) and (3.21), one can obtain the following: 

                                                 
1

1 2 s

G MB M
T

T

 



                                                      (3.32) 

By substituting (3.31) into (3.32), the voltage gain, G, can be written as a function of 

modulation index, M, as follows: 

                                                   
2 1

M
G

M



                                                                          (3.33) 

where, 0.5 < 𝑀 ≤ 1. From (3.32) and (3.33), the boost factor, B, can be obtained as 

follows: 

                                       
1

2 1
2 1

G
B G

M M
   


                                                       (3.34) 

 

 Maximum Boost Control 

The principle for the maximum boost control can best be explained through the 

schematic of Figure 3.13. Once the value of the carrier wave (triangle wave) becomes 

larger than the maximum value of all the three reference waves (sinusoidal waves) at 

that time, the shoot-through operation is implemented. Similarly, when the value of the 

carrier wave becomes smaller than the minimum value of all the three reference waves 

at that time, the shoot-through operation is implemented.  

Assuming that the frequency of the carrier wave is much higher than the 

frequency of the reference wave, the shoot-through duty ratio in the interval (𝜋/6 <

𝜃 < 𝜋/2) can be expressed as follows [42]: 

                                   

22 sin sin( )
3( )

2

s

M M
T

T

 


 
     
                        (3.35) 
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Figure 3.13: Maximum boost control waveforms. 

The average duty ratio of the shoot-through, 〈𝑇𝑠〉/𝑇, can be calculated by integrating 

(3.35) which yields the following [42]: 

                             
/2

/6

2 ( sin sin( 2 /3))

2

2 3 3

2

s M M
d

MT

T





  





    


                          (3.36) 

From (3.36), the boost factor, B, can be obtained as follows: 

                                        
1

3 3
1 2

s

B
MT

T




 




                                                       (3.37) 

where, √3𝜋/9 < 𝑀 ≤  1. From (3.32), the voltage gain, G, can be expressed by the 

following: 

                                                
3 3

M
G MB

M




 


                                                      (3.38) 
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 Maximum Constant Boost Control 

In order to reduce the volume and cost of the Z-source network in the ZSI, one 

needs to eliminate the low-frequency current ripple by using a constant shoot-through 

duty ratio [43]. Because the boost factor is determined by the shoot-through duty cycle, 

as expressed in (3.19), the shoot-through duty cycle must be kept the same from 

switching cycle to switching cycle in order to maintain a constant boost. The principle 

for the maximum boost control is to get the maximum boost factor, B, while keeping it 

constant at all times. As shown in Figure 3.14, the upper envelope curve, 𝑉𝑝, and lower 

envelope curve, 𝑉𝑛, are periodical and have a frequency which is three times the output 

frequency. Once the value of the carrier wave becomes either larger than the upper 

envelope, 𝑉𝑝, or smaller than the lower envelope, 𝑉𝑛, the shoot-through operation is 

implemented. For other conditions, the control follows the conventional PWM 

technique.   

 

Figure 3.14: Maximum constant boost control waveforms. 
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For the period 0 ≤ 𝜃 ≤ 𝜋/3 in Figure 3.14, the upper envelope and the lower 

envelope can be expressed as follows [43]: 

                                            1

2
sin( ) 3

3
p M MV


                                               (3.39) 

                                            1

2
sin( )

3
n MV


                                                                 (3.40) 

For the period 𝜋/3 ≤ 𝜃 ≤ 2𝜋/3  in Figure 3.14, the upper envelope and the lower 

envelope can be expressed as follows [43]: 

                                            2 sin( )p MV                                                                              (3.41) 

                                            1 sin( ) 3n M MV                                                             (3.42) 

Of course, the distance between the upper envelope and the lower envelope is always a 

constant value, which is √3𝑀 . Since the distance between the two envelopes 

determines the shoot-through operation, the shoot-through duty ratio is constant as well, 

which can be presented as follows [43]: 

                                                    
2 3

2

s MT

T


                                                                   (3.43) 

By substituting (3.43) into (3.19), the boost factor, B, can be obtained as follows: 

                                            
1 1

3 11 2 s

B
T M

T

 


                                                       (3.44) 

where, √3/3 < 𝑀 ≤ 1. From (3.44), the voltage gain, G, can be expressed as follows: 

                                              
3 1

M
G MB

M
 


                                                              (3.45) 

For a specific ZSI, the difference between the three control methods stems from 

the different voltage stress value on the switching devices and the different voltage 

gains with the same modulation index. Figure 3.15 shows the maximum obtainable 
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voltage gain, G, versus the modulation index, M. It is obvious that the maximum boost 

control has the highest voltage gain and the simple boost control has the lowest voltage 

gain for the same modulation index.  

 

Figure 3.15: Voltage gain versus modulation index. 

The voltage stress on the inverter bridge/phase-legs of a ZSI can be expressed 

as the following:  

                                                    stress dcV VB                                                               (3.46) 

For the three methods with the same output voltage value, the voltage stress 

characteristic value on the inverter bridge are different as shown in Figure 3.16. 

Obviously, the simple boost control has the highest voltage stress on the inverter bridge. 

While, the maximum boost control has the lowest voltage stress. The maximum 

constant boost control has slightly higher voltage stress than the maximum boost 

control.    
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Figure 3.16: Voltage stress on the inverter bridge versus voltage gain. 

In order to observe and analyze the output voltages and currents of ZSIs, a ZSI 

model energizing a three-phase balanced resistive and inductive load was simulated in 

ANSYS Simplorer as shown in Figure 3.17. The simulation parameters are as follows: 

the Z-impedance network: 𝐿1 = 𝐿2 = 500𝜇𝐻 , and 𝐶1 = 𝐶2 = 3000𝜇𝐹 ; the dc bus 

voltage: 310 V; the R-L load: 𝑅 = 1Ω and 𝐿 = 3mH. The carrier/switching frequency 

was set to 5 kHz, while the power frequency was set to 60 Hz. 

 

Figure 3.17: ZSI with three-phase balanced RL load. 
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For the simple boost control, Figure 3.18 shows (a) the line-to-line voltage, (b) 

the phase voltage, and (c) the phase current, with a modulation index, M=0.8, 

respectively. It is obvious that the peak value of the line-to-line voltage which is about 

570 V is higher than the dc bus voltage which is 310 V.  

 
(a) Line-to-line voltage with M=0.8 

 
(b) Phase voltage with M=0.8 

 
(c) Phase current with M=0.8 

Figure 3.18: Output waveforms of the ZSI with the simple boost control. 
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For different modulation indices, the lower the modulation index the higher the 

boost factor and the higher the voltage gain. Figure 3.19 shows the line-to-line voltage 

of the simple boost control with different modulation indices of 0.9, 0.8, and 0.7, 

respectively.  

 
(a) Line-to-line voltage with M=0.9 

 
(b) Line-to-line voltage with M=0.8 

 
(c) Line-to-line voltage with M=0.7 

Figure 3.19: Line-to-line voltages of the simple boost control with different 

modulation indices. 
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For different control methods, Figure 3.20 shows the output line-to-line voltages 

with the same modulation index of 0.8, for (a) simple boost control, (b) maximum boost 

control, and (c) maximum constant boost control, respectively. It is obvious that the 

maximum boost control has the highest peak value of line-to-line voltage which is about 

996 V and the simple boost control has the lowest peak value of line-to-line voltage which 

is about 570 V. This is in comparison to a dc bus voltage of 310 V. 

 
(a) Simple boost control with M=0.8 

 
(b) Maximum boost control with M=0.8 

 
(c) Maximum constant boost control with M=0.8 

Figure 3.20: Line-to-line voltages of different control methods. 
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Chapter 4 

Flux-Weakening Control of IPMSMs Driven by Z-source Inverters 

In order to drive a motor at desired torque and/or speed, a suitable control loop 

has to be developed and imbedded into a digital controller or microprocessor, which is 

the core of a motor-drive. This chapter presents a new flux-weakening (FW) algorithm 

by employing the voltage boost capability of Z-source inverters. Meanwhile, a new 

control scheme is designed for IPMSMs driven by Z-source inverters with MTPA 

control at low speeds and FW control at high speeds. Simulation results are given at the 

end of this chapter to verify the presented control algorithm and control scheme. 

4.1  Introduction 

Interior permanent magnet synchronous motors (IPMSM) have gained an 

increasing popularity in recent years for a wide variety of industrial drive applications 

including hybrid and electric vehicles. In order to obtain high performance of IPMSMs, 

various control strategies and algorithms for such IPMSMs have been developed over 

the past 30 years. A widely used control strategy for IPMSMs is implementing the 

MTPA control during constant torque (low speeds) region and the FW control during 

constant power region (high speeds) [22-24, 28] as depicted schematically in Figure 

4.1.  

The most widely used the FW control method for IPMSMs is the voltage and 

current limited maximum torque control. With a conventional motor-drive, the FW 

operation of IPMSMs is still limited by the voltage constraint from the drive side. 

Moreover, as presented earlier in (2.77), the maximum motor speed is directly impacted 

by the maximum voltage of the drive. Therefore, with a ZSI which has an adequate 

voltage boost capability, the speed range of IPMs can be further extended.  
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Figure 4.1: Typical characteristic curves of torque/power vs. speed of IPMSMs. 

In this chapter, a new approach utilizing ZSIs for the FW control is presented. 

Due to the voltage boost capability of ZSIs, a new FW control algorithm is developed 

for such ZSI-based drives. For a full speed range operation, the control strategy 

developed in this thesis implements the MTPA control at the low speed region up to 

the base speed, and this strategy changes to boosted-voltage FW control when the speed 

becomes higher than the base speed. Subsequent to the development of this control 

strategy, a corresponding control scheme was also developed for simulations of its 

performance throughout the full speed range of operation. In the end, to verify the new 

FW control method, a motor-drive system based on a ZSI was developed and simulated 

with this control strategy throughout full speed range.  

4.2 Boosted-Voltage Constant-Power Flux-Weakening Control Algorithm  

In practical applications, the FW operation can be achieved through various 

approaches. In [12], a d-axis current component was used as a feedback to control a 

FW regulator. One popular FW control approach using a speed feedback to generate a 

demagnetizing current was presented in [24, 48]. Another popular approach employs 
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an inverter voltage as a feedback for the FW control [22, 23, and 67]. In all the published 

FW approaches, the speed range of an IPM motor is limited by the maximum inverter 

voltage. The reason for this limitation stems from the fact that maximum speeds of IPM 

motors are proportional to maximum inverter output voltages, as formulated earlier in 

(2.77), which is repeated here for convenience as follows: 

                          
max

max

max

/

( / )

d

pm d

V L

L I



                                                  (4.1) 

where, 𝑉̂𝑚𝑎𝑥  is the amplitude of the maximum inverter voltage and 𝐼𝑚𝑎𝑥  is the 

amplitude of the maximum inverter current. No matter how the demagnetizing current 

is generated, the employed control algorithm has to follow the voltage and current 

limitation which was also introduced earlier in Chapter 2 as the voltage and current 

limited maximum torque (VCLMT) control.  

With the help of ZSIs, motor-drives can provide boosted voltages which are 

controlled by special methods. From (4.1), it is obvious that the speed range can be 

further extended with such a boosted inverter output voltage. Since the output voltages 

of ZSIs can be boosted and are controllable, the voltage limitation is eliminated. 

However, the current limitation has to be followed due to a motor’s thermal dissipation 

and cooling method. In order to follow typical characteristics of IPMSMs as shown in 

Figure 4.1, the output power of such motors is desired to remain constant during the 

FW operation region. Therefore, considering all the new conditions, a boosted-voltage 

constant-power FW control algorithm was developed, which will be referred to here in 

this thesis for simplicity as the boosted-voltage FW (BVFW) control approach. The 

details of this new FW control algorithm are given next. 

The output power equation of such motors can be written as follows: 

                                            
e mP T                                                         (4.2) 
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where, 𝑇𝑒 is the developed torque, and 𝜔𝑚 is the motor’s mechanical speed. At speeds 

greater than or equal to the base speed, 𝜔𝑏𝑎𝑠𝑒, the output power remains constant at the 

motor’s rated output power, 𝑃𝑏. Meanwhile, at speeds lower than the base speed the 

torque remains constant at maximum torque per ampere, while the output power is 

defined by (4.2). Here, the developed torque,  𝑇𝑒, can be expressed as in (2.29), and is 

repeated for convenience as follows: 

                                    3

2 2
( )pm q d q d qe i L L i i

p
T                                           (4.3) 

where, 𝜆̂𝑝𝑚  is the amplitude of the flux linkage due to the flux associated with 

permanent magnets, 𝐿𝑑is the d-axis inductance, and 𝐿𝑞 is the q-axis inductance. From 

(2.27), mechanical speeds of motors, 𝜔𝑚, can be expressed in terms of the electrical 

angular frequency, 𝜔𝑒, as follows: 

                                                  /
2

m e

p
                                                                                (4.4) 

where, 𝑝 is the number of poles. By substituting (4.3) and (4.4) into (4.2), one can 

obtain the following: 

                                      
2

( )
3

pm q d q d q eb i L L iP i                                                  (4.5) 

By enforcing the current limit, 𝐼𝑚𝑎𝑥 , one can express the q-axis component of the 

current, 𝑖𝑞, as follows: 

                                                    
2 2

max
ˆ

dqi I i                                                        (4.6) 

where, 𝐼𝑚𝑎𝑥  represents the amplitude of the maximum phase current which is the 

current limitation for a given motor. Then, by substituting (4.6) into (4.5), one can 

obtain the following: 

                             2 2 2 2

max max
ˆ ˆ3

2
d d q d d epmbP I i L L i I i      

  
              (4.7) 
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Notice that the rated output power, 𝑃𝑏, is a motor parameter so as the maximum current, 

𝐼𝑚𝑎𝑥. Assuming that all the motor parameters are known in (4.7), only the d-axis current 

component becomes the dependent variable function of speed. Therefore, the d-axis 

current component can be obtained from the solution of a quartic equation in 𝑖𝑑, which 

is further simplified from (4.7) as follows: 

                                               
4 3 2 0d d d dai bi ci di e                                                  (4.8) 

where,              
2

d qa L L                                 2 pm d qb L L                                      

                         
2 2

max

2

d qpm Ic L L              
2 2

max
2 pm d qd L IL          

                        2 2
2 2

max4 / 9 e pmb
e P I                   

From the quartic equation (4.8), four roots, 𝑖𝑑1 , 𝑖𝑑2 , 𝑖𝑑3 , and 𝑖𝑑4 , can be 

obtained according to the general root formulas, 𝑥1 , 𝑥2 , 𝑥3 , and 𝑥4 , for quartic 

equations in Appendix I, respectively. In order to verify the validity of each root, the 

four general root formulas in Appendix I had been simulated and calculated many times 

according to different IPM motors. It was found out that only the second general root, 

𝑥2, which yields the d-axis current component, 𝑖𝑑2, is the desired solution. Because 

only the second root, 𝑥2, is a negative real value. Once the quartic equation (4.8) is 

solved, the d-axis current component, 𝑖𝑑 , can be obtained. Then the q-axis current 

component, 𝑖𝑞, can be obtained by substituting such 𝑖𝑑 into (4.6). Meanwhile, the peak 

value of phase voltages can be obtained through (2.49) which is repeated here for 

convenience as follows:  

                    
2

2ˆ ( ) ( )pme q q e ds dV L i L i                                               (4.9) 

For ZSIs, the peak value of phase voltages, which was presented in (3.21), is 
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also repeated here for convenience as follows: 

                               
2 2

dc dc

a

V V
M B Gv                                                           (4.10) 

From (4.9) and (4.10), the required voltage gain, G, can be obtained by the following: 

 
2

22
( )2 2 ( )a s

pme q q e d d

dc dc dc

v V L iG L i
V V V

                         (4.11) 

Then, the modulation index and shoot-through duty ratio are determined by the chosen 

control method for ZSIs.  

In order to verify the validity of this BVFW method, simulation results of this 

algorithm are presented in this section as well. The control algorithm used during the 

low speed region is the MTPA control, and after the base speed, the FW control 

algorithms are implemented. The machine parameters used are listed in Table 4.1. 

Figure 4.2 depicts the output power of this motor over the entire operating speed range.  

The comparison between the introduced VCLMT control in Chapter 2 and the new 

BVFW control is also depicted in Figure 4.2. In the low speed region, the output power 

is proportional to the motor speed due to the MTPA control. On the other hand, it is 

obvious that the VCLMT control cannot sustain a constant output power as the BVFW 

control takes place during the FW region. Therefore, one of the advantages of this 

BVFW control is the constant output power during the FW operation. 

 

 

 

 

 

 



76 

 

𝜆̂𝑝𝑚 0.148 wb 

𝐿𝑑 0.0054 H 

𝐿𝑑 0.0105 H 

Resistance per phase 0.45 ohm 

Rated Current 10 A  

Amplitude of maximum phase 

current, 𝐼𝑚𝑎𝑥 
10√2 A 

Rated Line-to-Line Voltage 240 V 

DC bus voltage 400 V 

Amplitude of maximum phase 

voltage, 𝑉̂𝑚𝑎𝑥 
200 V 

Rated Speed 3450 r/min 

Rated Torque 7.25 N∙m 

Rated Power 3.5 hp (2610 watts) 

Number of poles 6 

Table 4.1: IPM motor parameters for simulation. 

 

Figure 4.2: Comparison of output power between VCLMT control and BVFW control. 

Other simulation result as shown in Figure 4.3 presents the comparison between 

the developed torque for under the VCLMT control and the BVFW control, respectively. 
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In the low speed region, the torque remained at a constant value until the base speed. 

Such base speed can be obtained from (2.51) which is repeated here for convenience as 

follows: 

                  max

2 2
( ) ( )

base

d dm q qmpm

V

iL iL





  

                                                      (4.12) 

In the FW region, the developed torque keeps decreasing as shown in Figure 4.3.  From 

this simulation result, one merit of the BVFW control is that this method can provide 

high output torque in the high speed region without increasing motor’s current rating, 

which also indicates that this algorithm can control an IPM motor for operating at a 

higher speed range than the VCLMT control.  

 

Figure 4.3: Comparison of developed torque between the VCLMT control and the 

BVFW control. 

 

To verify the validity of the BVFW method, the d- and q-axis current 
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component keeps increasing in the negative direction and the q-axis current keeps 

decreasing in the positive direction.  

 

 

Figure 4.4: D, q-axis current components versus speed of the BVFW control.  

The most significant feature of this BVFW control is the boosted voltage as 

shown in Figure 4.5. With the MTPA control during the low speed region, both the d- 

and q-axis voltage components are proportional to motor speed. While, with the BVFW 

control at high speeds, a slight drop can be observed in the phase voltages and q-axis 

voltage component at the beginning of the FW operation. Then, the phase voltage and 

q-axis voltage component keep increasing as the speed is increased. While, the 

amplitude of the d-axis voltage component does not increase with the motor speed 

during the whole FW region. 
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Figure 4.5: D, q-axis voltage components versus speed of the BVFW control.  

4.3 Control Scheme Design for IPMSMs Driven by Z-source Inverters  

In order to control the speed of an IPM motor, a logical control scheme has to 

be developed to control the motor-drive for such motors. For a full speed range of 

operation, the desired control scheme should be able to fully utilize the controlled motor 

on both low speed region and high speed region of the operating range . Therefore, a 

widely used control strategy for this control scheme utilizes implementing the MTPA 

control in the constant torque region, and the FW control in the constant power region 

as shown in Figure 4.1.  

There are many control schemes published in the literatures that combines the 

MTPA control and the FW control [22-24]. Figure 4.6 shows the specially designed 

control scheme for IPMSMs driven by ZSIs, which is based on speed control schemes 

presented in [22-24]. The proposed control scheme in FIGURE 4.6 consists of three 

major controllers, namely, the speed regulator in Part A, the current regulator in Part B, 

and the BVFW regulator in Part C.  
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Assuming the controlled motor is in the stop or standby state, a commanded 

speed /reference speed, 𝜔𝑚
∗ , is first sent into the control loop and compared to the 

feedback speed, 𝜔𝑚, which is the motor’s real speed obtained from an encoder. Then 

the error difference between the reference speed and the real speed is sent into the speed 

controller in Part A. According to this speed error, a reference value of the amplitude 

of the phase currents, 𝐼𝑠
∗, is generated by the speed regulator. Notice that in this speed 

control scheme, there is no reference torque. In order to obtain the maximum torque 

during the full speed range, the reference phase current during the MTPA control and 

the BVFW control is set to its maximum value, which means 𝐼𝑠
∗ = 𝐼𝑚𝑎𝑥. Such 𝐼𝑠

∗ will 

be send into the MTPA block which yields the reference d-axis current component, 𝑖𝑑𝑚
∗ , 

for the MTPA control according to (2.46). It has to be emphasized that the BVFW 

regulator has zero output before the speed reaches the base speed, 𝜔𝑏. Therefore, during 

the constant torque region, the reference demagnetizing current, 𝑖𝑑𝑓
∗ , for the BVFW 

control is zero. Since the reference d-axis current, 𝑖𝑑
∗ = 𝑖𝑑𝑚

∗ + 𝑖𝑑𝑓
∗ , one can state that 

𝑖𝑑
∗ = 𝑖𝑑𝑚

∗  during the constant torque region. Then the reference q-axis current can be 

obtained from (4.6). In the constant power region, where the speed is above the base 

value, all the components in Part A are still active. However, the BVFW regulator in 

Part C starts to yield an extra demagnetizing current, 𝑖𝑑𝑓
∗ , which can be written as 

follows: 

                                          * *
df dB dmi i i                                                        (4.13) 

where, 𝑖𝑑𝐵 is the d-axis current component for BVFW control obtained from (4.8).  

           With the reference d- and q-axis current components,  𝑖𝑑
∗  𝑎𝑛𝑑 𝑖𝑞

∗ , the two 

reference voltage components, 𝑣𝑑
∗  𝑎𝑛𝑑 𝑣𝑞

∗, can be obtained from the current regulator 

in Part B. Then using an inverse Park’s transformation, the reference d- and q-axis 
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voltage components can be transformed to the three-phase voltages, which are 𝑣𝑎
∗, 𝑣𝑏

∗ , 

and 𝑣𝑐
∗  in Figure 4.6. Notice that the three reference voltages, 𝑣𝑎

∗ , 𝑣𝑏
∗ , and 𝑣𝑐

∗ , are 

instantaneous values. Therefore, they can be written as follow: 

                * ( )sin tav v       * 2
( )sin t

3
bv v


      * 4

( )sin t
3

cv v


                    (4.14) 

where, 𝑣 is the amplitude of the phase voltages. In the low speed constant torque region, 

the shoot-through duty ratio of the ZSI is zero, which means the ZSI works as a three-

phase full-bridge inverter, which is controlled by a sinusoidal PWM method. In the high 

speed FW region, the shoot-through duty ratio can be obtained according to the motor 

speed and the ZSI provided boosted voltage. Since the inverter used here is a ZSI, one 

can obtain the following from (4.10): 

                               / ( )2 dcVBM v                                                        (4.15) 

Then from (4.14) and (4.15), the reference phase-a voltage, 𝑣𝑎, for the sinusoidal PWM 

can be written as follows: 

         *sin( ) sin( )2 / ( ) 2 / ( )a adc dcM t tv vv V VB B                   (4.16) 

For simplicity, the control method used for controlling the ZSI in this scheme 

is the simple boost control. The voltage gain, G, can be obtained by substituting 𝑖𝑑
∗ , 𝑖𝑞

∗ , 

and the speed feedback, 𝜔𝑒 into (4.11). Then the boost fact, B, can be obtained from 

(3.34), which is repeated here for convenience as follows: 

                                                      2 1B G                                                         (4.17) 

By substituting (4.11) and (4.17) into (4.16), the phase-a reference waveform for the 

sinusoidal PWM technique can be written as follows 

 

*
*

2
2

2
2 / ( )

( ) (4 )

a
a a dc

pm dce q q e d d

v
v v VB

L i L i V 

 

  

             (4.18) 
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Similarly, the phase-b and phase-c reference waveforms can be obtained as follows: 

 

*
*

2
2

2
2 / ( )

( ) (4 )

b
b b dc

pm dce q q e d d

v
v v VB

L i L i V 

 

  

              (4.19) 

 

*
*

2
2

2
2 / ( )

( ) (4 )

c
c c dc

pm dce q q e d d

v
v v VB

L i L i V 

 

  

              (4.20) 

Notice that 𝑣𝑎
∗, 𝑣𝑏

∗ , and 𝑣𝑐
∗ are sinusoidal time-domain functions.  

In general, the speed regulator is a regular PI controller. While, the current 

regulator usually has to be designed with a feed forward compensation. The reason stems 

from the fact that the d- and q- axis current components cannot be controlled 

independently by 𝑣𝑑 and 𝑣𝑞 because of the cross-coupling effects [24] such as 𝜔𝑒𝐿𝑑𝑖𝑑 

and 𝜔𝑒𝐿𝑞𝑖𝑞  in 𝑣𝑑  and 𝑣𝑞  expressions. The cross-coupling effects in IPM motors are 

dominant because IPM motors have relatively large inductances. These effects will 

impact the current response as well as torque response in the high speed FW region. 

Figure 4.7 shows the decoupled current regulator with feed forward compensation [24] 

presented here to solve such a problem.  

 

Figure 4.7: Current regulator with decoupled feedforward compensation.  
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4.4 Simulation Results  

 In order to verify the presented BVFW control algorithm and corresponding 

control scheme, a motor-drive system model with mechanical load was developed and 

simulated in ANSYS Simplorer. The simulated motor was an IPM motor with 

parameters listed earlier in Table 4.1. The drive side consisted a ZSI and a dc supply as 

shown in Figure 4.8. Other simulation parameters are as follows: the Z-impedance 

network consisting of two inductors 𝐿1 = 𝐿2 = 500𝜇𝐻, and two capacitors 𝐶1 = 𝐶2 =

3000𝜇𝐹; the dc bus voltage: 400 V; the carrier frequency: 10 kHz; the output LC filter: 

𝐿 = 5𝜇𝐻, and 𝐶 = 50𝜇𝐹; the cable resistance: 𝑅 = 0.1 Ω; the mechanical load: inertia 

𝐽 = 0.02𝑘𝑔𝑚2 and friction torque 𝑇𝑓 = 0.1 𝑁𝑚. Notice that the resistance for each 

inductor used in the Z-impedance network is 0.001 Ω.  

In Figure 4.9, a closed-loop speed control was developed in ANSYS Simplorer. 

The three major components of Figure 4.9, which are the speed regulator in Part A,  

current regulator in Part B, and FW regulator in Part C, are controllers designed 

according to an earlier figure, Figure 4.6.   

 

Figure 4.8: Simulation topology of an IPM motor driven by a ZSI.  
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Figure 4.9: Control loops developed in ANSYS Simplorer.  

To evaluate the performance of this simulation system in low speeds with the 

MTPA control, a commanded mechanical speed, which is 𝜔𝑚
∗ = 300 𝑟𝑎𝑑/𝑠, was the 

assumed input signal to the control loop as show in Figure 4.9. Meanwhile, Figure 4.10 

presents the motor’s mechanical speed versus time, which shows that the motor’s speed 

keeps increasing from zero until it reaches a steady state where 𝜔𝑚 = 289.8 𝑟𝑎𝑑/𝑠. 

The difference between the reference speed and the real speed is only 3.3%, which 

shows a reliable controller performance at low speeds.  

 

Figure 4.10: Mechanical speed versus time when  𝜔𝑚
∗ = 300 𝑟𝑎𝑑/𝑠 .  
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Figure 4.11 depicts the phase-a current waveform during the entire speed range 

up to 300 𝑟𝑎𝑑/𝑠 . As the speed increased, the frequency of this current waveform 

became higher and higher. Meanwhile, Figure 4.12 presents the developed torque, 

which shows a constant torque operation during this low speed region. Notice that after 

the speed reaches its reference value, the current and torque start to decrease. Because 

of the friction torque 𝑇𝑓 = 0.1 𝑁𝑚, both the current and the torque cannot be zero. 

 

Figure 4.11: Current waveform of phase-a when 𝜔𝑚
∗ = 300 𝑟𝑎𝑑/𝑠 .  

 

Figure 4.12: Developed torque when 𝜔𝑚
∗ = 300 𝑟𝑎𝑑/𝑠 .  

0.00 0.20 0.40 0.60 0.80 1.00
Time [s]

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

C
u

rr
en

t 
o

f 
p

h
as

e-
A

 [
A

]

MTPA and BVFW Controlmeasured phase curent
Curve Info

ia.I
TR

0.00 0.20 0.40 0.60 0.80 1.00
Time [s]

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

D
ev

el
o

p
ed

 t
o

rq
u

e 
[N

ew
to

n
M

et
er

]

MTPA and BVFW ControlMechanical torque
Curve Info

FM_ROT1.TORQUE
TR



87 

 

Figure 4.13 shows the real d- and q- axis current components. Meanwhile, 

Figure 4.14 depicts the reference current components for d-axis and q-axis. Although 

there are ripples in the real d- and q- axis current components, the trajectories of the 

two real current components are consistent with their reference values.  

 

Figure 4.13: Real d- and q- axis current components when 𝜔𝑚
∗ = 300 𝑟𝑎𝑑/𝑠 .  

 

Figure 4.14: The reference phase current (𝐼𝑠_𝑙𝑖𝑚𝑖𝑡), reference d-axis current (𝑖𝑑_𝑟𝑒𝑓), 

and reference q- axis current (𝑖𝑞_𝑟𝑒𝑓) when 𝜔𝑚
∗ = 300 𝑟𝑎𝑑/𝑠 .  

 

To evaluate the performance of this simulation system in high speeds with the 

BVFW control, a commanded mechanical speed, which is 𝜔𝑚
∗ = 700 𝑟𝑎𝑑/𝑠, was the 
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assumed input signal to the control loop as show in Figure 4.9. Here, Figure 4.15 

presents the motor’s electrical speed versus time. The dashed line represents the base 

speed of this motor. It is obvious that the motor was operating above base speed. 

Meanwhile, Figure 4.16 depicts the motor’s mechanical speed versus time, which 

shows that the motor’s speed keeps increasing form zero until it reaches a steady state, 

where 𝜔𝑚 = 677.3 𝑟𝑎𝑑/𝑠. The difference between the reference speed and the real 

speed is only 3.2%, which shows a reliable controller performance at high speeds. 

Notice that the original IPM motor described in Table 4.1 is not designed for high speed 

applications. However, with the help of flux-weakening, such a motor can achieve 

extended speed range. 

 

Figure 4.15: Electrical speed versus time when  𝜔𝑚
∗ = 700 𝑟𝑎𝑑/𝑠. 
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Figure 4.16: Mechanical speed versus time when  𝜔𝑚
∗ = 700 𝑟𝑎𝑑/𝑠. 

In Figure 4.17, the real d- and q- axis current components are presented. 

Compared to the reference d- and q- axis current components shown in Figure 4.18, the 

current trajectories in Figure 4.17 are consistent with their reference values. It is 

obvious that the demagnetizing current, 𝑖𝑑, is increasing in the negative direction during 

the FW region. Meanwhile the q-axis current, 𝑖𝑞 is decreasing. 

 

Figure 4.17: Real d- and q- axis current components when 𝜔𝑚
∗ = 700 𝑟𝑎𝑑/𝑠 .  
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Figure 4.18: The reference phase current (𝐼𝑠_𝑙𝑖𝑚𝑖𝑡), reference d-axis current (𝑖𝑑_𝑟𝑒𝑓), 

and reference q- axis current (𝑖𝑞_𝑟𝑒𝑓) hen 𝜔𝑚
∗ = 700 𝑟𝑎𝑑/𝑠 .  

 

In Figure 4.19, the developed torque during the constant torque region and the 

constant power region is presented. It is obvious that the developed torque keeps 

decreasing during the constant power region. Meanwhile, Figure 4.20 shows that the 

output power is constant during the FW region using the presented BVFW control.  

 

Figure 4.19: Developed torque when 𝜔𝑚
∗ = 700 𝑟𝑎𝑑/𝑠 .  
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Figure 4.20: Output power when 𝜔𝑚
∗ = 700 𝑟𝑎𝑑/𝑠 .  

From the simulation results presented here, the implemented control system 

shows reliable performances during the low speed constant torque region and during 

the high speed constant power region. The error between the motor’s final speed and 

the reference speed is small. Despite some torque ripples, the developed torque remains 

at a constant value at low speed with the MTPA control. While, the output power is 

roughly remaining at a constant value during FW region with the BVFW control. From 

these simulation results, one can arrive at a conclusion that this BVFW control 

algorithm is a valid flux-weakening control method. 
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Chapter 5 

Summary, Conclusions and Suggested Future Work 

5.1 Summary and Conclusions 

First, in Chapter 1 of this thesis, a variety of conventional flux-weakening 

control methods for permanent magnet synchronous motors were reviewed. Then the 

issue regarding the presence of a high value of back-EMF in the flux-weakening region 

was discussed. Since the widely used three-phase full-bridge inverter is essentially a 

buck converter, the idea that utilizes the voltage boost capability of Z-source inverters 

to obtain better flux-weakening  performance becomes very attractive.  

Second, in Chapter 2 of this thesis, the mathematical model of permanent 

magnet synchronous motors is presented. Control algorithms for permanent magnet 

synchronous motors are presented in this chapter as well. For the operation at low 

speeds, maximum-torque-per-ampere control was introduced. Meanwhile, for the 

operation at high speeds, three commonly used flux-weakening algorithms were 

analyzed, including two methods for SPM motors and one method for both SPM and 

IPM motors.  

Third, in Chapter 3 of this thesis, the Z-source inverter, including its operation 

principle, passive components design of the Z-impedance network, and three 

commonly used control methods were introduced. Details of the active state and shoot-

through state of Z-source inverters were analyzed in order to have a better 

understanding of the charging and discharging between inductors and capacitors in the 

Z-impedance network. Simulation results were presented to verify the voltage boost 

capability of Z-source inverters in Chapter 3. 

In Chapter 4 of this thesis, a special flux-weakening algorithm was developed 
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for IPM motors driven by Z-source inverters, namely, the boosted-voltage flux-

weakening control. Meanwhile, a full speed range control scheme was developed which 

combined the maximum-torque-per-ampere control at low speeds and the boosted-

voltage flux-weakening control at high speeds. Simulation results of a motor-drive 

system model based on Z-source inverters were presented to verify the validity of the 

presented flux-weakening control method.  

In this thesis, a new approach for flux-weakening control, which is the boosted-

voltage flux-weakening control, was developed and simulated. The main contribution 

of this thesis is in utilizing the voltage boost capability of Z-source inverters to 

overcome the high value of back-EMF of IPM motors at high speeds. This flux-

weakening approach introduced here can further extend the speed range of IPM motors 

than conventional flux-weakening methods. Moreover, this method can provide high 

shaft torque at high speeds without increasing the phase currents, which indicates lower 

motor losses for the same desired torque at high speeds. Meanwhile, a constant output 

power can be sustained during the flux-weakening region. Simulation results were 

presented to verify the validity of the new flux-weakening method introduced in this 

thesis.  

5.2 Recommendations for Future Work 

Although several developments were presented in this thesis, there are many 

interesting investigations left for the future work. Some possible subjects are listed as 

follows: 

 A prototype of the Z-source inverter can be designed and assembled for many 

studies, such as the losses on the passive components and semiconductor 

switches, inverter efficiency, harmonic distortions, voltage boost capabilities, 

voltage stress on each the components, impacts of different control methods, etc. 
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Notice that this Z-source inverter should be designed according to a proper IPM 

motor for possible experiments.  

 With the prototype Z-source inverter and a proper IPM motor, experiments can 

be conducted to investigate the new flux-weakening method introduced in this 

thesis. Other significant investigations can be studied based on this motor-drive 

system, such as new motor control method development, new PWM technique 

development, efficiency study of the Z-source inverter and the motor at high 

speeds, control failure at high speeds during flux-weakening operation, etc. 

 The motor model used in the simulations included in this thesis can be replaced 

with a finite element motor model. Further investigations on motor’s 

efficiencies at different operating points and by different control methods can 

be conducted. These significant investigations can be used to design optimal 

motors for full speed range operation and improve control methods for motors.  
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Appendix I 

General Formula for Solving Quartic Equations 

A quartic equation can be written in a general form as follows: 
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Assuming 𝑎 ≠ 0, the general formula for roots can be written as follows: 
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In (8), the variable, Q, can be written as follows:  
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