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Abstract 

Single-voxel proton magnetic resonance spectroscopy (MRS) is typically used in 

a clinical setting to quantify metabolites in the human brain.  By convention, an MRS 

absorption spectrum is created by Fourier transformation of phase-corrected raw data 

acquired during an MRS experiment.  An MRS absorption spectrum shows the relative 

concentrations of certain key metabolites, including N-Acetyl-aspartate (NAA), choline, 

creatine and others. Certain nonparametric techniques may also be used for MRS 

analysis.  2D Capon and 2D amplitude and phase estimation (APES) are two relatively 

new nonparametric methods that can be used effectively to estimate both frequency and 

damping characteristics of each metabolite.  In this dissertation we introduce the 

weighted 2D Capon, weighted 2D APES, and combined weighted 2D APES / 2D Capon 

methods.   Under certain conditions these methods may provide improved estimation 

properties and/or reduced computation time, as compared to conventional 2D methods. 

Many clinicians routinely use multiple receive coils for magnetic resonance 

imaging (MRI) studies of the human brain.  In conjunction with these exams, it is often 

desired to perform proton MRS experiments to quantify metabolites from a region of 

interest.  An MRS absorption spectrum can be generated for each coil element; however, 

interpreting the results from each channel is a tedious process.  Combining MRS 

absorption spectra obtained from an experiment in which multiple receive coils are used 

would greatly simplify clinical diagnosis.  In this dissertation we introduce two methods 
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for 2D spectral estimation in the case of multi-channel data.   To date, no such methods 

have appeared in the literature.  These new methods employ weighted signal averaging 

and weighted spectrum averaging and use any of the 2D techniques described above.  

We also introduce a method to optimally estimate the relative channel gains from 

observed data. 

The new techniques developed in this dissertation are evaluated and compared to 

conventional 2D spectral estimation based on extensive computer simulations written in 

MATLAB.  They are also applied to phantom and in vivo MRS data. 
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C h a p t e r  1  

1 Introduction 

Single-voxel proton MRS is typically used in a clinical setting to quantify 

metabolites in the human brain.  MRS studies are vitally important for diagnosis, 

monitoring therapy, and early detection of a number of diseases including 

neurodegenerative disease associated with normal aging, Alzheimer’s disease, non-

Alzheimer’s dementia, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral 

Sclerosis (ALS), alcohol abuse, epilepsy, stroke, Creutzfeldt-Jakob (mad cow) disease, 

cerebral-vascular disease and cancer[1].  

In a clinical setting, an MRS absorption spectrum is created that shows the 

relative concentration of certain key metabolites, including NAA, choline, creatine and 

others.  Certain nonparametric techniques may also be used for MRS analysis.  2D Capon 

and 2D APES are two relatively new nonparametric methods that can be used effectively 

to estimate both frequency and damping characteristics of each metabolite[2].  One 

benefit of 2D Capon and 2D APES over conventional techniques for MRS data analysis 

is improved accuracy for peak detection, especially for peaks that are close to each other.  

Another benefit of 2D Capon and 2D APES is that estimates of damping are provided in 

addition to frequency estimates, providing the clinician with an additional parameter to 

use in the diagnosis and evaluation of results from an MRS study. 
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Several new techniques for 2D spectral estimation related to 2D Capon and 2D 

APES will be introduced in this dissertation.  Under certain conditions, these techniques 

show improvement over standard 2D Capon and 2D APES in terms of accuracy in peak 

detection and/or computational efficiency.  Although the new 2D spectral estimation 

techniques are general purpose in nature, they have been developed as a result of their 

utility toward the problem of MRS signal processing. 

Multiple-channel receive coils are regularly used in a clinical setting for magnetic 

resonance imaging (MRI) studies since images created from multiple-channel receive 

coils can offer improved image quality.  In conjunction with imaging studies that use 

multiple-channel receive coils, it is often desired to perform MRS studies during the same 

examination.   An effective technique for creating a combined MRS absorption spectrum 

from multiple-channel receive coils has been recently introduced by Frigo, Heinen, et al. 

[3],[4], and has gained clinical acceptance.   

Combining 2D spectral estimates obtained from an experiment in which multiple-

channel receive coils are used would greatly simplify clinical diagnosis.  Two new 

techniques for multiple-channel 2D spectral estimation will be introduced in this 

dissertation.  The new techniques apply to standard 2D Capon and 2D APES, and to the 

new 2D spectral estimation methods that have been proposed in this dissertation.  The 

primary motivation to introduce the new multiple-channel 2D spectral estimation 

techniques was for multiple-channel MRS studies; however, these techniques may be 

extended to other signal processing applications as well. 
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We begin our discussion with a brief review of the principles of nuclear magnetic 

resonance in Chapter 2.   The underlying physics and science behind this technology has 

provided a foundation upon which magnetic resonance (MR) scanners have been 

designed and built, and the impact of these medical imaging machines to the practice of  

modern medicine has been extraordinary.   

 In Chapter 3 we extend our discussion to single-voxel quantitation (SVQ) proton 

MRS which is typically used in a clinical setting to quantify metabolites in the human 

brain.  Our focus will be to break down and analyze the signal processing steps that are 

typical for MRS SVQ scans.   We have carefully documented each processing step, and 

have implemented efficient algorithms in MATLAB to create a conventional MRS 

absorption spectrum from data acquired during an SVQ study.  The signal processing 

steps applied to MRS data are vitally important to provide a framework for the new 

techniques that will be introduced in later chapters.   

Motivated primarily by finding improved techniques for analyzing MRS data, we 

introduce in Chapter 4 several new nonparametric two-dimensional spectral estimation 

techniques:  the weighted 2D Capon method, the weighted 2D APES method, and the 

combined weighted 2D APES/Capon method.   Each of these techniques provides 

spectral estimates of damping as well as frequency, making them useful for MRS data 

analysis. 
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Multiple-channel receive coils have become increasing popular for magnetic 

resonance imaging (MRI) since they often provide improved image quality over single 

channel coils.  In a clinical setting, it is common to perform MRS studies along with MRI 

studies, especially for neurological exams.  In Chapter 5 we introduce two new 

algorithms for multiple-channel 2D spectral estimation that can be used effectively for 

MRS studies.  We also introduce a method to optimally estimate the relative channel 

gains from observed data. 

In Chapter 6, we evaluate the proposed new algorithms of Chapter 4 and Chapter 

5 through extensive simulations.  The motivation for doing simulations is that the signal 

processing algorithms can be subjected to controlled conditions, unlike in a standard 

MRS experiment, where unknown variations can occur from scan to scan. 

In Chapter 7 we apply the algorithms developed in Chapters 4 and 5, and 

simulated in Chapter 6, to data collected during MRS experiments.  Examples are 

provided demonstrating how these algorithms work in MRS studies involving phantoms 

with known concentrations of metabolites, as well as in a limited number of in vivo MRS 

studies involving human volunteers. 

We then reflect on our conclusions in Chapter 8, enlightened by the discussion 

and examination of the MRS signal processing details that are fundamental to its success 

in a clinical scenario, but mindful of the potential improvements that can be achieved 

through new techniques.   Based on the results of extensive simulations, we are confident 
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that these new techniques have the potential to add clinical value and improve the overall 

quality of spectral analysis for MRS studies. 
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C h a p t e r  2  

2 Magnetic Resonance Spectroscopy 

MRS is used to find the relative spectral amplitudes resulting from frequency 

components of different molecules.  MRS can be used for the quantification of a number 

of metabolites in vivo.   Since the hydrogen atom is abundant in vivo, many clinical 

applications for proton MRS have been developed.   

MRS is used for diagnosis, surgical planning, monitoring therapy and early 

detection of the following diseases:  neurodegenerative disease associated with normal 

aging, Alzheimer’s disease, non-Alzheimer’s dementia, Parkinson’s disease, 

Huntington’s disease, amyotrophic lateral sclerosis (ALS), alcohol abuse, epilepsy, 

stroke, Creutzfeldt-Jakob (mad cow) disease, cerebral-vascular disease, and cancer [1].    

Improved data acquisition capabilities, in particular, increased sampling 

resolution and multiple-channel receive coils, have created opportunities for 

implementing new signal processing algorithms to improve the sensitivity and accuracy 

of MRS experiments.  The motivation for introducing these new algorithms is to reduce 

scan time and improve clinical diagnostic capabilities.   

2.1 Magnetic Resonance Principles 

All nuclei have charge and mass.  Some nuclei also possess spin or angular 

momentum.  This spinning charge generates a magnetic field and an associated angular 
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momentum as first described by Wolfgang Pauli [5].   Inspired by the early work of Pauli, 

and Rabi[6],[7] two groups of researchers independently discovered the property of 

nuclear magnetic resonance: Felix Bloch of Stanford University [8] led one group and 

Edward Purcell of Harvard University [9] led the other group.    Bloch and Purcell were 

jointly awarded the Nobel Prize for physics in 1952 as a result of their discovery.     

At first, nuclear magnetic resonance was used primarily in the laboratory by 

chemists.    Later, nuclear magnetic resonance was shown to be useful for medical 

purposes.  Raymond Damadian demonstrated in 1971 that nuclear magnetic resonance 

spectroscopy could be used in vivo to detect cancerous tumors in mice [10].  Paul 

Lauterbur created the first two-dimensional nuclear magnetic resonance image of human 

anatomy [11].   For this discovery Lauterbur earned the Nobel Prize in physiology or 

medicine in 2003 with Sir Peter Mansfield who was also responsible for many 

innovations in the area of nuclear magnetic resonance [12]. 

The following is a summary of MR principles adapted from material found in a 

number of references [13] - [20].  Magnetic resonance originates from the interaction 

between an atom and an external magnetic field.   Atoms with an odd number of either 

neutrons or protons possess a net nuclear spin or intrinsic nuclear spin angular 

momentum.    Nuclear spin has an associated magnetic field.    Nuclear magnetic 

resonance is based on the interaction of these spins with three types of magnetic fields: 

the main field, 0Β ; the radio-frequency field, 1Β ; and linear gradient fields, G . 
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Placed in the main static magnetic field, 0Β , the net nuclear angular momentum 

of hydrogen atoms with a single proton will begin to rotate, or precess, about the 

magnetic field as shown in Fig. 1.  

 

Fig. 1. Net angular momentum of hydrogen. 

The frequency of this precession is proportional to the strength of the magnetic field and 

is given by the Larmor equation: 

 0 0f γ= Β  (2.1) 

y

x

z

B0
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where 0f  is the Larmor frequency in megahertz (MHz), 0Β  is the magnetic field in Tesla 

(T) and γ  is a constant known as the gyromagnetic ratio.   For hydrogen with a single 

proton the value of γ  is 42.5774 MHz/T. 

To obtain a nuclear magnetic resonance signal, an electromagnetic pulse, 1Β , 

tuned to the resonant frequency of the spins, as described in Eqn. (2.1), is applied in the 

transverse (xy) plane to excite these spins out of equilibrium.  After this pulse is turned 

off, relaxation back to equilibrium occurs and the rotating magnetization vectors induce 

an electromotive force (EMF) in a receiver coil oriented in such a way as to detect 

changes in the transverse plane.  The generated time signal is known as a free induction 

decay (FID). 

It is possible to perform spatial localization in an MR experiment by applying 

linear gradient magnetic fields in addition to 0Β .  Gradient fields in the x, y, and z 

direction can be combined to provide the spatial localization desired.    If a gradient field, 

xG , is applied in the x direction, then the resonant frequency,( )f x , will vary with the x-

location: 

 0 0( ) ( )x xf x G x f G xγ γ= Β + = +  (2.2) 

The behavior of the magnetization vector M  is described by the Bloch equation: 
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 0

2 1

( )x y zd

dt T T
γ

Μ + Μ Μ − Μ= × − −
i j kM

M B  (2.3) 

where , ,i j  and k  are unit vectors in the x, y, and z directions;  0Μ  is the equilibrium 

magnetization arising from the main field 0Β ; and B includes the various magnetic fields 

applied.  1T  is the longitudinal relaxation time constant which characterizes the process of 

spins returning to equilibrium and 2T  is the transverse relaxation time constant which 

characterizes the process of decaying transverse magnetization.  

Electrons of a particular atom in a molecule may be shared with nearby atoms 

forming a “cloud” of electrons.   The distribution of these electrons is described by 

quantum mechanics and varies depending on the type of chemical bond.  Oxygen-

hydrogen bonds have a greater electron density associated with the oxygen atom, whereas 

carbon-hydrogen bonds are more equally distributed between both atoms.  The variation 

in electron distribution affects the magnetic resonance of a particular atom.   The Larmor 

Eqn. (2.1) can be rewritten with a chemical shielding term, iσ , which takes into account 

the variations in different chemical bonds affecting the magnetic resonance frequency: 

 0(1 )i if γ σ= Β −  (2.4) 

Nuclear magnetic resonance spectroscopy takes advantage of variations in 

magnetic resonance frequencies due to chemical bonds to determine molecular structure.  
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The convention is to measure chemical shifts in a manner that is independent of 0Β  and 

can be used for all field strengths: 

 6( ) 10 /i i ref reff f fδ = − ×  (2.5) 

where iδ  is the chemical shift measured in parts per million (ppm). 

The reference frequency, reff , defined to have a shift of 0.0 ppm is obtained from 

the methyl (C-H) groups of tetramethylsilane (CH3)4Si.  Since silicon (Si) has low 

electronegativity, the shielding of protons is greater than in most other organic molecules, 

and the chemical shifts thus appear downward in the same direction [21].  As an example, 

the hydrogen found in water molecules has a shift measured at 4.7 ppm while the 

hydrogen found in the lipids that are a major constituent of body fat has a shift of 1.2 

ppm.  This represents a difference of 3.5 ppm, or at 1.5T a difference of approximately 

225 Hz.  

2.2 Magnetic Resonance Spectroscopy Experiment 

Proton MRS is used in vivo to measure the concentration of a number of 

metabolites.  MRS is often used for clinical studies of the human brain.  High-field 

magnetic resonance scanners (1.5T or greater) are used to perform most of these studies.  

Two common types of MRS pulse sequences used in conjunction with clinical studies are 

point resolved spectroscopy (PRESS) and stimulated echo mode (STEAM) [22].   
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Both PRESS and STEAM rely on applied gradient fields to isolate a three-

dimensional region of interest from which the signal will be measured.   PRESS and 

STEAM differ in how the echoes that give rise to the signal of interest are obtained.  

PRESS has a higher signal-to-noise ratio than STEAM by a factor of two since the echo 

in PRESS is created by refocusing the entire net magnetization of the region of interest.  

STEAM has several advantages over PRESS since it can support a shorter echo time (TE) 

and has reduced effects from J coupling [23]. 

Single-voxel quantification (SVQ) and chemical shift imaging  (CSI) are two 

types of spectroscopy applications often used in a clinical setting.   SVQ quantifies 

metabolites in a single volume of interest as shown in Fig. 2.   CSI attempts to quantify 

metabolites in multiple volumes of interest, often overlaying color maps on top of 

anatomical images to create localized maps showing relative concentrations of 

metabolites (such as NAA) as shown in Fig. 3. 

  

Fig. 2. Single voxel quantification example. 
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Fig. 3. Chemical shift imaging example. 

Our discussion and exploration of proton MRS will focus primarily on SVQ.  A 

typical SVQ MRS scan involves a data acquisition scheme in which a set of non-water-

suppressed reference data, along with a set of water-suppressed data is collected.  Water-

suppression can be achieved in vivo using a chemical selective saturation (CHESS) pulse-

sequence to reduce the dominant water signal[22],[24].    A typical frame of data 

obtained from a FID during the non-water-suppressed reference acquisition is shown in 

Fig. 4, and a typical frame of data obtained during a water-suppressed acquisition is 

shown in Fig. 5. 
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Fig. 4. Raw data frame obtained during MRS reference acquisition.  
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Fig. 5. Raw data frame obtained during water-suppressed MRS acquisition. 

An example of the magnitude of the raw data collected during an MRS scan is 

shown in Fig. 6 with the horizontal axis representing time, the vertical axis representing 

frame number and color indicating signal amplitude.   This scan was performed using a 

1.5T General Electric® (GE) MR scanner (Milwaukee, WI, USA) on a 8cc volume 

contained within the GE MRS phantom, with a TE of 35 msec, a repetition time (TR) of 

1500 msec, an acquisition size of 2048 complex data pairs for each frame, a sampling 
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rate of 16 kHz, and 2 excitations per frame (NEX).  The total scan time was 1 minute and 

18 seconds to acquire 8 reference frames and 16 water-suppressed frames.   

 

Fig. 6. Magnitude of raw data for an MRS scan. 

 

MRS data acquisition requires that a number of scan parameters be determined for 

each region of interest.  The center frequency, flip angle, transmit gain, receive gain, and 

shimming parameters are determined for each MRS experiment during prescan.  These 
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parameters are optimized for the particular TE and TR selected for the experiment.  

Shimming is also extremely important in the region of interest to assure that a 

homogeneous magnetic field is present since the patient distorts the magnetic field and 

areas within the patient have different magnetic susceptibility[25].  For MRS experiments 

conducted in vivo, water suppression is an important consideration due to the abundance 

of water in vivo[22].   

Many different types of MRS scans can be taken in a clinical setting[26]-[28].   

The parameters of these scans are selected to provide the desired clinical information. For 

example, depending on the metabolite of interest, different TEs may be selected.  MRS 

scans usually have scan TRs greater than one second.  The smallest TEs supported are 

approximately 30 msec.   The signal-to-noise ratio (SNR) of the data acquired during an 

MRS scan can be improved by increasing the number of data frames acquired for a given 

scan.  This increases the scan time however.   Another way to increase SNR is to increase 

the size of the volume under study.   

In an MRS experiment it is possible to detect the magnetization that is transverse 

to the main longitudinal field,0B , with more than one receive coil simultaneously.  

Multiple-channel receive coils provide greater sensitivity and improved SNRs for MRI 

applications [15],[29]-[38].   Multiple-receive coils can also be used effectively for MRS 

studies [3],[39]-[42].    In Chapter 5 we will extend these techniques to 2D spectral 

estimation of MRS data from multiple receive coils. 
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2.3 Summary 

In this chapter, we have reviewed the fundamental theory behind magnetic 

resonance spectroscopy and have introduced how it is used in a clinical setting for in vivo 

studies.   We have introduced two conventional pulse-sequences, PRESS and STEAM, 

that can be used for MRS experiments, and also have described briefly how metabolites 

can be quantified using SVQ. 
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C h a p t e r  3  

 

3 Magnetic Resonance Spectroscopy Processing Techniques 

This chapter describes conventional MRS data processing, and in particular, the 

processing associated with SVQ [22],[43]-[45].  Conventional single-voxel MRS 

involves collecting a set of non-water suppressed reference data along with a set of water-

suppressed data.  The processing involves phase correction, removal of residual water 

present in the water-suppressed data, and computation of an MRS absorption spectrum 

from which information about metabolite concentration can be determined.    

The GE MRS phantom provides an effective model of the human brain.  It 

contains known solutions of metabolites whose concentrations are approximately the 

same as what might be found in a human brain.  The GE MRS phantom contains a 

solution of 12.5 mM NAA, 10.0 mM creatine (Cr), 3.0 mM choline (Ch), 7.5 mM 

myoinositol (mI), 12.5 mM L-Glutamic acid (Glu), 5.0 mM lactate, and 0.5 mM  γ -

aminobutyric acid (GABA).  Data acquired during MRS experiments from this phantom 

provide results from which quantitative assessments can be made.  

In this chapter we will review in detail the processing involved in computing an 

MRS absorption spectrum.    We will utilize data acquired using a GE 1.5T MR scanner 

with a typical SVQ PRESS sequence on an 8 cc volume from the GE MRS phantom, and 
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show plots of intermediate results as a means of understanding each processing step.   A 

block diagram of this processing scheme is shown in Fig. 7. 

 

Fig. 7. Block diagram of MRS processing steps. 

Non-water suppressed reference data sets are collected and the individual frames 

are averaged to obtain the discrete-time signal, [ ]r n , where n represents normalized time.   

DC Mixing

Reference Data r[n] Water-suppressed Data
s[n]

Zero Phasing

Linear Phase Correction

Phase Correction

Water Subtraction

FFT

Phase Spline Smoothing

Phase CorrectionPhase Correction
Vector  c[n]

S[k]
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The reference data, [ ]r n , are used to compute a phase correction vector, [ ]c n , through the 

process of DC mixing, zero phasing, linear phase correction and phase spline smoothing.   

Water-suppressed data sets are collected and the individual frames are averaged to obtain 

[ ]s n .  The phase correction vector, [ ]c n , is applied to both the reference data, [ ]r n , and 

the water-suppressed data, [ ]s n .   After phase correction, residual water is removed from 

the water-suppressed data by subtracting an appropriately scaled version of [ ]r n  from 

[ ]s n .  From the phase-corrected water-suppressed data with residual water removed, a 

Fourier transform is used to compute the MRS absorption spectrum.   

3.1 Creating a Phase Correction Vector 

After acquiring non-water suppressed reference data, a phase correction vector, 

[ ]c n , is created.  This phase correction vector is applied to both water-suppressed and 

non-water-suppressed data during the creation of the MRS absorption spectrum.  Data 

acquired during the reference acquisition without water suppression, [ ]r n , will be used to 

produce a phase correction vector, [ ]c n .   Data from the reference acquisition will also be 

used to produce an estimate of the water signal necessary to perform residual water 

removal. 

3.1.1 Reference Normalization 

For this example, the number of reference frames acquired, refN , is 16.  The 

number of complex data points for each reference frame, N , is 2048.   All reference 
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frames are averaged to produce [ ]rawr n , the averaged water reference data as shown in 

Fig. 8. 

 1

[ ]
[ ]       for  0

refN

i
i

raw
ref

r n
r n n N

N
== ≤ <
∑

 (3.1) 

 

Fig. 8. Averaged non-water-suppressed reference data. 
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The averaged water reference signal,[ ]rawr n , can also be normalized as: 

 max | [ ] |       for  0scale rawr r n n N= ≤ <  (3.2) 

 
[ ]

[ ]       for   0raw
norm

scale

r n
r n n N

r
= ≤ <    (3.3) 

 

3.1.2 DC Mixing 

The most dominant frequency component in vivo is due to the signal from water, 

which typically shows up as a very low frequency or DC component since the center 

frequency for the acquisition is set to the signal from water during prescan.   The purpose 

of DC mixing is to mitigate the effects of water components.  First, the normalized 

averaged water reference data are discrete Fourier transformed: 

 [ ] { [ ]}    for   0normR k r n k N= ≤ <F  (3.4) 

The frequency with the largest magnitude, mω , from [ ]R k  is determined: 

 max | [ ] |      for  0peakk R k k N= ≤ <  (3.5) 

 
2peak

m

k

N

π
ω

⋅
=  (3.6) 
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A complex-valued vector containing the frequency component of mω  from Eqn. (3.6) can 

then be created as shown in Fig. 9. 

 1[ ] cos( ) sin( )       for   0m mc n n j n n Nω ω= − ≤ <  (3.7) 

or 1[ ]        for     0mj nc n e n Nω−= ≤ <  (3.8) 

 

Fig. 9. Phase correction vector after DC mixing. 
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This result, 1[ ]c n , is applied to the normalized averaged water reference data, [ ]normr n , to 

generate [ ]dcr n  as shown in Fig. 10. 

 1[ ] [ ] [ ]            for  0dc normr n r n c n n N= ⋅ ≤ <  (3.9) 

 

Fig. 10. Reference data after DC mixing. 

3.1.3 Zero Phasing 

By convention, the MRS absorption spectrum is represented as the real part of the 

Fourier transformation of the water-suppressed data.   Prior to Fourier transformation,  
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water-suppressed data sets are adjusted so that they begin with zero phase.   By adjusting 

the signal to begin with zero phase, it is more accurately represented by the cosine or real 

components of the Fourier transform [46].   This effectively yields an MRS absorption 

spectrum with sharp peaks with narrow line-widths[22],[26].    

To adjust the reference signal so that it begins with zero phase, the complex 

conjugate (denoted by * ) of the first element of the reference data after DC mixing, a 

complex-valued scalar, zpA ,  is obtained and multiplied by [ ]dcr n and 1[ ]c n  as follows and 

shown in Fig. 11: 

 * [0]zpA r=  (3.10)

 [ ] [ ]       for   0zp zp dcr n A r n n N= ⋅ ≤ <  (3.11) 

This phase adjustment is also applied to the phase correction vector as shown in Fig. 12: 

 1[ ] [ ]         for   0zp zpc n A c n n N= ⋅ ≤ <  (3.12) 
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Fig. 11. Reference data after zero-phase adjustment. 
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Fig. 12. Phase correction vector after zero-phase adjustment. 

3.1.4 Linear Phase Correction 

Several techniques have been proposed to correct for linear phase errors present in 

raw data acquired during MRS studies[47]-[51].  Linear phase correction provides a first-

order estimate of phase errors present in the data so that they may be removed.   One 

technique for doing this is to determine the unwrapped phase of [ ]zpr n  as [ ]zp nφ .  Then 

the last element of [ ]zp nφ , lpφ , is used to generate a complex-valued vector for linear 

phase correction as shown in Fig. 13. 
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 [ ] unwrap{ [ ]}        for  0zp zpn r n n Nφ = ≤ <∢  (3.13) 

 [ 1]lp zp Nφ φ= −  (3.14) 

The phase discontinuity shown at 1500time≈  in Fig. 13 is located in a low SNR region 

of the data where the magnitude is close to zero.   This phase oscillation is somewhat 

atypical, and perhaps an improved phase unwrapping technique could be used to 

eliminate the discontinuity in the unwrapped phase. 

 

 
 

Fig. 13. Phase of DC mixed, zero-phase adjusted reference data. 
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After the last element of the unwrapped phase, lpφ , is determined, a complex-valued 

linear phase correction vector, [ ]lp n , shown in Fig. 14 is generated as follows:    

 
2

lp lp N

πω φ= ⋅  (3.15) 

 [ ] cos( ) sin( )     for  0lp lplp n n j n n Nω ω= − ≤ <  (3.16) 

or   [ ]      for   0lpj n
lp n e n N

ω−= ≤ <  (3.17) 

 
 

Fig. 14. Linear phase correction vector determined from reference data. 
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The linear phase correction vector, [ ]lp n , can then be applied to the DC-mixed, 

zero-phase adjusted reference data, [ ]zpr n , as well as to the DC-mixed, zero-phase 

adjusted phase correction vector, [ ]zpc n , as follows: 

 [ ] [ ] [ ]       for  0lp zpr n r n lp n n N= ⋅ ≤ <  (3.18) 

 [ ] [ ] [ ]     for   0lp zpc n c n lp n n N= ⋅ ≤ <  (3.19) 

or 1[ ] [ ] [ ]      for   0lp zpc n A c n lp n n N= ⋅ ⋅ ≤ <  (3.20) 

 [ ]        for   0lpm j nj n
lp zpc n A e e n Nωω −−= ⋅ ⋅ ≤ <  (3.21) 

 ( )[ ]        for   0m lpj n

lp zpc n A e n Nω ω− += ⋅ ≤ <  (3.22) 

The resulting reference data, [ ]lpr n , is shown in Fig. 15 and the phase correction vector, 

[ ]lpc n , is shown in Fig. 16. 
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Fig. 15. DC mixed, zero-phase adjusted, linear phase-corrected reference 
data. 
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Fig. 16. DC-mixed, zero-phase, linear phase-corrected phase correction 
vector. 

3.1.5 Phase Spline Smoothing 

The final step in creating the phase correction vector, [ ]c n , is to smooth the 

unwrapped phase of the phase correction vector determined by DC mixing, zero phasing 

and linear phase correction.   For data frames with significant noise, or phase 

discontinuities, this step provides a more stable phase correction vector.  The smoothing 

can be done using the spline method proposed by de Boor [52] (see also [53]).   The 

unwrapped phase of [ ]lpr n  can be determined as: 
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 [ ] unwrap{ [ ]}        for    0 n<Nlp lpn r nφ = ≤∢  (3.23) 

 

Fig. 17. Spline smoothed phase of phase-corrected reference data. 

 
The unwrapped phase, [ ]lp nφ , is smoothed to create [ ]s nφ  as shown in Fig. 17. 

 [ ] { [ ]}         for  0s lpn smooth n n Nφ φ= ≤ <  (3.24) 

where {}smooth  is a spline smoothing function as described by de Boor [52]. 
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Once the smoothed phase has been calculated, the complex-valued vector with 

smoothed phase, [ ]fp n , as shown in Fig. 18 is created as follows: 

 [ ] cos( [ ]) sin( [ ])       for   0f s sp n n j n n Nφ φ= − ≤ <  (3.25) 

or [ ][ ]         for   0sj n
fp n e n Nφ−= ≤ <  (3.26) 

and this is used to generate the final phase correction vector, [ ]c n , shown in Fig. 19 that 

will be used in spectroscopy processing: 

 [ ] [ ] [ ]        for    0lp fc n c n p n n N= ⋅ ≤ <  (3.27) 

or  

 1[ ] [ ] [ ] [ ]        for   0zp fc n A c n lp n p n n N= ⋅ ⋅ ⋅ ≤ <  (3.28) 

 [ ][ ]        for    0lpm sj nj n j n
zpc n A e e e n Nωω φ−− −= ⋅ ⋅ ⋅ ≤ <  (3.29) 

 [( ) [ ]][ ]        for    0m lp sj n n
zpc n A e n Nω ω φ− + += ⋅ ≤ <  (3.30) 
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Fig. 18. Spline smoothed phase-corrected reference data. 
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Fig. 19. Final phase correction vector. 

 

3.2 Computation of Absorption Spectrum 

Typical SVQ scans involve acquiring two different types of data:  a set of 

reference data from which water is not suppressed, and also a set of water-suppressed 

data from which signals of metabolites can be identified. An MRS absorption spectrum is 

created by applying the phase correction vector, [ ]c n , to both the non-water-suppressed 
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reference data as well as the water-suppressed data.   The steps involved to create an 

MRS absorption spectrum are described in the following sections. 

3.2.1 Averaging of Water-Suppressed Signal 

If the number of  water-suppressed frames acquired for a particular scan is 32 and 

the NEX for this scan is 2, then a total of 16, or, sigN ,  water-suppressed frames, [ ]is n , 

are available.   If the number of complex data points for each frame is 2048, or N ,  then 

the water-suppressed signal can be averaged to produce [ ]raws n  as shown in Fig. 20 in the 

following manner: 

 1

[ ]
[ ]       for  0

sigN

i
i

raw
sig

s n
s n n N

N
== ≤ <
∑

 (3.31) 
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Fig. 20. Water-suppressed MR spectroscopy signal. 

 

3.2.2 Applying Phase Correction Vector 

The phase correction vector is applied to both the averaged water-suppressed 

signal, [ ]raws n , as shown in Fig. 21 and the averaged reference signal, [ ]rawr n  as shown in 

Fig. 22 : 

 [ ] [ ] [ ]           for    0pc rawr n r n c n n N= ⋅ ≤ <  (3.32) 
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where [ ]rawr n  is given by Eqn. (3.1), and 

 [ ] [ ] [ ]           for    0pc raws n s n c n n N= ⋅ ≤ <  (3.33) 

 

Fig. 21. Water-suppressed MRS data with phase correction applied. 
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Fig. 22. Reference data with phase correction applied. 

3.2.3 Residual Water Removal 

The water-suppressed signal, [ ]pcs n , is now subtracted from the reference signal, 

[ ]pcr n , to create a pure water signal, [ ]pws n  as shown in Fig. 23 (see  [54]-[56]).   

 [ ] [ ] [ ]        for   0pw pc pcs n r n s n n N= − ≤ <  (3.34) 
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Fig. 23. Pure water signal. 

 
Next a set of processing steps is performed to determine a scale factor, scalea , to 

allow a scaled version of the pure water as shown in Fig. 23 to be subtracted from the 

water-suppressed data from which an MRS absorption specturm will be computed.   First, 

the pure water signal, [ ]pws n , and the phase corrected water suppressed signal, [ ]pcs n  are 

multiplied by an alternation vector: 

 [ ] [ ] [ ]        for   0pwa pws n s n a n n N= ⋅ ≤ <  (3.35) 
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 [ ] [ ] [ ]        for   0pca pcs n s n a n n N= ⋅ ≤ <  (3.36) 

where 

1     for  even
[ ]    for   0

1   for  odd

n
a n n N

n

 
= ≤ < − 

 (3.37) 

Next a hanning window as shown in Fig. 24 is applied. 

 1[ ] [ ] [ ]        for   0pww pwas n s n w n n N= ⋅ ≤ <  (3.38) 

 1[ ] [ ] [ ]        for   0pcw pcas n s n w n n N= ⋅ ≤ <  (3.39) 

where 

( )
1

2 20.5 1-cos       for   0 ; 12802[ ]   

0                           otherwise

Kn
Kn K

w n K

π   +
    ≤ < =   =    

   
  

 (3.40) 
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Fig. 24. Apodization window for residual water removal. 

A Fourier transform is then performed on the apodized pure water and also on the 

apodized, phase-corrected, water-suppressed signal as shown in Fig. 25. 

 [ ] { [ ]}       for    0w pwwS k s n k N= ≤ <F  (3.41) 

 [ ] { [ ]}       for    0s pcwS k s n k N= ≤ <F  (3.42) 

and the scale factor, scalea , is then determined from the ratio of the maximum value of the 

spectrum obtained from the water-suppressed signal to that of pure water . 

 max(Re{ [ ]})       for    0w wa S k k N= ≤ <  (3.43) 

 max(Re{ [ ]})       for    0s sa S k k N= ≤ <  (3.44) 
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 s
scale

w

a
a

a
=  (3.45) 

 
Fig. 25. Fourier transform of pure water and water-suppressed signal. 

After the scale factor, scalea , has been determined, it is applied to the windowed, 

pure water signal, [ ]pwws n , which is then subtracted from the windowed, water- 

suppressed signal, [ ]pcws n , to generate the water-subtracted pure signal, [ ]ss n . 

 
 [ ] [ ]         for  0w pww scales n s n a n N= ⋅ ≤ <  (3.46) 
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 [ ] [ ] [ ]        for  0s pcw ws n s n s n n N= − ≤ <  (3.47) 

The water-suppressed signal shown in Fig. 20 after phase-correction and residual water 

removal is given by Eqn. (3.47) and shown in Fig. 26. 

 
Fig. 26. Phase-corrected water-suppressed signal with residual water 

removed. 
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3.2.4  Fourier Transform to Compute Absorption Spectrum 

A hanning window shown in Fig. 27 is then applied to the phase-corrected water-

suppressed signal with residual water removed. 

 2[ ] [ ] [ ]        for   0sw ss n s n w n n N= ⋅ ≤ <  (3.48) 

where 

( )
1

2 20.5 1-cos       for   0 ; 40962[ ]   

0                           otherwise

Kn
Kn K

w n K

π   +
    ≤ < =   =    

   
  

 (3.49) 

 

Fig. 27. Apodization window applied prior to final Fourier transform. 
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Fig. 28. Phase-corrected, apodized signal with residual water removed. 

After apodization, the signal is zero padded as shown in Fig. 28 and Fourier 

transformed. 

 
[ ]          for   0

[ ]   
0                 for   2  

sw
zp

s n n N
s n

N n N

≤ < 
=  ≤ < 

 (3.50) 

 [ ] { [ ]}       for    0 2f zpS k s n k N= ≤ <F  (3.51) 
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The final results, [ ]fS k , are comprised of the MRS absortion spectrum 

represented as the real-valued results of the Fourier transform, and the MRS dispersion 

spectrum represented as the imaginary-valued results of the Fourier transform[22].  

      = Re{ [ ]}fMRS absorption spectrum S k (3.52) 

    = Im{ [ ]}fMRS dispersion spectrum S k (3.53) 

A typical MRS absorption spectrum used for clinical diagnosis would be displayed in a 

range from approximately 4.5 ppm to 0.0 ppm. 

Fig. 29 is an example of an MRS absorption spectrum obtained from the GE MRS 

phantom. This MRS experiment was performed using PRESS on an 8 cc volume, with a 

TE of 35msec and a TR of 1500msec, 2 NEX, 8 reference frames and 16 water-

suppressed (CHESS) frames.  The total scan time was 1 minute and 18 seconds.  The 

largest peak occurring near 2.0 ppm is from NAA.  The doublet near 1.3 ppm is from 

lactate.  The large peak near 3.0 ppm is from creatine.  The peak near 3.2 ppm is from 

choline.  The peak near 3.55 ppm is from myoinositol. 
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Fig. 29. Absorption spectrum of GE MRS phantom. 

For one-dimensional plots representing the absorption spectrum, the peak area or 

the peak height (for narrow line-widths), representing a particular frequency component 

can be calculated and compared to other peaks[24].    Often, the creatine peak is used as a 

reference for in vivo MRS studies[22].  In some cases, the mere presence of a particular 

peak may indicate a clinically significant diagnosis.   For example, lactate, which shows 

up as a doublet near 1.3 ppm, should never occur in a normal human brain, so its 

presence would potentially indicate damage from acute stroke[17].  
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3.3 Summary 

In this chapter we have reviewed the signal processing steps associated with the 

creation of an MRS absorption spectrum for SVQ scans.   This involves the creation of a 

phase correction vector from reference data, and the subsequent phase correction of both 

the non-water-suppressed reference data and the water-suppressed data containing 

spectral information for the metabolites of interest.   Residual water is removed from 

water-suppressed data by subtracting appropriately scaled reference data prior to creating 

the MRS absorption spectrum by Fourier transformation.    The processing discussed in 

this chapter provides a foundation upon which spectral estimation improvements will be 

introduced in later chapters. 
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C h a p t e r  4  

 

4 Weighted 2D Spectral Estimation Methods  

Several nonparametric techniques in addition to the Fourier transform can be used 

for spectral analysis of MRS studies.   Two nonparametric techniques that can be used for 

MRS analysis, which employ adaptive filter bank approaches, are the one-dimensional 

Capon method introduced by J. Capon in 1969 [57],[58] and the one-dimensional APES 

method [59],[58].    The filter bank approach to power spectral estimation employs a 

bandpass filter with a fixed bandwidth to estimate the power spectral density (PSD) of a 

given frequency component.   The basic periodogram, is a filter bank approach based on 

the standard Fourier transform [60] -[62]. 

 Capon and APES are filter bank approaches that improve the estimate of the PSD 

by creating one data-dependent bandpass filter for each spectral point being 

estimated[63] - [73].  The bandpass filter is created by a least-squares minimization 

process, which attempts to minimize the total output power of the filter, yet pass the 

frequency component of interest unaltered.  A second least-squares process is then 

implemented to estimate the amplitude of the filtered signal.  Capon and APES provide 

more accurate spectral estimates with lower sidelobes and narrower spectral peaks than 

the Fourier transform based periodogram techniques[59]. 
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The Fourier transform, one-dimensional Capon analysis and one-dimensional 

APES analysis fail to take into account, at least in a direct way, any damping associated 

with each signal component.  Thus in these methods, because the detected amplitude will 

be altered by the damping, it is difficult to accurately estimate the amplitudes of the 

various signal components.  To alleviate this problem, two-dimensional Capon and APES 

techniques have recently been developed.  Stoica and Sundin [2] have shown that the 2D 

Capon and 2D APES methods provide high-resolution two-dimensional MRS results 

showing both frequency, ω , and damping, σ .  Frigo, Heinen, et al., have demonstrated 

that these methods have clinical utility for MRS since they provide information about 

T2*, the total transverse relaxation time, for each metabolite [74]. 

In this chapter we propose three new 2D spectral estimation techniques, which 

have as their basis the 2D Capon and 2D APES methods introduced by Stoica and 

Sundin.  These are the weighted 2D Capon method, the weighted 2D APES method and 

the combined weighted  2D APES / 2D Capon method.  These techniques incorporate 

several new design parameters, the proper choice of which may lead to reduced 

processing time, better peak identification, and/or better estimates of spectral amplitude, 

phase, and damping. 

The theoretical development of these methods closely parallels that followed by 

Stoica and Sundin [2] in the development of the 2D Capon and 2D APES methods.  For 

brevity, we will not separately review the 2D Capon and 2D APES methods.  Rather, 

since these are special cases of our new techniques, we will develop the new techniques 
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in detail and at appropriate places point out how our new techniques reduce to the 

standard 2D Capon and 2D APES methods.  Because these derivations are of necessity 

quite involved, as a convenience for the reader a summary of the salient results is 

presented in Sect. 4.8 and useful derivations are included in the Appendix (see Sec. A.1 – 

Sec. A.2).  Finally, it is noted that these techniques are generally applicable to a wide 

variety of spectral estimation problems, not simply to MRS. 

4.1 Discrete Spectrum of Sum of Continuous-Time Damped Complex Sinusoids 

Consider a continuous-time signal consisting of R  damped complex sinusoids: 

 
1

( ) , 0r r

R
t j t

r
r

x t S e e tσ ω′ ′−

=

= ≥∑  (4.1) 

where , 0r rσ ω′ ′ ≥  and j r
r rS A eθ=  is complex with magnitude 0rA >  and phase rθ .  We 

may also consider a sampled version of ( )x t  with sampling period T : 

 

1

1

1

[ ] ( ) , 0r r

r r

R
Tn j Tn

r
r

R
n j n

r
r

R
n

r r
r

x n x nT S e e n

S e e

S p

σ ω

σ ω

′ ′−

=

−

=

=

= = ≥

=

=

∑

∑

∑

 (4.2) 

where , , r rj
r r r r rT T p e eσ ωσ σ ω ω −′ ′= = = ,   and where T  is chosen such that 

0 rω π≤ < , for all r , thus satisfying the Nyquist sampling theorem. 
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One might consider analyzing [ ]x n  using the z-transform, but this presents certain 

problems.  First, { }( ) [ ]X z x n= Z   has poles at rp , i.e., it has a value of ∞  at rz p= .  

Furthermore, ( )X z  converges only outside a circle with radius equal to the magnitude of 

the largest pole. 

Alternatively, we may consider using the discrete-time Fourier transform 

{ }( ) [ ]jX e x nω = F  to study [ ]x n .  ( )jX e ω  converges as long as 0rσ >  for all r .  

However, the effects of rσ  on the magnitude of  the various components of [ ]x n  are 

difficult to quantify using ( )jX e ω .  We therefore define the spectrum { }( , ) [ ]S x nσ ω = S  

of [ ]x n  as follows: 

 
{ }

1

1

[ ] ( , )
r r

r

r r

R

r
r

R
j

r
r

x n S S

A e

σ σ ω ω

θ
σ σ ω ω

σ ω δ δ

δ δ

− −
=

− −
=

= =

=

∑

∑

S

 (4.3) 

where  

 
1, 0

0, 0ρ
ρ

δ
ρ

=
=  ≠

 (4.4) 

We may also extend this definition to a general complex signal, [ ]x n , (implicitly 

assuming it to be composed of damped complex sinusoids) in the following manner: 

 { } ( , )[ ] ( , ) ( , ) jx n S A eθ σ ωσ ω σ ω= =S  (4.5) 
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although at this point it is not clear how to define ( , )A σ ω   and ( , )θ σ ω .  We will 

address this issue shortly. 

We may graphically represent ( , )S σ ω , given by Eqn. (4.3) (for the signal [ ]x n   

given in Eqn. (4.2) ), in two ways as shown in Fig. 30 and Fig. 31. 

 

Fig. 30. Polar representation of ( , )A σ ω . 

( , )A σ ω

complex plane ( )jz e eσ ω−= unit circle

1A

2A

3A

1p
2p

3p
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Fig. 31. Rectangular representation of ( , )A σ ω . 

Similar plots could be constructed for ( , )θ σ ω .  For ( , )S σ ω  given by Eqn. (4.5), 

for an arbitrary signal [ ]x n , both ( , )A σ ω  and ( , )θ σ ω  would appear as surfaces. 

4.2 Discrete Spectrum of Arbitrary Complex Signals 

We now return to the problem of defining ( , )A σ ω  and ( , )θ σ ω  in general.  To 

define ( , )S σ ω  at an arbitrary point ( , )σ ω  and for an arbitrary complex signal 

[ ] ( )x n x nT=   we proceed as follows.   Assume that [ ]x n  contains a term of the form 

j n j nAe e eθ σ ω− .  Construct a filter, specific to the point ( , )σ ω , that passes the signal 

j n j nAe e eθ σ ω−  unaltered while significantly attenuating all other such signals.  We will 

employ a finite impulse response (FIR) filter for tractability and implement it in a non-

causal manner to avoid start-up transients. 

( , )A σ ω

1A 2A
3A

1ω 2ω
3ω

ω
2σ 1σ 3σ

σ
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To be specific, assume we have a finite number of samples 

[ ] ( ), 0,1, , 2x n x nT n N M= = + −⋯ .  The filter output at the point ( , )σ ω  is denoted as 

, [ ], 0,1, , 1x n n Nσ ω = −⋯ , where  

 , [ ] ( , ) [ ]Hx n h x nσ ω σ ω=  (4.6) 

where  

 

0

1

1

( , )

( , )
( , )

( , )M

h

h
h

h

σ ω
σ ω

σ ω

σ ω−

 
 
 =
 
 
  

⋮
 (4.7) 

is the M -dimensional vector of filter coefficients,  

 

[ ]

[ 1]
[ ] , 0,1, , 1,

[ 1]

x n

x n
x n n N

x n m

 
 + = = −
 
 + + 

⋯
⋮

 (4.8) 

and H  denotes the Hermitian (complex) transpose.   This filter will be constructed to 

meet the conditions: 

(1)  , [ ] [ ]     when     [ ] j n j nx n x n x n Ae e eθ σ ω
σ ω

−= =  (4.9) 

and 
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(2)  
0 0 0

, 0

0 0

[ ] 0     when     [ ] ,

      and / or    

j n j nx n x n A e e eθ σ ω
σ ω

σ σ ω ω

−≈ =
≠ ≠

 (4.10) 

We will address the first condition now and return to the second condition later.  The first 

condition requires that 

 ( , ) [ ] [ ], 0,1, , 1Hh x n x n n Nσ ω = = −⋯  (4.11) 

if [ ] j n j nx n Ae e eθ σ ω−= . 

Under these circumstances, 

 

( )

( )( 1)

( )( 1)

[ ]

j n

j n
j

j n M

e

e
x n Ae

e

σ ω

σ ω
θ

σ ω

− +

− + +

− + + −

 
 
 =
 
 
  

⋮
 (4.12) 

or 

 ( )[ ] ( , ) j j nx n s Ae eθ σ ωσ ω − +=  (4.13) 

where 

 

( )

2( )

( 1)( )

1

( , )

j

j

M j

e

es

e

σ ω

σ ω

σ ω

σ ω

− +

− +

− − +

 
 
 
 =
 
 
 
 

⋮

. (4.14) 
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Thus Eqn. (4.11) becomes 

 ( ) ( )( , ) ( , ) , 0,1, , 1H j j n j j nh s Ae e Ae e n Nθ σ ω θ σ ωσ ω σ ω − + − += = −⋯ . (4.15) 

Clearly, Eqn. (4.15) will be satisfied if and only if 

 ( , ) ( , ) 1Hh sσ ω σ ω = . (4.16) 

Thus the first condition will be met exactly if ( , )h σ ω  satisfies Eqn. (4.16).   There is no 

easy or unique way to deal with the second condition.  There are a number of ways to 

deal with  Eqn. (4.11), each leading to a different spectral estimation method. 

4.3 Estimating the Spectrum, ( , )S σ ω , from Filter Output, , [ ]x nσ ω  

At this point we consider the problem of estimating ( , )S σ ω  assuming , [ ]x nσ ω  is 

available.  We will later consider several methods for determining ( , )h σ ω , each leading 

to a different version of , [ ]x nσ ω .   Specifically, we assume we have 

, [ ], 0,1, , 1x n n Nσ ω = −⋯ .  If ( , )h σ ω  has been appropriately designed, then 

 , [ ] j n j nx n Ae e eθ σ ω
σ ω

−≈  (4.17) 

More precisely, 

 , [ ] ( , ) [ ]n j nx n S e e nσ ω
σ ω σ ω ε−= +  (4.18) 
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since ( , ) jS Aeωσ ω = , where the error [ ]nε  is presumably “small.” 

It is noted that, if [ ] j n j nx n Ae e eθ σ ω−=  exactly and if our measurement of [ ]x n  is 

completely noise-free, then, evaluating Eqn. (4.18) at 0n = , we have the simple result 

 ,( , ) [0]S xσ ωσ ω =  (4.19) 

In practice, however, [ ]nε  will contain remnants of other signal components and noise, 

so Eqn. (4.19) may be in error.  We will thus proceed to obtain an estimate of ( , )S σ ω  

from , [ ]x nσ ω  in such a manner as to minimize a weighted sum of the squared-error terms 

over some range of values of n .  Specifically, we will choose ( , )S σ ω  that minimizes 

 
1 1

2 2 * 2

0 0

[ ] [ ] [ ]
K K

n n

n n

J n e n n eα αε ε ε
− −

− −

= =

= =∑ ∑  (4.20) 

where *  denotes complex conjugate, 1 K N≤ ≤ , and where, from Eqn. (4.18), 

 ,[ ] [ ] ( , ) n j nn x n S e eσ ω
σ ωε σ ω −= −  (4.21) 

The quantity α  may be zero (equally weighing all the error terms), positive (more 

heavily weighing “early” terms), or even slightly negative (more heavily weighing “late” 

terms).  Furthermore, α  may be a function of σ .  It is noted that in the current literature 

[2], α is always chosen to be zero and K  to be N . 
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Temporarily denoting ( , )S σ ω  as  S B jC= +  and je eσ ω−  as p , we have 

 
1

* * 2
, ,

0

[ ] ( ) [ ] ( )
K

n n n

n

J x n B jC p x n B jC p eα
σ ω σ ω

−
−

=

   = − + − −   ∑  (4.22) 

Following standard minimization techniques, ( , )S σ ω must satisfy 

 0
J

B

∂ =
∂

 (4.23)  

and 

 0
J

C

∂ =
∂

 (4.24) 

This leads to  

( ) ( )( )
1

* * * * 2
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B
α

σ ω σ ω
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−

=

∂
   = − − + − − =   ∂ ∑  (4.25) 

and 

( ) ( )( )
1

* * * * 2
, ,

0

[ ] [ ] 0
K

n n n n n

n

J
x n Sp jp x n S p jp e

C
α

σ ω σ ω

−
−

=

∂
   = − + − − =   ∂ ∑  (4.26) 

Subtracting Eqn. (4.25) from Eqn. (4.26) after canceling the j  in Eqn. (4.26) results in 

 
1

* 2
,

0

2 [ ] 0
K

n n n

n

x n Sp p e α
σ ω

−
−

=

 − = ∑  (4.27) 
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Similarly, adding these equations results in 
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n

x n S p p e α
σ ω

−
−

=

 − =
 ∑  (4.28) 

which is simply the conjugate of Eqn. (4.27).  Thus, after canceling the 2, both lead to 
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or, 
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or, 
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Employing Eqn. (4.6), this becomes 
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Thus 
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 ( , )( , ) ( , ) jS A eθ σ ωσ ω σ ω=
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H
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where 
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 (4.34) 

and 
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=∑  (4.35) 

where the properties of the geometric sum have been used in Eqn. (4.34).  It is noted that 

this reduces to the standard result found in the literature [2] when 0α =  and K N= , 

namely 
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( , ) ( , ) ( , )
( )

H
N

N

S h X
L

σ ω σ ω σ ω
σ

=  (4.36) 

Further, it is observed that when 1K = , Eqn. (4.33) reduces to 
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 ( , ) ( , ) [0]HS h xσ ω σ ω=  (4.37) 

It is also noted that when 2
σα −=  

 
1

( , ) ( , ) (0, )H
KS h X

K
σ ω σ ω ω=  (4.38) 

where KX  is now a function only of ω . 

We have not as yet addressed the determination of ( , )h σ ω .   Several alternative 

approaches are possible.  These are discussed in the following sections. 

4.4 Weighted 2D Capon Method 

In this approach we minimize the weighted total energy in the filter output 

, [ ]x nσ ω  while passing the signal component at frequency, ω , and damping, σ , unaltered.  

We thus define 
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=∑  (4.39) 

In the conventional 2D Capon method 0β =  [2].   Just as in the case of α in Eqn. (4.20) 

β  may be zero, positive or slightly negative.  Furthermore, β may be a function of σ .    

We have, using Eqn. (4.6), 
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since 
2 *a aa= .  Using the fact that the second factor in Eqn. (4.40) is scalar and is thus 

its own transpose, 
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We thus wish to choose ( , )h σ ω  to minimize 

 ( , ) ( , )H
CJ h R hβσ ω σ ω=  (4.43) 

subject to  
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 ( , ) ( , ) 1h sσ ω σ ω =  (4.44) 

as required by Eqn. (4.16).  This is a standard quadratic minimization problem with 

solution (see Appendix Sec. A.1),  

 
1

1

( , )
( , )

( , ) ( , )C H

R s
h

s R s
β

β

σ ω
σ ω

σ ω σ ω

−

−=  (4.45) 

With Eqn. (4.33),  this leads to the weighted 2D Capon spectrum 

 
1

1

( , )1
( , ) ( 2 , )

( ) ( , ) ( , )C NH
K

s R
S X

L s R s
β

β

σ ω
σ ω σ α ω

σ α σ ω σ ω

−

−= +
+

 (4.46) 

since 1Rβ
−  is Hermitian.  In the standard literature [2], 0, 0, and K Nβ α= = = , for 

which Eqn. (4.46) reduces to the conventional 2D Capon spectrum 

 
1

0
1

0

( , )1
( , ) ( , )

( ) ( , ) ( , )C NH
N

s R
S X

L s R s

σ ωσ ω σ ω
σ σ ω σ ω

−

−=  (4.47) 

4.5 2D Capon Method in Frequency Domain 

As an alternative to the time-domain minimization criterion of Eqn. (4.39), we 

here consider a frequency domain approach.  From Eqn. (4.33), assuming K N= , we 

have 

 
1

( , ) ( , ) ( 2 , )
( )

H
N

N

S h X
L

σ ω σ ω σ α ω
σ α

= +
+

 (4.48) 
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Now, assuming ( , )h σ ω  to be fixed, we can consider the spectral estimate at another 

frequency, kω , given by 

 
1

( , ) ( , ) ( 2 , )
( )k N k

N

S h X
Lω σ ω σ ω σ α ω

σ α
= +

+
 (4.49) 

Letting 
2

, 0,1, , 1k k k N
N

πω = = −⋯ , we form 

 
2 1

2

0

( )
( , )

N
N

C k
k

L
J S

N ω
σ α σ ω

−

=

+′ = ∑  (4.50) 

and will choose  ( , )h σ ω  to minimize CJ′  subject to Eqn. (4.16).  The positive constant 

in front of the summation is added for convenience and does not affect the minimization 

process.  Proceeding, 

 
2 1

0

( )
( , ) ( , )

N
HN

C k k
k

L
J S S

N ω ω
σ α σ ω σ ω

−

=

+′ = ∑  

 
1

0

1
( , ) ( 2 , ) ( 2 , ) ( , )

N
H H

N k N k
k

h X X h
N

σ ω σ α ω σ α ω σ ω
−

=

= + +∑  

1

0

1
( , ) ( 2 , ) ( 2 , ) ( , )

N
H H

C N k N k
k

J h X X h
N

σ ω σ α ω σ α ω σ ω
−

=

′ = + +∑   (4.51) 

The summation in Eqn. (4.51) may be expanded as follows: 



  69 

 

 
1

0

( 2 , ) ( 2 , )
N

H
N k N k

k

X Xσ α ω σ α ω
−

=

+ +∑  

 
2 21 1 1

( 2 ) ( 2 )

0 0 0

[ ] [ ]
N N Nj kn j kmn mN N

k n m

x n e e x m e e
π π

σ α σ α
− − −−− + − +

= = =

 
= ⋅ 

 
∑ ∑ ∑  

 
21 1 1 ( )

( 2 )( )

0 0 0

[ ] [ ]
N N N j k n m

H n m N

n m k

x n x m e e
π

σ α
− − − − −− + +

= = =

=∑∑ ∑  (4.52) 

It may be shown that [95] 

 
21 ( )

0

,

0,

N j k n m
N

k

N m n
e

m n

π− − −

=

=
=  ≠

∑  (4.53) 

Hence, from Eqn. (4.52),  

 
1 1

2( 2 )

0 0

( 2 , ) ( 2 , ) [ ] [ ]
N N

H H n
N k N k

k n

X X N x n x n e σ ασ α ω σ α ω
− −

− +

= =

+ + =∑ ∑  (4.54) 

Substituting Eqn. (4.54) into Eqn. (4.51) results in 

 
1

2( 2 )

0

( , ) [ ] [ ] ( , )
N

H H n
C

n

J h x n x n e hσ ασ ω σ ω
−

− +

=

′ = ∑  

 2( , ) ( , )Hh R hσ ασ ω σ ω+=  (4.55) 

This is exactly Eqn. (4.41) with 2β σ α= + .  Thus the frequency domain version of the 

2D Capon method is simply the weighted 2D Capon method with a particular choice for 
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β .  This development is of value, however, because it suggests the possibility of using 

constantβ σ= +  in the weighted 2D Capon method. 

4.6 Weighted 2D APES Method 

In this approach we minimize the weighted least squares fitting error between the 

filter output and the signal component at the desired frequency ω  and damping σ , while 

passing that component unaltered.   (APES is an acronym for amplitude and phase 

estimation.)   We define 

 
1 2( ) 2

,
0

[ ] ( , )
N

j n n
A

n

J x n S e eσ ω β
σ ω σ ω

−
− + −

=

= −∑  (4.56) 

where ( , )S σ ω  is the spectral estimate given by Eqn. (4.33).   Here, however, it is 

convenient to choose K N=  and α β=  in Eqn. (4.33).  The usual comments apply to 

β .  It is noted that when 0β = , AJ  corresponds to the minimization criterion employed 

in the conventional 2D APES method introduced by Stoica and Sundin[2].  Thus 

 
2

1
( ) 2

0

1
( , ) [ ] ( , ) ( 2 , )

( )

N
H H j n n

A N
n N

J h x n h X e e
L

σ ω βσ ω σ ω σ β ω
σ β

−
− + −

=

= − +
+∑   (4.57) 

which is to be minimized over ( , )h σ ω  subject to Eqn. (4.16).  We now have 
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σ ωσ ω σ β ω
σ β

−
− +

=

 
= − + + 
∑   

 
( ) 21

[ ] ( 2 , ) ( , )
( )

H H j n n
N

N

x n X e e h
L

σ ω βσ β ω σ ω
σ β

− − − 
⋅ − + + 

 

1 1
2 ( 2 )

0 0

1
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A N
n nN
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β σ β ωσ ω σ β ω
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N N
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e e e X X h
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∑  

1
( , ) ( 2 , ) ( 2 , )

( )
H H
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J h R X X
Lβσ ω σ β ω σ β ω

σ β
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σ β ω σ β ω
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( )

N
n H

N N
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e X X h
L

σ β σ β ω σ β ω σ ω
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−
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+ + + + 
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1
( , ) ( 2 , ) ( 2 , ) ( , )

( )
H H

A N N
N

J h R X X h
Lβσ ω σ β ω σ β ω σ ω

σ β
 

= − + + + 
   (4.58) 
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since 

 
1

2( )

0

( )
N

n
N

n

e Lσ β σ β
−

− +

=

= +∑  (4.59) 

Thus 

 ( , ) ( , ) ( , )H
AJ h Q hβσ ω σ ω σ ω=  (4.60) 

where 

 
1

( , ) ( 2 , ) ( 2 , )
( )

H
N N

N

Q R X X
Lβ βσ ω σ β ω σ β ω

σ β
= − + +

+
 (4.61) 

which is to be minimized subject to Eqn. (4.16).  Other than the fact that ( , )Qβ σ ω  is a 

function of  and σ ω  (whereas Rβ  is not),  AJ   is exactly of the form of CJ  in Eqn. 

(4.41) in the weighted 2D Capon approach.   Thus 
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( , ) ( , )
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( , ) ( , ) ( , )A H

Q s
h

s Q s
β

β

σ ω σ ω
σ ω

σ ω σ ω σ ω

−

−=  (4.62) 

which leads to the weighted 2D APES spectrum 
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  (4.63) 
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since 1( , )Qβ σ ω−  is Hermitian.   In the standard literature [2], 0β = , for which Eqn. 

(4.63)  reduces to the conventional 2D APES spectrum 

 
1

0
1

0

( , ) ( , )1
( , ) ( , )

( ) ( , ) ( , ) ( , )

H

A NH
N

s Q
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L s Q s

σ ω σ ωσ ω σ ω
σ σ ω σ ω σ ω

−

−=  (4.64) 

It is noted that the Matrix Inversion Lemma [60] (see Appendix Sec. A.2) may be 

used to facilitate the computation of 1( , )Qβ σ ω− , leading to  

1 1
1 1

1

( 2 , ) ( 2 , )
( , )

( ) ( 2 , ) ( 2 , )
N N

H
N N N

R X X R
Q R

L X R X
β β

β β
β

σ β ω σ β ω
σ ω

σ β σ β ω σ β ω

− −
− −

−

+ +
= +

+ − + +
  (4.65) 

requiring the inversion only of Rβ . 

4.7 Combined Weighted 2D APES / 2D Capon Method 

The weighted 2D Capon method and the weighted 2D APES method each offer 

certain advantages.  It might therefore be expected that a compromise of these advantages 

might be obtained by combining these methods.  To accomplish this, define 

 (1 )AC C AJ J Jγ γ= − +  (4.66) 

where 0 1γ≤ ≤ .  For convenience, we choose   and  K N α β= =  in the weighted 2D 

Capon method.  Using Eqns. (4.41) and (4.60) we have 

(1 ) ( , ) ( , ) ( , ) ( , ) ( , )H H
ACJ h R h h Q hβ βγ σ ω σ ω γ σ ω σ ω σ ω= − +  
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 ( )( , ) (1 ) ( , ) ( , )H
ACJ h R Q hβ βσ ω γ γ σ ω σ ω= − +  (4.67) 

With Eqn. (4.61) this becomes 

 

( , ) (1 ) ( 2 , ) ( 2 , ) ( , )
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H H
AC N N
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J h R R X X h
Lβ β
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J h R X X h
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 
= − + + + 

  (4.68) 

or 

 ,( , ) ( , ) ( , )H
ACJ h Q hβ γσ ω σ ω σ ω=  (4.69) 

where 

 , ( , ) ( 2 , ) ( 2 , )
( )

H
N N

N

Q R X X
Lβ γ β

γσ ω σ β ω σ β ω
σ β

= − + +
+

 (4.70) 

As usual, ( , )h σ ω  is chosen to minimize ACJ  subject to Eqn. (4.16).  We thus have 
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and 
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  (4.72) 

It is seen that the combined method is nothing more than a parameterized version of the 

weighted 2D APES method, which reduces to the normal weighted 2D APES method 

when 1γ =  and to the weighted 2D Capon method ( with K N= ) when 0γ = .  As 

before, the Matrix Inversion Lemma [60] can be employed to rewrite 1
, ( , )Qβ γ σ ω−  as 

1 1
1 1
, 1

( 2 , ) ( 2 , )
( , )

( ) ( 2 , ) ( 2 , )

H
N N

H
N N N

R X X R
Q R

L X R X
β β

β γ β
β

γ σ β ω σ β ω
σ ω

σ β γ σ β ω σ β ω

− −
− −

−

+ +
= +

+ − + +
  (4.73) 

 

4.8 Summary of Methods 

For the sake of clarity, in this section we will briefly summarize the development 

presented earlier in this chapter.  We assume we have a signal of the form 

,

[ ] ( , ) , 0,1, , 2n j nx n S s e noise n N Mσ ω

σ ω
σ ω −= + = + −∑ ⋯  (4.74) 

where 

 ( , )( , ) ( , ) jS A eθ σ ωσ ω σ ω=  (4.75) 

and where we seek to estimate ( , )S σ ω based on [ ]x n . 
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4.8.1 General Framework for Techniques 

All of the techniques are based on the following two stage methodology: 

1.) At each ( , )σ ω  of interest, construct a length-M  FIR filter ( , )h σ ω  for [ ]x n  that 

passes the signal component at ( , )σ ω  and attenuates all others, resulting in the 

filter output , [ ]x nσ ω . 

2.) From , [ ]x nσ ω  estimate ( , )S σ ω . 

4.8.2 Existing Techniques 

4.8.2.1 2D Capon 

1.) Choose the filter ( , )h σ ω  that minimizes 

 
1

2

,
0

[ ]
N

C
n

J x nσ ω

−

=

=∑  (4.76) 

subject to ( , ) ( , ) 1Hh sσ ω σ ω =  (which ensures that the component at ( , )σ ω  is 

passed unaltered). 

2.) Choose the estimate ( , )S σ ω that minimizes 

 
1

2

0

[ ]
N

n

J nε
−

=

=∑  (4.77) 

where ,[ ] [ ] ( , ) n j nn x n S e eσ ω
σ ωε σ ω −= −  
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This results in 
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( , ) ( , )
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L s R s
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σ σ ω σ ω

−

−=  (4.78) 

4.8.2.2 2D APES 

1.)  Choose the filter ( , )h σ ω  that minimizes 
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A
n

J nε
−

=

=∑  (4.79) 

subject to ( , ) ( , ) 1Hh sσ ω σ ω = . 

2.) Choose the estimate ( , )S σ ω that minimizes 
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J nε
−

=

=∑  (4.80) 

This results in 

1
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−

−=  (4.81) 

4.8.3  New Techniques 

In these proposed techniques certain choices of the parameters , , ,  and K α β γ  

can lead to improved estimation properties and/or reduced computation time. 
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4.8.3.1 Weighted 2D Capon 

1.) Choose the filter ( , )h σ ω  that minimizes 
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2 2
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n
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n

J K x n e β
σ ωβ

−
−

=

=∑  (4.82) 

subject to ( , ) ( , ) 1Hh sσ ω σ ω = . 

2.) Choose the estimate ( , )S σ ω that minimizes 
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This results in 
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 (4.84) 

4.8.3.2 Weighted 2D APES 

1.) Choose the filter ( , )h σ ω  that minimizes 
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J n e ββ ε
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−

=

=∑  (4.85) 

subject to ( , ) ( , ) 1Hh sσ ω σ ω = . 

2.) Choose the estimate ( , )S σ ω that minimizes 
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This results in 
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  (4.87) 

4.8.3.3 Combined Weighted 2D APES / 2D Capon 

1.) Choose the filter ( , )h σ ω  that minimizes 

 ( , ) (1 ) ( , ) ( )AC C AJ J N Jβ γ γ β γ β= − +  (4.88) 

subject to ( , ) ( , ) 1Hh sσ ω σ ω = . 

2.) Choose the estimate ( , )S σ ω that minimizes 
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This results in 
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S X

L s Q s
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σ ω σ ω
σ ω σ β ω

σ β σ ω σ ω σ ω

−

−= +
+

  (4.90) 

which reduces to the weighted 2D APES result when 1γ =  and the weighted 2D Capon 

result (with K N= ) when 0γ = . 
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4.9 Computational Considerations 

We may evaluate the weighted 2D Capon spectrum,( , )CS σ ω , and the combined 

weighted 2D APES / 2D Capon spectrum, ( , )ACS σ ω , for specific values of   and  σ ω .  

(It is not necessary to separately discuss ( , )AS σ ω , since it is a special case of 

( , )ACS σ ω .)  It is generally of interest, however, to evaluate these quantities over an 

equally spaced rectangular grid of   and  σ ω  values.   Certain computational efficiencies 

may be exploited if this is done.  Assume 

 , 0,1, , 1, 0m m m Nσσ σ σ= ∆ = − ∆ >⋯  (4.91) 

and 

 , 0,1, , 1, 0k k k Nωω ω ω= ∆ = − ∆ >⋯  (4.92) 

That is, we are interested in Nσ  values of σ  and Nω  values of ω .  To ensure that 

0 ω π≤ < , we choose 

 
Nω

πω∆ =  (4.93) 

We now consider the evaluation of ( 2 , )KX σ α ω+  and ( 2 , )NX σ β ω+ , as required by 

the methods described above.  It suffices to consider only ( 2 , )KX σ α ω+  where 

0 K N≤ ≤  and where α  may be a function of σ .   Thus 
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At the grid points this becomes  
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or 
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X x n e e
ω

ω

π
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+ = ∑  (4.96) 

where 

 
[ ], 0,1, , 1

[ ]
0, , 1, ,2 1e

x n n K
x n

n K K Nω

= −
=  = + −

⋯

⋯
 (4.97) 

and where we have assumed 2 ,   or  2
KN K Nω ω≥ ≥ . 

From Eqn. (4.96), it is seen that ( 2 , )K m kX σ α ω+  is the length-2Nω  vector 

discrete Fourier transform of the quantity ( 2 )[ ] m n
ex n e σ α− ∆ + , which may be efficiently 

evaluated using the fast Fourier transform (FFT).  Thus, for a fixed m , ( 2 , )K m kX σ α ω+  

may be determined for all , 0,1, , 1k k Nω= −⋯ ,  using one length-2Nω  vector FFT (in 

this case one vector FFT consists of M ordinary FFT’s).  It is further observed that if α  



  82 

 

is chosen as 2
m σα − ∆= ,  ( 2 , )K m kX σ α ω+  becomes the FFT of [ ]ex n , independent of 

m .  Thus, one vector FFT suffices for all , 0,1, , 1m m Nσ= −⋯ . 

As another issue, the evaluation of ( , )  and  ( , )C ACS Sσ ω σ ω  require the inversion 

of Rβ  and , ( , )Qβ γ σ ω , respectively.  If β  is fixed, then Rβ  needs to be inverted only 

once over the entire grid and, if the Matrix Inversion Lemma[60] is used, the inversion of  

, ( , )Qβ γ σ ω   likewise requires only one inversion of Rβ .   On the other hand, if β   is a 

function of σ , then, in both cases, Rβ   must be inverted once for each 

, 0,1, , 1m m Nσ= −⋯ . 
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Table 1 lists the number of length-2Nω  FFT’s and M M×  matrix inversions for 

various situations of interest. 

Method α  β  FFT’s Matrix 
Inversions 

Weighted 2D Capon (K N= ) not 2
σ−  constant MNσ  1 

Weighted 2D Capon (K N= ) not 2
σ−  function(σ ) MNσ  Nσ  

Weighted 2D Capon (K N= ) 
2

σ−  constant M  1 

Weighted 2D Capon (K N= )     2
σ−  function(σ ) M  Nσ  

Weighted 2D Capon ( 1K = ) - constant 0 1 

Weighted 2D Capon ( 1K = ) - function(σ ) 0 Nσ  

Combined Weighted  
2D APES / 2D Capon 

- constant MNσ  1 

Combined Weighted  
2D APES / 2D Capon 

- function(σ ), 

not 2
σ−  

MNσ  Nσ  

Combined Weighted  
2D APES / 2D Capon 

- 
2

σ−  M  Nσ  

 

Table 1. Computational Requirements. 
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4.10 Example 

The following simple example will hopefully provide the reader with a better 

understanding of the concepts presented in this chapter.  We consider the signal 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

20
0.0033 256

22
0.0086 256

50
0.001 256

210
0.0086 256

220
0.0033 256

[ ] 2

4

2

4

2

j j nn

j j nn

j nj n

j j nn

j j nn

x n e e e

e e e

e e e

e e e

e e e

π π

π π

ππ

π π

π π

−

− −

−

−

− −

= +

+

+

+

 (4.98) 

with added Gaussian white noise (refer to Eqn. (4.74)).  This signal has the spectral peaks 

shown in Table 2. 

ω  σ  A  θ  

20
256

π  -0.003 2 
3

π  

22
256

π  
-0.008 4 

6
π−  

50
256

π  -0.001 2 π  

210
256

π  -0.008 4 
6

π
 

220
256

π  -0.003 2 
3

π−  
 

Table 2. Parameters for simulated signal. 
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In the first instance we assume an SNR of 48 dB.  Using the conventional 2D Capon 

method with 512N =  and 128M = , we obtain the estimated spectrum 

( , )( , ) ( , ) jS A eθ σ ωσ ω σ ω= .  Fig. 32 is a 3-dimensional plot of ( , )A σ ω  vs. σ  and ω .  Fig. 

33 is a contour plot of ( , )A σ ω .  In both cases the five spectral peaks are evident. 

 

Fig. 32. 2D Capon surface of simulated signal with SNR=48dB. 
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Fig. 33. 2D Capon contour of simulated signal with SNR=48dB. 

Fig. 34 and Fig. 35 are similar to Fig. 32 and Fig. 33, respectively, but with an SNR of 12 

dB.  The effect of greater noise is seen as a broadening of the peaks in the σ  direction. 
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Fig. 34. 2D Capon surface of simulated signal with SNR=12dB. 
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Fig. 35. 2D Capon contour of simulated signal with SNR=12dB. 

4.11 Summary 

In this chapter we have introduced several new two-dimensional spectral 

estimation techniques: the weighted 2D Capon method, the weighted 2D APES method 

and the combined weighted 2D APES / 2D Capon method.   It was shown that the 

conventional 2D Capon method and the conventional 2D APES method are special cases 

of the new methods introduced in this chapter.   
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The primary motivation for the introduction of these new techniques is to improve 

spectral estimation capabilities, peak detection reliability, accuracy, and in some cases to 

increase the overall performance of the spectral estimation processing time.  The two-

dimensional techniques introduced in this chapter are capable of estimating both 

frequency and damping characteristics of a signal and are well-suited to use for MRS 

analysis.  
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C h a p t e r  5  

 

5 Multiple-Channel Weighted 2D Spectral Estimation Methods 

Many advancements have been made in the area of MR imaging with multiple 

receive coils.    The most common technique for creating a single MR image from 

multiple-receive coils was introduced by Roemer, et al.[29].    Since multiple receive 

coils are widely used in a clinical setting for imaging, it is also desirable to combine MRS 

spectra from multiple receive coils.  Several techniques for combining MRS absorption 

spectra from multiple receive channels have been proposed [39]-[42].   One technique for 

combining MRS absorption spectra from multiple receive channels which has gained 

clinical acceptance was developed by Frigo, Heinen, et al. [3]. 

In analyzing MRS results from multiple receive coils, the data from each coil may 

be processed separately to create a result for each coil.  Signal characteristics from each 

coil depend on a number of factors including the orientation of the coil with respect to the 

B0 field, the proximity of the coil to the volume generating the signal, coil loading, coil-

to-coil coupling effects, and the permeability and permitivity of the medium through 

which the radio-frequency signal travels [75] prior to being received by the coil elements.  

Regions of interest close to receive coil elements benefit from improved SNRs[30],[37].   



  91 

 

In this chapter we will extend the weighted 2D spectral estimation methods 

developed in Chapter 4 to the case of multiple-channel data.  We will consider both 

weighted signal averaging and weighted spectrum averaging.   Although motivated by the 

application to MRS signals, the development, as in Chapter 4, is cast in a general setting.  

5.1 Extensions to Multiple Observations 

In this case we seek to estimate { [ ]} ( , )x n Sσ ω=S  based on multiple observations 

of the signal [ ]x n  (multi-channel case).  Here we assume we have C  noisy scaled 

observations [ ], 1,2, , ,ix n i C= ⋯   of the complex signal [ ]x n , for 0,1, , 2n N M= + −⋯ .   

More precisely, 

 [ ] [ ] [ ], 1,2, ,i i ix n g x n n i Cυ= + = ⋯  (5.1) 

where the [ ]i nυ  are noise terms and the 'sig  are complex constants (channel gains).  The 

noise terms [ ]i nυ  are assumed to be zero mean with variances 

{ }2 2 0, 1,2, ,i i i Cυ ρ= > = ⋯E .  We further assume that the [ ]'si nυ  are mutually 

uncorrelated and uncorrelated with [ ]x n .  We will initially assume that the 'sig  and 'siρ  

are known, and later consider the possibility of estimating these quantities from the data 

if they are unknown. 
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5.2 Estimating the Basic Signal, [ ]x n , from Observations, [ ]'six n  

For the first technique to be considered later we require an estimate, ˆ[ ]x n , of 

[ ]x n .  We will choose to seek an estimate of the following form (weighted average):  

 *

1

ˆ[ ] [ ], 0,1, , 2
C

i i
i

x n w x n n N M
=

= = + −∑ ⋯  (5.2) 

where the 'siw  are complex constants.  We may also write 

 ˆ[ ] [ ]Hx n w x n= ɶ ɶ  (5.3) 

where 

 

1

2

C

w

w
w

w

 
 
 =
 
 
  

ɶ
⋮

 (5.4) 

and 

 

1

2

[ ]

[ ]
[ ]

[ ]C

x n

x n
x n

x n

 
 
 =
 
 
  

ɶ
⋮

 (5.5) 

We may also write 
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 [ ] [ ] [ ]x n gx n nυ= +ɶ ɶ ɶ  (5.6) 

where 

 

1

2

C

g

g
g

g

 
 
 =
 
 
  

ɶ
⋮

 (5.7) 

and 

 

1

2

[ ]

[ ]
[ ]

[ ]C

n

n
n

n

υ
υ

υ

υ

 
 
 =
 
 
  

ɶ
⋮

 (5.8) 

Thus 

 ˆ[ ] [ ] [ ]H Hx n w gx n w nυ= +ɶ ɶ ɶ ɶ  (5.9) 

In order to ensure that ˆ[ ]x n  will be equal to [ ]x n  in the absence of noise, and is thus 

properly scaled, we require that 

 1Hw g =ɶ ɶ  (5.10) 

Then Eqn. (5.8) becomes 

 ˆ[ ] [ ] [ ]Hx n x n w nυ= + ɶ ɶ  (5.11) 
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We will now determine the optimal wɶ , that is, the one that minimizes the energy 

in [ ]Hw nυɶ ɶ .   We thus choose  

 
22

0

[ ]
N M

H
w

n

J w nυ
+ −

=

= ∑ ɶ ɶ  

 
2

0

[ ] [ ]
N M

H H

n

w n n wυ υ
+ −

=

= ∑ ɶ ɶ ɶ ɶ  

 
2

0

[ ] [ ]
N M

H H
w

n

J w n n wυ υ
+ −

=

 =  
 
∑ɶ ɶ ɶ ɶ  (5.12) 

Since the [ ]'si nυ  are mutually uncorrelated, the off-diagonal terms of [ ] [ ]Hn nυ υɶ ɶ   will 

sum to zero (approximately) and the diagonal terms will sum (approximately) to 2
iρ , 

respectively, provided that N M+  is reasonably large.  Thus, wJ  becomes, at least 

approximately 

 H
w wJ w R w= ɶ ɶ  (5.13) 

where 

 

2
1

2
2

2

0 0

0 0

0 0

w

C

R

ρ
ρ

ρ

 
 
 =
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (5.14) 
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wJ  in Eqn. (5.13) is thus to be minimized subject to Eqn. (5.10).  This has solution (see 

Appendix Sec. A.1) 

 
1

1
w

H
w

R g
w

g R g

−

−=
ɶ

ɶ
ɶ ɶ

 (5.15) 

thus providing the optimum weight vector.  In the case where 2 2, 1,2, ,i i Cρ ρ= = ⋯ , 

that is, in the case of equal noise variances, Eqn. (5.15) simplifies to  

 
H

g
w

g g
=
ɶ

ɶ
ɶ ɶ

 (5.16) 

or 

 
2

1

, 1,2, ,i
i C

j
j

g
w i C

g
=

= =
∑

⋯  (5.17) 

5.3 Estimating the 2D Spectrum, ( , )S σ ω  

We now consider two approaches to estimating ( , )S σ ω  in the case of multiple 

observations. 

5.3.1 Weighted Signal Averaging 

Here we use Eqn. (5.3) with the weights given by Eqn. (5.15) to obtain the 

estimate 
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1

1

[ ]
ˆ[ ]

H
w

H
w

g R x n
x n

g R g

−

−=
ɶ ɶ

ɶ ɶ
 (5.18) 

of [ ]x n .  Then we simply replace [ ]x n   by ˆ[ ]x n   in any of the methods in Chapter 4 for 

determining ( , )S σ ω . 

5.3.2 Weighted Spectrum Averaging 

In this case, we first apply any of the methods of Chapter 4 to obtain the spectrum 

( , )iS σ ω  of  [ ], 1,2, ,ix n i C= ⋯ .   We then form the weighted average spectrum 

 *

1

ˆ( , ) ( , )
C

i i
i

S w Sσ ω σ ω
=

=∑  (5.19) 

at each value of  and σ ω  under consideration.  If we were to use the 'siw  from Eqn. 

(5.15) and if the spectrum operator {}⋅S  were linear, then Eqn. (5.19) would produce the 

same spectrum as that obtained by the weighted signal averaging method.   However, 

{}⋅S  is not a linear operator.  (Although { } { }[ ] [ ]cx n c x n=S S ,  

{ } { } { }1 2 1 2[ ] [ ] [ ] [ ]x n x n x n x n+ ≠ +S S S .)   It is therefore not clear what values to choose 

for the 'siw  in Eqn. (5.19) but those of Eqn. (5.15) would seem to be reasonable.  It is 

noted that this method requires C  spectrum determinations, and is thus considerably 

more ( C  times more) computationally intensive than the weighted signal averaging 

method, which requires only one spectrum determination. 
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5.4 Estimating Channel Gains, 'sig , from Observed Data 

Thus far we have assumed that the 'sig  (required in each of the methods for 

determining the spectrum) are known.  In situations where this is not the case we may use 

the observed data to obtain estimates of the 'sig  to use in determining the spectrum.  

Unfortunately, it is clearly impossible to determine the 'sig  in an absolute sense, since we 

do not know [ ]x n .   However, we may estimate the 'sig  in a relative sense, i.e., within a 

multiplicative constant. 

From Eqn. (5.1), we have 

1 1
[ ] [ ] [ ], 0,1, , , 0,1, , 2i i

i i

x n x n n i C n N M
g g

υ= + = = + −⋯ ⋯   (5.20) 

Thus 
1

[ ], 1,2, ,i
i

x n i C
g

= ⋯  may all be viewed as estimates of [ ]x n .  In the absence of 

noise, we would thus have 

 
1 1

[ ] [ ]j i
j i

x n x n
g g

=  (5.21) 

or 

 [ ] [ ]i j j ig x n g x n=  (5.22) 
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for all combinations of  and i j .   We will thus attempt to find a set of 'sig , 1,2, ,i C= ⋯ , 

so as to minimize 

 
22

0 1 1

[ ] [ ]
N M C C

g
i j j i

n j i
i j

J g x n g x n
+ −

= = =
≠

= −∑ ∑∑  (5.23) 

Obviously 0, 1,2, ,ig i C= = ⋯ , minimizes gJ , but this is clearly unsuitable for our 

purposes.   We will therefore, somewhat arbitrarily, impose the additional restriction that  

 1 1Hg =ɶ  (5.24) 

where gɶ  is given by Eqn. (5.7) and where 

 

1

1
1

1

 
 
 =
 
 
 

⋮
 (5.25) 

The 'sig  thus obtained will be estimates (arbitrarily summing to one) of the true 'sig , to 

within a multiplicative constant.   To carry out the minimization process we must find 

g

k

J

g

∂
∂

 for each k , 1,2, ,k C= ⋯ .  We can simplify this process for a specific k  by looking 

at only the terms of gJ  that contain kg .  These terms are given by 
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This is of the form of Eqn. (4.22), so by an analogous procedure to that which produced 

Eqn. (4.29), we have 
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[ ] [ ] [ ] 0
N M C C

i k k i i
n i i
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+ −

= = =
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or 
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or 
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where 

 
2

*

0

[ ] [ ]
N M

ij i j
n

r x n x n
+ −

=

= ∑  (5.30) 

Defining 

 
1

C

g ii
i

r r
=

=∑  (5.31) 

Eqn. (5.29) may be rewritten as  

 
1

( ) 0
C

i ki k kk g
i
i k

g r g r r
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≠

+ − =∑  (5.32) 

 

Combining Eqn.  (5.32) for all 1,2, ,k C= ⋯ , we have 

 0gR g =ɶ  (5.33) 

where  
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We thus want to choose gɶ  so as to make gR gɶ  as close as possible, in some sense, to 

zero, subject to 1 1Hg =ɶ .  We will choose therefore to minimize 

 H H
g g gJ g R R g= ɶ ɶ  (5.35) 

subject to 

 1 1Hg =ɶ  (5.36) 

This has solution (see Appendix Sec. A.1) 

 
( )

( )

1

1

1
ˆ

1 1

H
g g

H H
g g

R R
g

R R

−

−=ɶ  (5.37) 

which provides our estimate of ˆ  of g gɶ ɶ , to within a multiplicative constant. 

5.5 Estimating Noise Variances, 'siρ , from Observed Data 

Just as in the case of 'sig , we have thus far assumed that the 'siρ  are known.  If 

the 'siρ  are not known, we may be able to obtain estimates of them, provided that we 

have sufficient data and provided that no signal components have zero damping.  To 

accomplish this, we assume that we have observations [ ], 1,2, ,ix n i C= ⋯ ,  for 

0,1, , 1fn N= −⋯  where 1fN N M≥ + − .  We further assume that for n  in the range 

, 1, , 1s s fn N N N= + −⋯ , all signal components are sufficiently small so as to be 
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negligible.  Then in this range we will have [ ] [ ]i ix n nυ≈  and we may thus form the 

estimates 
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22 1
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= =
− ∑ ⋯  (5.38) 

5.6 Summary 

In this chapter we have introduced two methods for performing two-dimensional 

spectral estimation from multiple-channel data: weighted signal averaging and weighted 

spectrum averaging.  Both techniques offer simple and effective means of creating a 

single combined spectral estimate from multiple-channel data.  We also introduced a 

method to optimally estimate the relative channel gains from observed data.  From a 

clinical standpoint with respect to MRS, these methods greatly simplify interpretation of 

results from multiple-channel data. 
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C h a p t e r  6  

6 Evaluation of 2D Spectral Estimation Methods  

6.1 Introduction 

In this chapter we evaluate the proposed new algorithms introduced in Chapters 4 

and 5 through an extensive series of simulations in MATLAB ® on known data sets.  By 

performing these simulations we can measure and quantify the performance of the new 

two-dimensional spectral estimation techniques under a controlled environment.  The 

types of input signals used [76] and the corresponding SNRs will parallel those typically 

found in MRS data; however the signals used[77] and the techniques used to evaluate the 

results are general purpose in nature and not unique to MRS applications. 

6.2 Definitions 

Several definitions are relevant to interpreting the results of the simulations done 

in this chapter.   Two-dimensional spectral estimation techniques are used to estimate 

both frequency and damping.  As such, it serves as a convenience to consider a three-

dimensional coordinate system such as the one shown in Fig. 31 where one axis is 

defined as the frequency axis, ω , another axis represents damping, σ , and the third axis 

represents the magnitude of the spectral estimate, ( , )S σ ω . 

For a simple input signal, [ ]x n , consisting of  a single damped sinusoid, one 

would expect the two-dimensional surface representing the magnitude of the spectral 
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estimate, ( , )S σ ω , to contain a single “peak” corresponding to the frequency (ω ) and 

damping factor (σ ) of the input signal.    

6.2.1 Peak Spectrum 

When performing two-dimensional spectral estimates in the presence of noise, the 

surface representing the magnitude of the spectral estimate, ( , )S σ ω , in the ( , )σ ω  plane 

may contain widened peaks making it difficult to distinguish with great accuracy where 

the peak occurs.   Therefore, for convenience, we may greatly simplify the process of 

determining where a peak occurs by developing a peak-enhancement utility to find peaks 

and represent them as Dirac delta functions, ignoring other data values by representing 

them as zero.  In this manner, a series of impulse functions similar to the ideal ones 

shown in Fig. 31 can be visualized to represent peak occurrences.  It is noted that 

potential peaks occurring at the largest value of σ  analyzed are not included since it 

cannot be certain that they are indeed peaks. 

6.2.2 Noise Threshold for Peak Spectrum 

In some cases we may wish to ignore very small peaks arising primarily from 

noise.  In this case we can define a noise threshold, below which all peaks are ignored.  

This threshold may be based on a percentage of the maximum peak found in a given 

surface, or it may represent a pre-defined noise floor.  If a peak is detected, but falls 

below this noise threshold, we simply ignore it.   
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6.2.3 Projected Peak Spectrum 

From the peak spectrum defined in Sec. 6.2.1 we may wish to project the 

maximum peak found along the σ  axis onto the ω  axis creating a projected peak 

spectrum.  This is analogous to the spectrum obtained from a one-dimensional Fourier 

transform in that it contains only frequency information about the signal.   

6.2.4 Simple Example 

Using the signal defined by Eqn. (4.98) and Table 2 with an 10 dBSNR= , we 

now provide illustrative examples typical of the results we will examine in more detail in 

the simulations carried out in this chapter.  For the conventional 2D Capon method with 

512N =  and 128M = , we obtain the estimated spectrum ( , )( , ) ( , ) jS A eθ σ ωσ ω σ ω= .  Fig. 

36 is a 3-dimensional plot of ( , )S σ ω  vs. σ  and ω  while Fig. 39 shows the same 

surface with peak-enhancement using a noise threshold of zero.   Fig. 37  is a contour plot 

of ( , )S σ ω  vs. σ  and ω  while Fig. 40 shows the same contour with peak-enhancement.  

Fig. 38 is a projection of ( , )S σ ω  along σ  onto the ω  axis and Fig. 41 shows a similar 

plot with peak-enhancement.  Fig. 42 is also provided to illustrate how the standard 

Fourier transform of this signal compares to the other techniques. 
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Fig. 36. Raw 2D Capon spectrum surface. 
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Fig. 37. Raw 2D Capon spectrum contour. 
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Fig. 38. Raw 2D Capon spectrum projection. 
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Fig. 39. Peak-enhanced 2D Capon spectrum surface. 
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Fig. 40. Peak-enhanced 2D Capon spectrum contour. 
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Fig. 41. Peak-enhanced 2D Capon spectrum projection. 
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Fig. 42. Fourier transform. 

6.3 Simulation Procedure 

All simulations are implemented using MATLAB® version 6.5 on standard 

Microsoft Windows® based personal computers (PCs).  Each resulting data set is 

analyzed to determine how many expected peaks were detected, and also how many false 

peaks were detected.    If an expected peak is detected, the root-mean-square (RMS) error 

of the magnitude of this peak and the RMS error of the location of the peak in the ( , )σ ω  

plane are computed. 
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6.3.1 Peak Analysis 

An important aspect of the simulation strategy is to define a mechanism that can 

be used systematically to analyze the results, and quantify with accuracy and precision 

the performance of the particular algorithm being tested.   A robust procedure is required 

to determine the location of peaks in the ( , )σ ω  plane.   Therefore, the following peak 

detection method is proposed.   The peak identification process determines that a peak 

exists if its estimated magnitude is greater than or equal to the estimated magnitude at all 

of the 3, 5, or 8 adjacent grid points.   

In the simulations we will refer to those peaks known to exist in the simulated 

signal as expected peaks.  These have known (expected) magnitude A , phase θ , 

damping σ , and frequency ω .   All peaks identified by the estimation technique and 

peak picking process will be referred to as detected peaks.  A detected peak is considered 

as a true peak if its ω  matches that of some expected peak (i.e., lies on the same ω  grid 

line).  All remaining detected peaks are classified as false peaks. 

For simplicity, we evaluate only one peak from each ω  grid line.  In the case of 

multiple peaks on the same ω  grid line, we use the peak with the maximum value, or in 

the case of two or more equal peaks on the same ω  grid line, we use the peak closest to 

0σ = .  Furthermore, “peaks” detected on the maximum σ  grid line are ignored since it 

cannot be assured that these are indeed peaks. 
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6.3.2 Figures of Merit 

Each simulation is evaluated to quantify the accuracy and effectiveness of the 

spectral estimation technique in finding the expected peaks and estimating their 

characteristics.  The four figures of merit used for this evaluation are listed as follows. 

6.3.2.1 Percent Missed Peaks 

# #
% 100%

#

of expected peaks of true peaks
Missed Peaks

of expected peaks

 −= × 
 

  (6.1) 

6.3.2.2 Percent False Peaks 

 
#

% 100%
#

of false peaks
False Peaks

of possible peaks

 
= × 
 

  (6.2) 

where # # #of false peaks of detected peaks of true peaks= −  and 

# #of possible peaks of grid linesω= . 

6.3.2.3 Relative RMS Magnitude Error 

( )
( )

2

2

1

#

magnitude
Relative RMS Magnitude Error

of true peaks expected magnitude

∆
= ∑   (6.3) 

where magnitude estimated magnitude expected magnitude∆ = −                                    

and where the sum is taken over all true peaks. 
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6.3.2.4 Relative RMS Damping (σ ) Error 

( )
( )

2

2

1

#

damping
Relative RMS Damping Error

of true peaks maximum damping

∆
= ∑   (6.4) 

where damping estimated damping expected damping∆ = − , 

maximumdamping = valueof maximum grid lineσ ,                                                       

and where the sum is taken over all true peaks. 

6.3.3 Test Signals 

Three signals comprised of various known frequency and damping components 

will be used for the simulations in this chapter.  These were chosen to provide a variety 

with regard to the number of signal components, closeness of peaks, peak amplitude 

ratios, etc.  Parameters for these test signals are provided in Table 3-Table 5 and  the test 

signals are shown in Fig. 43-Fig. 45. 

6.3.3.1 Test Signal I 
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ω  σ  A  θ  
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-0.004 0.25 0 

 

Table 3. Parameters for test signal I. 

 

Fig. 43. Test signal I. 
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6.3.3.2 Test Signal II 
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Table 4. Parameters for test signal II. 
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Fig. 44. Test signal II. 
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6.3.3.3 Test Signal III 
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ω  σ  A  θ  
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Table 5. Parameters for test signal III. 
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Fig. 45. Test signal III. 

6.3.4 SNR Considerations 

An appropriate amount of noise is added to each of the test signals to achieve the 

SNR desired for the particular simulation.  The additive noise is white, Gaussian, and 

zero-mean.  The details of how SNR is computed for these simulations are provided in 

the Appendix in Sec. A.3.   For multiple-channel simulations, it is possible that the 

channels being simulated may contain different SNR values.  For the analysis of these 
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simulations, we will consider the maximum SNR of all channels as the parameter of 

interest. 

6.3.5 Comment on Grid Points 

Empirical evidence suggests that simulated signal components not occurring at a 

precise ω  grid point may be difficult if not impossible to detect.  Therefore, all 

simulations being evaluated contain signal components that occur at frequencies 

corresponding to grid point values.  Fortunately, MRS data sets do not appear to have 

similar limitations. 

6.3.6 Simulations 

A series of 14 different simulation sets was carried out.   The results of each set 

were stored to a file, and plotted for ease of interpretation.  These simulations are related 

to measuring the accuracy and efficiency of peak identification using the new techniques 

introduced in Chapter 4 and Chapter 5.    For each simulation 512N = , the number of 

frequency (ω ) grid points is 256Nω = , the number of damping (σ ) grid points 

is 40Nσ = , and the threshold below which all peaks are ignored is 

0.025peak threshold=  (10% of the smallest signal component in each of the signals 

studied).  In every case the SNR was calculated based on 768fN = , regardless of the 

length M  of the filter (see Appendix Sec. A.3). 
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6.3.6.1 Single-Channel Weighted 2D Spectral Estimation  

Nine simulations are related to measuring the accuracy and efficiency of peak 

identification using the weighted 2D Capon method, the weighted 2D APES method, and 

the combined weighted 2D APES/2D Capon method introduced in Chapter 4.  Each of 

these simulations used the three test signals, with 10 similar but different noise signals 

added at the appropriate SNR.   Each simulation pass thus consisted of 30 separate 

spectrum determinations using the particular method being studied.   For each of the 30 

runs the figures of merit as discussed in Sec. 6.3.2 were calculated and then averaged 

together to form a combined representation which is then plotted. 

6.3.6.2 Multiple-Channel Weighted 2D Spectral Estimation 

Five simulation sets are related to measuring the accuracy and efficiency of peak 

identification using the weighted signal averaging method and the weighted spectrum 

averaging method introduced in Chapter 5 .  Each of these simulations used the third test 

signal, defined in Eqn. (6.7), with 10 similar but different noise signals added at the 

appropriate SNR.   Each simulation pass thus consisted of 10 separate spectrum 

determinations.   In each case the figures of merit as discussed in Sec. 6.3.2 were 

calculated and then averaged together to form a combined representation which is then 

plotted. 

6.4 Simulation Results 

The results of the simulations carried out for single-channel weighted 2D spectral 

estimation are shown in Fig. 46 - Fig. 55.  The results of the simulations carried out for 
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multiple-channel weighted 2D spectral estimation are shown in  Fig. 56 -Fig. 60.  In some 

situations it may not be possible to compute RMS error terms as specified by Eqn. (6.3) 

and Eqn. (6.4) since no peaks were detected.  In this case, the data points are not 

represented on the plots.   

In all cases the four figures of merit are plotted versus SNR where SNR varies 

from –18 dB to 48 dB in increments of 6 dB.  For convenience, the parameters  and α β  

are denoted as 1 2α α σ α= +  and 1 2β β σ β= + .  In the figure legends and captions any of 

the parameter values 1 2 1 2, , , and α α β β  not shown are zero.  The specifications for the 

single-channel simulations and corresponding figures are given in Table 6. 

Fig. Method K  M  α  β  γ  

Fig. 46 weighted 2D Capon N  variable 0 0  

Fig. 47 weighted 2D Capon N  variable 
2

σ−  0  

Fig. 48 weighted 2D Capon 1 variable  0  
Fig. 49 weighted 2D Capon N  128 variable variable  

Fig. 50 weighted 2D Capon N  128 variable variable  
Fig. 51 weighted 2D Capon 1 128  variable  
Fig. 52 weighted 2D APES  variable  0  
Fig. 53 variable variable 128 variable 0  
Fig. 54 combined weighted 

2D APES / 2D Capon 
 128  0 variable 

Fig. 55 weighted 2D APES  128  variable  
  

Table 6. Single-channel simulation specifications. 
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It is recalled that weighted 2D Capon with , 0, and 0K N α β= = =  reduces to 

conventional 2D Capon and weighted 2D APES with 0β =  reduces to conventional 2D 

APES. 

All of the multiple-channel simulations use conventional 2D Capon with 

128M = .  Both signal averaging and spectrum averaging are studied for four channels 

( )4C = .  For comparison, the corresponding single-channel case ( )1C =  is also shown.  

The specifications for the multiple-channel simulations and the corresponding figures are 

given in Table 7.   

Fig. SNR 
Channel 1 

SNR 
Channels 2-4 

Channel Gains 

Fig. 56 value shown value shown ideal 

Fig. 57 value shown value shown – 6 dB ideal 
Fig. 58 value shown value shown – 12 dB ideal 
Fig. 59 value shown value shown – 18 dB ideal 

Fig. 60 value shown value shown ideal and 
estimated 

 

Table 7. Multiple-channel simulation specifications. 
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Fig. 46. Weighted 2D Capon ( )K N=  for various 'sM  (conventional 2D 

Capon). 
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Fig. 47. Weighted 2D Capon ( ), 2K N σα= = −  for various 'sM . 



  128 

 

 

Fig. 48. Weighted 2D Capon ( )1K =  for various 'sM . 
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Fig. 49. Weighted 2D Capon ( ), 128K N M= =  for various 'sα  and 'sβ . 
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Fig. 50. Weighted 2D Capon ( ), 128K N M= =  for various 'sα  and 'sβ . 
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Fig. 51. Weighted 2D Capon ( )1, 128K M= =  for various 'sβ . 
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Fig. 52. Weighted 2D APES for various 'sM  (conventional 2D APES). 
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Fig. 53. Various weighted 2D spectral estimators for 128M = . 
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Fig. 54. Combined weighted 2D APES / 2D Capon ( )128M =  for 

various 'sγ . 
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Fig. 55. Weighted 2D APES ( )128M = for various 'sβ . 
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Fig. 56. Multiple-channel conventional 2D Capon (equal SNR’s). 
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Fig. 57. Multiple-channel conventional 2D Capon (SNR’s reduced by 6 dB 
for three channels). 
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Fig. 58. Multiple-channel conventional 2D Capon (SNR’s reduced by 12 dB 
for three channels). 
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Fig. 59. Multiple-channel conventional 2D Capon (SNR’s reduced by 18 dB 
for three channels). 
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Fig. 60. Multiple-channel conventional 2D Capon (equal SNR’s – ideal gains 
and estimated gains). 
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6.5 Peak Identification Quality Measure 

The simulations shown in Fig. 46-Fig. 60 demonstrate how certain parameter 

choices affect the figures of merit selected for study.   In some cases, it is observed that 

parameter choices that yield a decrease in  % missed peaks will cause an increase in % 

false peaks.   To better understand  this influence, and to measure the quality of a 

particular set of parameter choices a peak identification quality measure (PIQM) is 

defined: 

( ) ( )100% % 100% %

100% 100%

missed peaks false peaks
PIQM

− −   
= ×   
   

   (6.8) 

This represents the fraction of known peaks detected multiplied by the fraction of known 

"non-peaks" not detected.  The value of PIQM  ranges from 0 to 1, with 1PIQM =  

indicating perfect peak identification with no missed peaks and no false peaks.  

Conversely, for the case of  100 % missed peaks and 100 % false peaks, 0PIQM = .   

It is useful to plot PIQM  vs. SNR to compare the performance of various 

parameter choices in terms of their peak identification capabilities.   It is also useful to 

compare the total area under the PIQM  curve to gauge the performance over the entire 

range of SNRs.  A plot of PIQM  vs. SNR for selected simulations shown in Fig. 49-Fig. 

51 is shown in Fig. 61.  
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Fig. 61. PIQM plot vs. SNR for 2D Capon and selected weighted 2D Capon 
methods with 128M = . 

6.6 Computation Time Results 

We will now extend our evaluation to consider the timing performance of the new 

two-dimensional spectral estimation techniques, since this is also a consideration when 

deciding how to best implement two-dimensional spectral estimation for MRS.  The goal 

of the timing simulations will be to determine the relative timing performance of the 

various weighted 2D Capon and the weighted 2D APES techniques as a function of filter 

size (M ). 
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For the timing simulations a Dell Inspiron® 1100  laptop computer, with an Intel 

Celeron®  CPU with a clock rate of 2 GHz, running Microsoft Windows XP® version 

2002, configured with 384 Mbytes of RAM was used.  The algorithms were implemented 

in MATAB ® 6.5, release 13.  We used the test signal defined by Eqn. (6.7) with 

18SNR=  dB and 5 noise instances for filter sizes { }32,64,128,256M =  and the 

algorithm parameters shown in Table 8.   Results were averaged over 5 runs and then 

plotted in Fig. 62 and Fig. 63. 

Algorithm 
1α  2α  1β  2β  

Weighted 2D Capon (K N= ) 0 0 0 0 
Weighted 2D Capon (K N= ) 0 0 0.001 0 
Weighted 2D Capon (K N= ) -0.5 0 0 0 
Weighted 2D Capon (K N= ) -0.5 0 0.001 0 
Weighted 2D Capon ( 1K = )   0 0 
Weighted 2D Capon ( 1K = )   0.001 0 

Combined weighted 
2D APES / 2D Capon ( 0.5γ = ) 

  0 0 

Combined weighted 
2D APES / 2D Capon ( 0.5γ = ) 

  0.001 0 

Combined weighted 
2D APES / 2D Capon ( 0.5γ = ) 

  -0.5 0 

 

Table 8. Parameters for timing simulation. 

It should be noted that the particular choice of parameter values does not 

influence computation time (except in those cases where one of the values is –0.5).  

Rather, the results depend on whether the parameters are constant or functions of σ  (see 

Table 1 in Chapter 4).  It  is also noted that in Fig. 62 the case K N= ,  2α σ≠ − , 
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constantβ =  corresponds, in terms of computation time, to conventional 2D Capon. 

 

Fig. 62. Weighted 2D Capon timing vs. filter length, M . 
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Fig. 63. Combined weighted 2D APES / 2D Capon timing vs. filter length, M . 

In analyzing the data for the weighted 2D Capon method, it has been determined 

that the two new techniques designed with computational time as a consideration ( 1K =  

and , 2K N σα= = − ) produce a reduction in computation time, relative to conventional 

2D Capon, ranging from about 35% for 32M =  to about 17% for 256M = .  On the 

other hand, the remaining three new techniques require an increase in computation time 

ranging from about 0-30% for 32M =  to about 86-107% for 256M = .  For the 

combined weighted 2D APES / 2D Capon method (including conventional 2D APES) all 

techniques require roughly the same computation time. 
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6.7 Discussion of Results 

The simulations just completed provide some truly interesting findings.  The 

signals used for the simulations, with appropriately scaled noise provide a controlled 

environment from which we can measure how well the new proposed algorithms 

perform.   We wish to infer from the results of the simulations how these algorithms 

might perform on MRS data sets; therefore the analysis of these simulations holds great 

significance.  We will now briefly review the simulations represented by Fig. 46 - Fig. 

63. 

6.7.1 Observations from Single-Channel Simulations 

Certain conclusions can be drawn from the simulations.  These relate to the 

various performance trade-offs with respect to the figures of merit considered (see Eqn. 

(6.1) – Eqn.(6.4)):  % missed peaks, % false peaks, relative RMS magnitude error, 

relative RMS damping error, and execution time. 

Fig. 46, Fig. 47, Fig. 48, and Fig. 52 indicate the effect of filter length, M , on 

performance: 

• Fig. 46. Weighted 2D Capon ( )K N=  for various 'sM  (conventional 2D Capon). 

• Fig. 47. Weighted 2D Capon ( ), 2K N σα= = −  for various 'sM . 

• Fig. 48. Weighted 2D Capon ( )1K =  for various 'sM . 

• Fig. 52. Weighted 2D APES for various 'sM  (conventional 2D APES). 
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For all four of these methods, in general: 

1. As M  increases, % missed peaks and relative RMS damping error 

decrease. 

2. As M increases, % false peaks and relative RMS magnitude error first 

decrease and then increase, suggesting an optimal mid-range value for M  

with respect to these measures. 

It is also observed that when using weighted 2D Capon( )K N= , , 02
σα β= − = ,         

false peaks are virtually completely eliminated.  In addition, for conventional 2D APES, 

other studies [2] have shown that relative RMS magnitude error may be significantly 

reduced if better estimates for damping are available from some other method, i.e., 2D 

Capon. 

Fig. 53 compares these four methods for 128M = .  The results here should be 

considered in conjunction with the computation time results. 

The three 2D Capon methods generally perform better than the 2D APES method, 

and require significantly less computation time.  However, in light of the previous 

comment regarding the use of 2D APES along with better damping estimates, 2D APES 

may be appropriate if reduced relative RMS magnitude error is critical.  The two new 

weighted 2D Capon methods require less computation time than conventional 2D Capon.  
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In addition these methods produce considerably fewer false peaks.  With regard to the 

other measures they perform either slightly better, slightly worse, or comparable to the 

2D Capon method. 

Fig. 49 and Fig. 50 indicate the effect of the parameters of α  and β  on the 

performance of the weighted 2D Capon ( )K N=  method for 128M = .   Fig. 49 shows 

that certain parameter choices can result in a significant reduction in % missed peaks, but 

at the expense of increasing % false peaks and relative RMS magnitude error.   Fig. 50 

shows that certain parameter choices can lead to one or more of the following:  reduced          

% false peaks, reduced relative RMS magnitude error for low SNRs, reduced relative 

RMS magnitude error for high SNRs, and reduced relative RMS damping error for low 

SNRs. 

Fig. 51 indicates the effect of the parameter β  on the performance of the 

weighted 2D Capon ( )1K =  method for 128M = .  Here, it is shown that certain 

parameter choices can result in significant reduction in % missed peaks, but at the 

expense of increased % false peaks and greater relative RMS magnitude error. 

Fig. 54 indicates the effect of the parameter γ  on the performance of the 

combined weighted 2D APES / 2D Capon method for 0 and 128B M= = .  As expected, 

as γ  varies from 0 to 1, the performance measures generally show a gradual transition 

from those of the conventional 2D Capon method to those of the conventional 2D APES 
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method.   However, with respect to relative RMS magnitude error at high SNR’s, 

intermediate 'sγ  outperform both 0γ =  and 1γ = , suggesting an optimal mid-range 

value for γ  in this regard. 

Fig. 55 indicates the effect of parameter β  on the performance of the weighted 

2D APES method for  128M = .   It is noted that certain parameter choices can result in a 

significant reduction in % false peaks and/or relative RMS magnitude error. 

Fig. 61 shows that for the weighted 2D Capon method with K=N certain 

parameter combinations lead to improved peak identification as measured by the PIQM.  

In addition, weighted 2D Capon with K=1 outperforms conventional 2D Capon, again as 

measured by the PIQM. 

In summary, it is seen that no one method is best in all respects.  The choice of 

which method to use in a specific application is thus dictated by the most critical aspect 

of that application, for example, the ability to find as many true peaks as possible, the 

accuracy of the magnitude estimates of those peaks, or computation time. 

6.7.2 Observations from Multiple-Channel Simulations 

With respect to computation time, signal averaging requires essentially the same 

amount of time as would be required by the same 2D estimation method for one channel.  

On the other hand, spectrum averaging requires C  times as much computation time as 

signal averaging. 
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Fig. 56  (equal noise variances on all channels) shows that signal averaging 

outperforms single-channel processing with respect to all measures, as would be 

expected.  On the other hand, spectrum averaging is no better than single-channel 

processing, with one exception:  with respect to % false peaks, spectrum averaging 

outperforms both signal averaging and single-channel processing.  Thus, because of its 

poor performance and greater computation time, spectrum averaging would not be 

appropriate unless the elimination of false peaks was the most critical requirement of the 

given application.    

Fig. 57 - Fig. 59 show that for unequal channel noise variances (with one 

“dominant” channel having a larger SNR than the rest) signal averaging outperforms 

spectrum averaging with respect to all measures.  Furthermore, as the dominant channel 

becomes “more dominant,” the performance of both signal averaging and spectrum 

averaging gradually converge to the performance of the single channel processing. 

Fig. 60 shows that the use of estimated channel gains instead of ideal channel 

gains leads to virtually no performance degradation, with one exception:  for low SNR’s 

(below about 10 dB) the relative RMS magnitude error is greater using estimated channel 

gains. 

6.7.3 Observations from Computational Time Simulations 

Computational time has been examined in Fig. 62 and Fig. 63.  For all proposed 

methods examined,  the filter size, M , is quite obviously the single most important 
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parameter affecting execution time.  Another major point to note is that the weighted 2D 

Capon technique is much faster than the weighted 2D APES technique or the combined 

weighted 2D APES / 2D Capon technique.  For the weighted 2D Capon technique, 

several computational efficiencies have been measured, and based on performance 

criteria established for the particular 2D spectral estimation data set, these techniques 

may provide acceptable performance with increased speed. 

6.8 Summary 

In this chapter we have performed a series of extensive simulations on test signals 

consisting of mixtures of damped sinusoids with different SNRs.  In this way we were 

able to provide precisely controlled inputs, and evaluate the accuracy and efficiency of 

the new 2D spectral estimation techniques that have been proposed in Chapters 4 and 5.  

We have shown through these simulations that the proposed techniques provide improved 

performance when compared to standard 2D Capon and 2D APES under certain 

conditions.  In the next chapter we will apply these new techniques to MRS signal 

processing. 
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C h a p t e r  7  

7 2D Spectral Estimation Methods Applied to MRS Data  

Having completed a thorough introduction in Chapter 4 of the weighted 2D 

Capon, weighted 2D APES, and combined weighted 2D APES / 2D Capon methods; and 

the introduction in Chapter 5 of the new multiple-channel 2D spectral estimation 

techniques utilizing spectrum averaging and signal averaging;  followed by an extensive 

set of simulations in Chapter 6 demonstrating the effectiveness of these new methods, we 

now apply these techniques to MRS signal processing.   In this chapter we provide 

several examples of the new processing techniques applied to MRS data acquired from 

phantoms containing solutions of known concentrations of metabolites, and to a limited 

set of in vivo data sets acquired from human volunteers.  Through these examples, we 

provide an evaluation of the performance of various 2D spectral estimation techniques 

from a variety of viewpoints. 

MRS provides a noninvasive means of determining chemical information from a 

region of interest, often located in the human brain.   It has continued to grow as a 

successful clinical application[78]-[85] and has become vitally important for the 

diagnosis, detection and effective management of a number of diseases.   The 

combination of MRI and MRS has almost eliminated the need to perform exploratory 

surgery as a means of clinical diagnosis.  The techniques proposed in Chapter 4 and 

Chapter 5 hold great promise to further improve MRS as a clinical application.   
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The reproducibility and accuracy of clinical MRS examinations has been the 

subject of several studies[86]-[88].  One parameter of great interest to the clinician is T2
*, 

the effective decay rate of transverse magnetization.   Changes in T2
* provide useful 

diagnostic information[89]-[92] for a number of diseases and also provide some 

indication of functional activity.  

7.1 Conventional 2D Capon and 2D APES Methods Applied to MRS Phantom Data 

Conventional 2D Capon and conventional 2D APES provide improved spectral 

estimates compared to those provided from conventional MRS absorption spectra via 

Fourier transformation.  Spectral peaks that are close in frequency are more easily 

separated using conventional 2D Capon and conventional 2D APES.  The accuracy of 

these spectral estimates is improved as well since, unlike one-dimensional methods based 

on the Fourier transform, true amplitudes are not masked by the effect of damping.   

The damping information provided by conventional 2D Capon and conventional 

2D APES may be of significant clinical utility.  Hurd, et al., have studied T2
* 

characteristics for a number of metabolites in the human brain[86].   The spectral 

estimates provided by conventional 2D Capon and conventional 2D APES provide a 

means of estimating T2
*, the effective decay rate of transverse magnetization, for several 

metabolites of interest[74].    

Empirical results have shown that conventional 2D Capon analysis provides a 

more accurate estimate of frequency and damping since it provides fine resolution to 
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resolve closely spaced peaks, while conventional 2D APES provides a more accurate 

estimate of the amplitude for a given frequency and damping factor [58].   Stoica and 

Sundin propose that using conventional 2D Capon first to find the peaks, then using 

conventional 2D APES to estimate the amplitudes provides benefits compared to using 

just one technique or the other[2].  In Sec. 4.7 we proposed a hybrid technique that 

combines the two methods. 

Conventional 2D Capon and conventional 2D APES can be used to compute two-

dimensional spectral estimates on the same raw data acquired to generate the 

conventional MRS absorption plot shown in Fig. 29.  Fig. 65-Fig. 68 compare various 

plots of a conventional 2D Capon spectrum and a conventional 2D APES spectrum 

computed using 1792, , 40, 0.02
NN N N peak thresholdω σ= = = =  and 256M =  from 

the GE MRS phantom.  

The MRS experiment for this comparison was performed using a GE 1.5T MR 

scanner and a single-channel head coil with PRESS on an 8 cc volume, with a TE of 

35msec and a TR of 1500msec, 2 NEX, 8 reference frames and 16 water-suppressed 

(CHESS) frames.   The total scan time was 1 minute and 18 seconds.   The conventional 

MRS absorption spectrum from the GE MRS phantom for this scan is shown in Fig. 64. 
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Fig. 64. MRS absorption spectrum from GE MRS phantom using single-
channel head coil. 
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Fig. 65.  Conventional 2D Capon (top) and conventional 2D APES (bottom) 
spectra obtained from the GE MRS phantom. 
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Fig. 66.  Conventional 2D Capon (top) and conventional 2D APES (bottom) 
peak-enhanced spectra obtained from the GE MRS phantom. 
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Fig. 67.  Conventional 2D Capon (top) and conventional 2D APES (bottom) 
contour plots obtained from the GE MRS phantom. 
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Fig. 68.  Conventional 2D Capon (top) and conventional 2D APES (bottom) 
maximum peak projections obtained from the GE MRS phantom. 
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It can be seen clearly from Fig. 68 that the conventional 2D Capon method finds 

two peaks that are missed by the conventional 2D APES method.  In addition, the 2D 

Capon method requires considerably less computation time. 

7.2 Weighted 2D Capon Method 

7.2.1 MRS Phantom Data 

Simulations from Chapter 6 showed that weighted 2D Capon analysis performs 

better at finding peaks than standard 2D Capon analysis in certain cases.  In this example, 

we use the phase-corrected, water-suppressed MRS signal with residual water removed 

obtained during an MRS experiment from the GE MRS phantom to compare weighted 

2D Capon analysis with 2
σβ = −  to weighted 2D Capon analysis with 0.004β = , both 

methods using 1792, , 40, 0.02
NN N N peak thresholdω σ= = = =  and 256M = .  The 

MRS experiment for this comparison was the same as that shown in Fig. 64 and 

described in Sec. 7.1.  Fig. 69-Fig. 72 show comparisons of how effective these two 

weighted 2D Capon techniques are on the data acquired from this scan. 
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Fig. 69.  Weighted 2D Capon with 2
σβ = −  (top) and weighted 2D Capon 

with 0.004β =  (bottom) spectra obtained from the GE MRS phantom. 
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Fig. 70.  Weighted 2D Capon with 2
σβ = −  (top) and weighted 2D Capon with 

0.004β =  (bottom) peak-enhanced spectra obtained from the GE MRS phantom. 
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Fig. 71.  Weighted 2D Capon with 2
σβ = −  (top) and weighted 2D Capon 

with 0.004β =  (bottom) contour plots obtained from the GE MRS phantom. 
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Fig. 72.  Weighted 2D Capon with 2
σβ = −  (top) and weighted 2D Capon with 

0.004β =  (bottom) maximum peak projections obtained from the GE MRS phantom. 
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It is seen that in terms of identifying peaks both of these methods perform in a 

similar fashion.   Using 2
σβ = −  requires more than double the computation time than 

using 0.004β = , which requires the same computation time as conventional 2D Capon.  

Comparing the results of conventional 2D Capon and 2D APES from Fig. 68 with the 

weighted 2D Capon methods shown in  Fig. 72 it is seen that the two new weighted 2D 

Capon methods significantly outperform conventional 2D Capon and 2D APES in terms 

of identifying peaks. 

7.2.2 In Vivo Data 

We now compare weighted 2D Capon analysis with 2
σβ = −   to conventional 

2D Capon analysis for an  in vivo MRS data set obtained from the brain of a healthy 

human volunteer.  The MRS experiment for this comparison was performed using a GE 

1.5T MR scanner and a single-channel head coil with PRESS on an 8 cc volume, with a 

TE of 35msec and a TR of 1500msec, 2 NEX, 8 reference frames and 64 water-

suppressed (CHESS) frames.   The total scan time was 3 minutes and 42 seconds.  For the 

comparison, we selected  1792, ,2
NN Nω= =  40, 0.0N peak thresholdσ = =  and 

256M =  for both the weighted 2D Capon analysis and conventional 2D Capon analysis.  

The data set from which spectral estimates were created was the phase-corrected, water-

suppressed MRS signal with residual water removed.  The conventional MRS absorption 

spectrum from the brain of a human volunteer is shown in Fig. 73.  Fig. 74-Fig. 77 show 
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comparisons of how effective these two weighted 2D Capon techniques are on the data 

acquired from this scan. 

 
Fig. 73. MRS absorption spectrum from human volunteer using single-

channel head coil. 
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Fig. 74.  Conventional 2D Capon (top) and weighted 2D Capon 

with 2
σβ = − (bottom) spectra obtained from the brain of a human volunteer. 
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Fig. 75.  Conventional 2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom) 

peak-enhanced spectra obtained from the brain of a human volunteer. 
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Fig. 76.  Conventional 2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom) 

contour plots obtained from the brain of a human volunteer. 
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Fig. 77.  Conventional 2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom) 

maximum peak projections obtained from the brain of a human volunteer. 
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 Using weighted 2D Capon with 2
σβ = −  finds many more peaks than 

conventional 2D Capon, however weighted 2D Capon with 2
σβ = −  requires more than 

double the computation time. 

7.2.3 Weighted 2D Capon Execution Time Considerations for MRS Phantom Data 

One aspect of the clinical utility of MRS is related to the time it takes to acquire 

data from a patient, and then to properly analyze this data.  Because the scan TR for most 

spectroscopy scans is long, anything that can potentially shorten scan time to reduce the 

length of the scan is of vital importance[93].  Additionally, any MRS processing time 

reductions may also provide clinical benefits, especially in the case of an emergency 

when the speed of obtaining an accurate diagnosis may provide a life-saving benefit. 

To study the relationship between processing time and the ability to detect 

spectral peaks, we acquired MRS data from a GE MRS phantom using a single-channel 

head coil with PRESS on an 8 cc volume, with a TE of 35msec and a TR of 1500msec, 2 

NEX, 8 reference frames and 16 water-suppressed (CHESS) frames.   The total scan time 

was 1 minute and 18 seconds.  The MRS experiment for this comparison was the same as 

that shown in Fig. 64 and described in Sec. 7.1.   Using the phase-corrected water-

suppressed MRS data with residual water removed we tested three techniques for filter 

length M  varying from 100 to 400 in increments of 50.  These were conventional 2D 

Capon, weighted 2D Capon  with 1, 0.008K β= = , and weighted 2D Capon with 
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, 0.008K N β= = .  In all cases we used 1024, 2048, 40N N Nω σ= = = , and a peak 

threshold  equal to 5% of the maximum peak detected.  

For the timing measurements, we used a personal computer manufactured by 

Milwaukee PC (Milwaukee, WI, USA) configured with an Intel Pentium III®  CPU with a 

clock rate of 1 GHz, running Microsoft Windows ME® version 4.90.3000, configured 

with 128 Mbytes of RAM.  The algorithms were implemented in MATAB® 5.3, release 

11.1.  Fig. 78 summarizes the results, showing the number of known peaks[2] detected 

versus execution time.  It is seen that both of the new weighted 2D Capon methods 

outperform the conventional 2D Capon method.   Specifically, for a fixed execution time 

the new methods identify more known peaks.  Alternatively, to find a fixed number of 

known peaks the new methods require less execution time. 
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Fig. 78. Effectiveness of peak detection using weighted 2D Capon analysis. 

7.2.4 Performing 2D Spectral Estimation on MRS Phantom Data with no Phase 

Correction 

We will now examine how conventional 2D Capon analysis works on MRS data 

sets that have not been phase-corrected and for which residual water has not been 

removed.  In this example, we acquired MRS data from the GE MRS phantom and used 

conventional 2D Capon analysis with 1792, , 40,2
NN N Nω σ= = =  

0.0peak threshold=  and 256M = .   The MRS experiment for this comparison was 
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performed using a 1.5T GE MR scanner and a single-channel head coil with PRESS on 

an 8 cc volume, with a TE of 35msec and a TR of 1500msec, 2 NEX, 8 reference frames 

and 16 water-suppressed (CHESS) frames.   The total scan time was 1 minute and 18 

seconds.  The MRS experiment for this comparison was the same as that shown in Fig. 64 

and described in Sec. 7.1.   

In Fig. 79 we compare the magnitude of Fourier transformed water-suppressed 

MRS data with and without phase-correction and residual water removal.  It can be seen 

in this example that the presence of residual water interferes substantially with the ability 

to resolve peaks when using the Fourier transform.  In Fig. 80-Fig. 83 we use the 

conventional 2D Capon techniques on the same data sets yielding the results shown in 

Fig. 79 to observe how effective the conventional 2D Capon method is in resolving 

metabolite peaks in the presence of residual water.   These figures show that for 

metabolites of interest the conventional 2D Capon method is able to resolve metabolite 

peaks from the data set that has not been phase corrected and from which residual water 

has not been removed.  However, on closer examination of Fig. 83 we note a slight shift 

in the frequency of these peaks for data without phase-correction and residual water 

removal. 
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Fig. 79.  Fourier transform of water-suppressed MRS data with (top) and without 
(bottom) phase-correction and residual water removal. 
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Fig. 80.  Conventional 2D Capon analysis of water-suppressed MRS data with (top) and 
without (bottom) phase-correction and residual water removal. 
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Fig. 81.  Conventional 2D Capon peak-enhanced spectra of water-suppressed MRS data 
with (top) and without (bottom) phase-correction and residual water removal. 
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Fig. 82.  Conventional 2D Capon contour plots with (top) and without 
(bottom) phase-correction and residual water removal. 
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Fig. 83.  Conventional 2D Capon maximum peak projections of water-suppressed MRS 
data with (top) and without (bottom) phase-correction and residual water removal. 
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7.3 Multiple-Channel 2D Spectral Estimation 

We have proposed two main techniques for multiple-channel 2D spectrum 

estimation of MRS data: signal averaging and spectrum averaging.  These techniques 

have been examined in Chapter 6 through extensive simulations (see Fig. 56 - Fig. 60).  

We would now like to compare and contrast how these two techniques work on data 

acquired from MRS experiments.  In our first set of experiments, we study the techniques 

applied to data acquired from an MRS phantom.  We then apply spectrum averaging and 

signal averaging to in vivo MRS data acquired from the brain of a human volunteer. 

It should be pointed out that the 2D spectral estimation techniques used in this 

section used estimated channel gains ('sg ) from observed data as described in Sec. 5.4.  

Also, the noise variances ('sρ ) as described in Sec. 5.5 were estimated from the last 248 

samples of each observed signal where the length of the signal is: 2048fN = . 

7.3.1 Conventional 2D Capon Analysis of MRS Phantom Data 

Simulations from Chapter 6 showed that two-dimensional spectral estimation 

techniques based on spectrum averaging and signal averaging are both effective although 

signal averaging usually appeared to be the method of choice.  We now compare 

spectrum averaging and signal averaging techniques used on MRS data acquired using an 

eight-channel domed head coil, manufactured by MRI Devices, Inc. (Waukesha, WI, 

USA) from a GE MRS phantom.  The scan was performed using a GE 1.5T MR scanner 

and a PRESS sequence on an 8 cc volume, with a TE of 35msec and a TR of 1500msec, 2 
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NEX, 8 reference frames and 16 water-suppressed (CHESS) frames.   The total scan time 

was 1 minute and 18 seconds.  The conventional MRS absorption spectrum from the GE 

MRS phantom for this scan is generated by the method described by Frigo, Heinen, et 

al.,[3],[4] and is shown in Fig. 84.  An MRS absorption spectrum is generated for each of 

the 8 channels and shown in Fig. 85. 

Each channel was processed independently to apply the appropriate phase-

correction and residual water removal on the water-suppressed MRS data obtained during 

the MRS experiment.  Conventional 2D Capon analysis with 1792, ,2
NN Nω= =  

40, 0.0N peak thresholdσ = =  and 256M =  is then used with spectrum averaging and 

signal averaging to compute the results. Fig. 85-Fig. 89 show comparisons between using 

spectrum averaging and signal averaging techniques to compute 2D spectral estimates on 

the data acquired from this scan. 

 

Fig. 84. MRS absorption spectrum from GE MRS phantom using 8-channel 
head coil. 
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Fig. 85. “Stacked” MRS absorption spectra from each receive coil for GE 
MRS phantom. 
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Fig. 86.  Signal averaging (top) and spectrum averaging (bottom) used with 
conventional 2D Capon analysis on a GE MRS phantom. 
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Fig. 87. Peak-enhanced spectra obtained by signal averaging (top) and spectrum 
averaging (bottom) with conventional 2D Capon analysis on a GE MRS phantom. 
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Fig. 88.  Contour plots obtained by signal averaging (top) and spectrum averaging 
(bottom) with conventional 2D Capon analysis on a GE MRS phantom. 
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Fig. 89.  Maximum peak projections obtained by signal averaging (top) and spectrum 
averaging (bottom) with conventional 2D Capon analysis on a GE MRS phantom. 
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It is observed from these comparisons that signal averaging and spectrum 

averaging both provide suitable 2D spectral estimates for the data obtained from the GE 

MRS phantom.  The signal averaging technique finds more peaks and is approximately 8 

times faster. 

7.3.2 Conventional 2D Capon Analysis of In Vivo Data 

We now compare spectrum averaging and signal averaging techniques used on in 

vivo MRS data acquired from the brain of a human volunteer with an eight-channel 

domed head coil, manufactured by MRI Devices, Inc. (Waukesha, WI, USA). The scan 

was performed using a GE 1.5T MR scanner and a PRESS sequence on an 8 cc volume, 

with a TE of 144msec and a TR of 1500msec, 8 NEX, 2 reference frames and 16 water-

suppressed (CHESS) frames.   The total scan time was 3 minutes and 48 seconds.  The 

conventional MRS absorption spectrum for this scan is generated by the method 

described by Frigo, Heinen, et al.,[3],[4] and is shown in Fig. 90.  An MRS absorption 

spectrum is generated for each of the 8 channels and shown in Fig. 91. 

Each channel was processed independently to apply the appropriate phase-

correction and residual water removal on the water-suppressed MRS data obtained during 

the MRS experiment.  Conventional 2D Capon analysis with 1792, ,2
NN Nω= =  

40, 0.0N peak thresholdσ = =  and 256M =  is then used with spectrum averaging and 

signal averaging to compute the results. Fig. 92 - Fig. 95 show comparisons between 
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using spectrum averaging and signal averaging techniques to compute 2D spectral 

estimates on the data acquired from this scan. 

 

Fig. 90. MRS absorption spectrum from human volunteer using eight-channel 
head coil. 
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Fig. 91. “Stacked” MRS absorption spectra from each receive coil from brain 
of human volunteer. 
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Fig. 92.  Signal averaging (top) and spectrum averaging (bottom) used with 
conventional 2D Capon analysis on the brain of a human volunteer. 



  191 

 

 

Fig. 93. Peak-enhanced spectra obtained by signal averaging (top) and spectrum 
averaging (bottom) with conventional 2D Capon analysis on the brain of a human 

volunteer. 
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Fig. 94.  Contour plots obtained by signal averaging (top) and spectrum averaging 
(bottom) with conventional 2D Capon analysis on the brain of a human volunteer. 
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Fig. 95.  Maximum peak projections obtained by signal averaging (top) and spectrum 
averaging (bottom) with conventional 2D Capon analysis on the brain of a human 

volunteer. 
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As was observed from our multiple-channel studies using the GE MRS phantom 

in Sec. 7.3.1 we observe from these comparisons that the signal averaging technique finds 

more peaks than the spectrum averaging technique and has the additional benefit that it is 

approximately 8 times faster when using an 8-channel receive coil. 

7.3.3 Weighted 2D Capon Analysis of MRS Phantom Data 

We now compare using multiple-channel conventional 2D Capon analysis with 

multiple-channel weighted 2D Capon analysis.   In both cases, signal averaging will be 

used on MRS data acquired using an eight-channel domed head coil, manufactured by 

MRI Devices, Inc. (Waukesha, WI, USA) from a GE MRS phantom.  The scan was 

performed using a GE 1.5T MR scanner and a PRESS sequence on an 8 cc volume, with 

a TE of 35msec and a TR of 1500msec, 2 NEX, 8 reference frames and 16 water-

suppressed (CHESS) frames.   The total scan time was 1 minute and 18 seconds.  The 

MRS experiment for this comparison was the same as that shown in Fig. 84 and 

described in Sec. 7.3.1.   

Conventional 2D Capon analysis with 1792N = , , 40,2
NN Nω σ= =  

0.0peak threshold=  and 256M =  is compared to weighted 2D Capon analysis with 

1792, ,2
NN Nω= = 40, 0.0N peak thresholdσ = = , 2

σβ = − , and 256M = .  Fig. 96 -

Fig. 99 show comparisons between the conventional 2D Capon technique and the 

weighted 2D Capon technique for the multiple-channel data acquired from this scan. 
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Fig. 96.  8-channel signal averaging for conventional 2D Capon (top) and 

weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS phantom. 
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Fig. 97. Peak-enhanced spectra from 8-channel signal averaging for conventional 2D 

Capon (top) and weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS phantom. 
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Fig. 98.  Contour plots from 8-channel signal averaging for conventional 2D Capon (top) 

and weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS phantom. 
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Fig. 99.  Maximum peak projections from 8-channel signal averaging for conventional 

2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS 

phantom. 
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From Fig. 99 we observe that the 2D weighted Capon technique identifies more 

peaks from this brain study than the conventional 2D Capon technique.  It should be 

pointed out, however, that the 2D weighted Capon technique chosen for this evaluation is 

more than twice as slow in terms of execution speed. 

7.4 Summary 

In this chapter we have examined a number of examples of applying 2D spectral 

estimation techniques to MRS data processing.  First, we compared conventional 2D 

Capon analysis to conventional 2D APES analysis.  Then, we examined how weighted 

2D Capon analysis performed on MRS data acquired using a single-channel head coil 

from the GE MRS phantom and from the brain of a healthy volunteer.  We further 

extended our investigation to demonstrate how certain weighted 2D Capon techniques 

can identify more peaks in less execution time than conventional 2D Capon analysis.  We 

also investigated how well conventional 2D Capon analysis performs on MRS data sets 

that have not been phase-corrected and from which residual water was not removed. 

For multiple-channel MRS data sets, we compared signal averaging and spectrum 

averaging using conventional 2D Capon analysis on MRS data acquired using an eight-

channel head coil.  Both techniques seem to work well on data from the GE MRS 

phantom and from the brain of a healthy human volunteer.  Signal averaging seems to 

identify more peaks and requires less computational processing.  We extended our 

investigation to demonstrate how multiple-channel weighted 2D Capon techniques work 

with signal averaging. 
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The application of the new 2D spectral estimation techniques to data acquired 

during MRS scans seems to offer the same benefits as determined from the simulations 

performed in Chapter 6, namely, increased peak detection capabilities and/or reduced 

execution time for certain cases.   We have shown through the examples in this chapter 

that these new 2D spectral estimation techniques can be used effectively for MRS 

applications and show great promise for future integration into common clinical practice. 
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C h a p t e r  8  

8 Summary and Conclusions  

 The motivation for the research discussed in this dissertation was initially to find 

improved signal processing techniques for MRS to enable the non-invasive measurement 

of  blood glucose in vivo for improved diabetes disease management and control.   The 

2D spectral estimation techniques that evolved out of this research, however, apply to 

typical clinical MRS applications as well, so the results of this research have a much 

broader impact than was originally intended.  At this time, we provide a brief summary 

and offer conclusions related to the new signal processing techniques introduced for 2D 

spectral estimation and for their application to MRS data.    

8.1 Summary 

We began our discussion with a brief review of the principles of nuclear magnetic 

resonance in Chapter 2.   The remarkable scientific discoveries that were made long ago 

have provided a foundation upon which MR scanners have been created, and the impact 

of these medical imaging machines to the practice of  modern medicine has been 

extraordinary.   

 In Chapter 3 we examined SVQ proton MRS which is typically used in a clinical 

setting to quantify metabolites in the human brain.  We provided a comprehensive review 

of the signal processing algorithms that are typical for MRS SVQ scans and carefully 
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documented each processing step.  A significant contribution of our work has been to 

implement efficient algorithms in MATLAB to create a conventional MRS absorption 

spectrum from data acquired during an SVQ study for both single-channel and multiple-

channel SVQ.  These algorithms are included in the Appendix, Sec.A.4.     

In Chapter 4 we introduced several new nonparametric two-dimensional spectral 

estimation techniques:  the weighted 2D Capon method, the weighted 2D APES method, 

and the combined weighted 2D APES / 2D Capon method.   Each of these techniques 

provides spectral estimates of damping as well as frequency, making them useful for 

MRS data analysis.   We show through extensive simulations carried out in Chapter 6 that 

these new techniques offer improved performance in terms of peak identification , 

estimation accuracy and/or computation time over conventional 2D Capon and 2D APES 

in certain cases.  MATLAB implementations of these algorithms are included in the 

Appendix, Sec. A.5. 

In Chapter 5 we introduced two new algorithms for multiple-channel 2D spectral 

estimation: signal averaging and spectrum averaging.   Each of these techniques provide a 

means of creating a 2D spectral estimate from multiple-channel MRS data.  We also 

introduced a method to optimally estimate the relative channel gains from observed data, 

which provides great benefit when the ideal gains for each channel are not known.  This 

technique is potentially applicable to a variety of other problems as well.  We show 

through extensive simulations carried out in Chapter 6 the merits of these new 

techniques.   MATLAB code for the simulations is included in the Appendix, Sec. A.6. 
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In Chapter 6, we evaluated the proposed new techniques introduced in Chapter 4 

and Chapter 5 by performing an extensive set of simulations.  The motivation for 

performing these simulations was to provide a controlled set of  conditions, and then to 

compare and contrast the performance of these new algorithms for several different 

scenarios.  In this chapter we also introduced the concepts of peak spectrum and 

projected peak spectrum.  While these are rather simple ideas, they greatly enhance the 

user's ability to interpret the data. 

In Chapter 7 we applied the new techniques proposed in Chapters 4 and 5, and 

simulated in Chapter 6, to data collected during MRS experiments.  Examples were 

provided demonstrating how these techniques work in MRS studies involving phantoms 

with known concentrations of metabolites, as well as in a limited number of in vivo MRS 

studies involving human volunteers. 

8.2 Conclusions 

In the case of single-channel 2D spectral estimation, extensive simulations have 

led to the following conclusions for the situations studied: 

1.) For the weighted 2D Capon and weighted 2D APES methods, and their 

conventional counterparts, the filter length M  should generally be made 

as large as possible to reduce missed peaks and false peaks.  On the other 

hand, intermediate values of M  lead to reduced magnitude and damping 

estimation errors. 
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2.) The weighted 2D Capon method for 1K =  and for , 2K N σα= = −  

provides computation time savings of 17-35% as compared to the 

conventional 2D Capon method for the cases studied. 

3.) The parameter choices in the weighted 2D Capon and weighted 2D APES 

methods offer various trade-offs in the four performance measures studied.   

By proper choice of these parameters, one may obtain improvement in any 

one of the performance measures, as compared to the conventional 

methods.  However, this is usually accompanied by degradation in one or 

more of the remaining measures.  In some of the cases studied the new 

methods required no additional computation time as compared to the 

corresponding conventional methods, while in other cases the computation 

time is more than doubled. 

4.) As the parameter γ  varies from 0 to 1, the performance of the combined 

2D APES / 2D Capon method gradually transitions from that of the 

weighted 2D Capon method to that of the weighted 2D APES method.  In 

every case the computation time equals that of the conventional 2D APES 

method. 

5.) It is clear that no one method is best for all situations.  In a given 

application it is necessary to decide what performance measures are most 

critical and how much computation time is acceptable and then to choose 
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the method and associated parameters accordingly.  Additional 

simulations may be needed if the nature of the data is significantly 

different from that studied here. 

In the case of multiple-channel 2D spectral estimation, the simulations have led to 

the following conclusions: 

1.) In general, signal averaging is preferred over spectrum averaging because of 

its significantly better performance and reduced execution time (its execution 

time is roughly equal to that of the single-channel case). 

2.) For the case of equal channel noise variances, the multiple-channel signal 

averaging techniques significantly outperform the single-channel techniques 

applied to any of the channels.  On the other hand, if one of the channels has a 

much smaller noise variance than any of the others, the multiple-channel 

techniques produce essentially the same results as would be obtained using the 

corresponding single-channel technique on the least noisy channel. 

3.) Using estimated channel gains leads to virtually no performance degradation 

as compared to using ideal (known) gains.  

The primary goal of this research was to enhance the clinical efficiency and utility 

of MRS through improved 2D spectral estimation techniques.   We have examined these 

new techniques in great detail, and have shown how they may be applied to MRS signal 



  206 

 

processing.  Two potential clinical benefits stemming from this research are: increased 

accuracy for MRS diagnosis and increased patient throughput through reduced scan time 

and/or faster analysis techniques.   

As a result of this research, a related algorithm for generating a single MRS 

absorption spectrum for multiple-channel SVQ has been implemented [3],[4] and has 

been received favorably by a number of clinical sites around the world.   2D spectral 

estimation for MRS has yet to gain widespread clinical acceptance.  In part, this is due to 

the lack of simple clinical tools allowing clinicians and spectroscopists to analyze the 

results of these techniques, but also it is due to the fact that 2D spectral estimation for 

MRS has only recently been introduced [2],[74], and the clinical benefits of this approach 

are still being evaluated. 

Based on the results of extensive simulations and a limited number of MRS 

experiments, we are confident that the new techniques introduced in this dissertation have 

the potential to add clinical value and improve the overall quality of spectral analysis for 

MRS studies. 

8.3 Suggestions for Future Research 

The new 2D spectral estimation techniques proposed in this dissertation warrant 

further investigation on several fronts.  First, the simulations carried out in this study, 

while quite extensive, have not considered the myriad of possible situations.  For 

example, the quantities , ,  and N N Nω σ  were held constant in the studies to make the 
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analysis tractable.  In addition, the values of the parameters  and α β  used in the 

weighted 2D Capon and weighted 2D APES simulations were limited.  Further research 

considering a more thorough and systematic collection of these parameters would be of 

value.  Further studies should also take into account different test signals that might be 

appropriate in different applications such as speech processing or synthetic aperture radar 

(SAR) imaging. 

Brief mention was made in Chapter 6 of the fact that “off-grid” peaks (those not 

occurring on ω  grid lines) can be very difficult to identify, particularly for high SNR 

data.  This has not been addressed, or even mentioned, in the literature.  Because it was 

decided that this problem was beyond the scope of this study, all peaks were located on 

ω  grid lines in the simulations.  One simple remedy for this problem is to establish a 

finer grid in the ω  direction, i.e., to increase Nω .  However, this increases computation 

time.  Further studies concerning ways to improve “off-grid” peak detection are 

warranted. 

Because certain 2D spectral estimation techniques perform better in some respects 

than others, it may be possible to improve performance by using a combination of 

techniques.  One might consider taking the results from one technique and providing 

them to a second or even third technique for additional processing.  For example, a 

method that performs well in terms of minimizing missed peaks or false peaks might be 

used to identify the values of ω  associated with peaks.  A second method, which 
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performs well in estimating damping values, could be used at these 'sω  to estimate the 

'sσ .  Finally, a third method, which performs well on magnitude estimation, could be 

applied at the ( ),σ ω  locations identified by the earlier methods to estimate the 

magnitudes.   Stoica and Sundin[2] have, in fact, employed such a procedure with some 

success, which they refer to as the 2D CAPES method.  In 2D CAPES, the peak locations 

are determined using the 2D Capon method, and then the 2D APES method is applied 

only at these peak locations to estimate the magnitudes.  Further studies in this area could 

lead to overall performance improvements. 

The method introduced in Chapter 5 for optimally estimating relative channel 

gains from observed data would seem to be of significant interest in its own merits.  

Other possible applications might be in estimating gains for microphone arrays used in 

speech processing and for antenna arrays used for communications or SAR imaging.  In 

fact, the estimated gains could also be used to establish weights for signal averaging 

using conventional FFT processing of multiple-channel MRS data and to implement 

multiple-channel CSI .  These applications would seem to be worthy of further 

consideration. 

In this work the application of 2D spectral estimation to MRS phantom and in 

vivo data was quite limited.  There is a need to perform substantive clinical evaluations of 

the new 2D spectral estimation techniques for MRS applications proposed in this 

dissertation.  The application of  these techniques to a limited number of MRS data sets 
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in Chapter 7 offers proof of concept that these techniques may have clinical merit.  

However, the efficacy of using these and other 2D spectral estimation techniques in a 

clinical setting must be determined.   
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Appendix 

A.1 Quadratic Minimization 

The following result is adapted from a development in Stoica and Moses[60] (see 

also [94]-[102]). 

A.1.1 Theorem 

Assume that R  is a complex Hermitian (i.e., HR R= ) positive definite M M×  

matrix and  and h s  are complex 1M ×  vectors.  Then the unique vector 0h  that 

minimizes 

 ( ) HJ h h Rh=  (A.1) 

over h , subject to the condition 

 1Hh s =  (A.2) 

is given by 

 
1

0 1H

R s
h

s R s

−

−=  (A.3) 

A.1.2 Proof 

We first note that 



  217 

 

 
1

0 1
1

H
H

H

s R s
h s

s R s

−

−= =  (A.4) 

verifying that 0h  satisfies Eqn. (A.2).  Now, for an arbitrary vector, h , we may write 

 0h h δ= +  (A.5)  

For our purposes we only need to consider vectors h  that satisfy Eqn. (A.2).  Thus, since 

 0 1H H Hh s h s sδ= + =  (A.6) 

it follows from Eqn. (A.4) that 

 0H sδ =  (A.7) 

Now, from Eqn. (A.1) and Eqn. (A.5), 

 

( ) ( ) ( )

( )
( )
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0 0

0 0 0 0

0 0
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0 1

2

2

2

H H

H H H H
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δ δ δ

δ δ δ

δ δ δ

−

−

−
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= + +

= + +

 (A.8) 

From Eqn. (A.7), the center term in Eqn. (A.8) is zero, resulting in 

 ( ) ( )0
HJ h J h Rδ δ= +  (A.9) 
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Since R  is positive definite, the second term in Eqn. (A.9) is always greater than or equal 

to 0, and equal to 0 if and only if 0δ = .  That is, using Eqn. (A.5), we have that Eqn. 

(A.9) is a minimum if and only if 0h h= , thus completing the proof. 

A.2 Matrix Inversion Lemma 

The following result is adapted from a development in Stoica and Moses[60] (see 

also [94]-[102]). 

A.2.1 Theorem 

Assume R  is a non-singular complex M M×  matrix, X is a complex 1M ×  

vector, and a  is a non-zero complex scalar.  Then, if 

 
1 HQ R XX
a

= −  (A.10) 

the inverse of Q  may be computed as 

 
1 1

1 1
1

H

H

R XX R
Q R

a X R X

− −
− −

−= +
−

 (A.11) 
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A.2.2 Proof 

From Eqn. (A.10) and Eqn. (A.11) we have 

( )

1 1
1 1
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1 1 1 1
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1 1

1 1 1
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(A.12) 

Thus 1Q− as given by Eqn. (A.11) is indeed the inverse of Q  given in Eqn. (A.10), 

completing the proof.   Note that if 1R−  is known then the computational task of 

determining the inverse of Q  is replaced by several matrix multiplications and one scalar 

division. 
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A.3 Calculation of SNR 

An important consideration when evaluating the fidelity of a sampled signal is its 

signal-to-noise ratio (SNR)[60], [94]- [102].  For clarity, we provide the details of how 

we define and compute SNR in our simulations. 

Given a clean signal, [ ]s n ,  where 0,1, , 1fn N= −⋯ , and a corresponding base 

noise signal, 0[ ]n n , where 0,1, , 1fn N= −⋯  we find it convenient to multiply 0[ ]n n  by a 

scalar weighting factor, w , to adjust 0[ ]n n  in a manner that provides the desired SNR. 

 0[ ] [ ] for 0,1, , 1a fn n w n n n N= ⋅ = −⋯  (A.13) 

The signal energy may be defined as 

 
1

2

0

[ ]
fN

s
n

E s n
−

=

= ∑  (A.14) 

and the base noise energy may be defined as 

 
0

1
2

0
0

[ ]
fN

n
n

E n n
−

=

= ∑  (A.15) 

Also, the actual noise energy may be defined as 
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The SNR (in dB) is defined as 

 1010log
a

s

n

E
SNR

E

 
=   

 
 (A.17) 

Combining Eqn. (A.13) and Eqn. (A.16) we have 

0
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f f f
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N N N

n a n
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Then using Eqn. (A.18) and Eqn. (A.17) we find w  as follows: 
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Eqn. (A.23) thus provides the value of w  needed to produce the desired SNR. 
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A.4 MATLAB Code for Computing MRS Absorption Spectra 

A.4.1 phascor.m 

% Spectroscopy - Generate Phase correction coeffici ents 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2001, 2002, 2003, 2004 - All rights res erved. 
% Fred J. Frigo 
% 
% Feb 15, 2001  - Original 
% June 26, 2001 - Accept Pfile name as argument 
% Sept 3, 2001  - Use Equiripple FIR filter for lin ear phase correction 
% Oct 15, 2001  - Open Pfile directly instead of in termediate file. 
%                 add ability to return an array of  vectors. 
% Dec 8, 2001   - Added DeBoor spline smoothing. 
% Feb 11, 2002  - Added multi-channel support 
% Jul 30, 2002  - Return Max reference value for mu lti-channel scaling 
% Jun 16, 2003  - Added support for Pfile format fo r MGD2 / 11.0 
% Mar 5, 2004   - Plot enhancements 
%                 
% 
 
function [pcor_vector, ref_vector, ref_scale] =  ph ascor( pfilename, channel_num ) 
i = sqrt(-1); 
 
% set flag to 1 to plot intermediate results 
save_plot = 0; 
 
% Open Pfile to read reference scan data. 
fid = fopen(pfilename,'r', 'ieee-be'); 
if fid == -1 
    err_msg = sprintf('Unable to locate Pfile %s', pfile) 
    return; 
end 
 
% Determine size of Pfile header based on Rev numbe r 
status = fseek(fid, 0, 'bof'); 
[f_hdr_value, count] = fread(fid, 1, 'real*4'); 
rdbm_rev_num = f_hdr_value(1); 
if( rdbm_rev_num == 7.0 ) 
    pfile_header_size = 39984;  % LX 
    bandwidth_index = 9839; 
elseif ( rdbm_rev_num == 8.0 ) 
    pfile_header_size = 60464;  % Cardiac / MGD 
    bandwidth_index = 14959; 
elseif ( rdbm_rev_num == 5.0 )  
    pfile_header_size = 39940;  % Signa 5.5 
    bandwidth_index = 9839;    % ?? 
else 
    % In 11.0 (ME2) the header and data are stored as little-endian 
    fclose(fid); 
    fid = fopen(pfilename,'r', 'ieee-le'); 
    status = fseek(fid, 0, 'bof'); 
    [f_hdr_value, count] = fread(fid, 1, 'real*4');  
    if (f_hdr_value == 9.0) 
        pfile_header_size= 61464; 
        bandwidth_index = 14959; 
    else 
        err_msg = sprintf('Invalid Pfile header rev ision: %f', f_hdr_value ) 
        return; 
    end 
end   
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status = fseek(fid, 0, 'bof'); 
[hdr_value, count] = fread(fid, 52, 'integer*2'); 
nex = hdr_value(37); 
nframes = hdr_value(38); 
da_xres = hdr_value(52); 
 
% Read 'user19' CV  - number of reference frames 
status = fseek(fid, 0, 'bof'); 
[f_hdr_value, count] = fread(fid, 74, 'real*4'); 
num_ref_frames = f_hdr_value(74); 
 
% Read the reference frames of data 
frame_size = 2*da_xres*4; 
baseline_size = frame_size; 
channel_size = (nframes + 1)*frame_size; 
data_offset = pfile_header_size + (channel_size*(ch annel_num - 1)) + baseline_size; 
status = fseek(fid, data_offset, 'bof'); 
 
ref_data_elements = 2*da_xres*num_ref_frames; 
[raw_data, count] = fread(fid, ref_data_elements, ' integer*4'); 
fclose(fid); 
 
% Store the reference frames in the ref_frames arra y 
vector_size = da_xres; 
ref_frames=[]; 
vtmp = [1:vector_size];  
 
for j = 1:num_ref_frames 
    vector_offset = vector_size*2*(j-1); 
    for k = 1:vector_size 
        vtmp(k) = raw_data((vector_offset + k*2)-1) + (raw_data(vector_offset + k*2)*i); 
    end 
    ref_frames(j,:)=vtmp; 
end 
 
ref_size = da_xres; 
vtmp = 0.0; 
% Average the reference data frames  
for j = 1:num_ref_frames 
   vtmp = vtmp + ref_frames(j,:); 
end 
ref = vtmp / num_ref_frames; 
 
% return the averaged reference vector 
ref_vector = ref; 
 
% Plot Input Reference data 
if (save_plot == 1) 
   plot_complex( 'Averaged reference data', ref); %  fig 8 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% normalize ref data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ref_scale = max( abs(ref) ); 
ref_norm = ref / ref_scale; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DC mixing 
%   Find the largest frequency component 
%   Create a sinusoid of same frequency and opposit e phase? 
%   Multiply by the sinusoid to cancel out this LAR GE freq? 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Take FFT of Average Ref Scan data 
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ref_ft=fft(ref_norm); 
 
% Find Max of FFT'd data 
%   We dont really want to get the last half of poi nts though. 
%   Perhaps we can multiply by an alteration vector  to look at  
%   just the center points? 
% 
[refmax, index] = max(ref_ft(1:ref_size-8)); 
max_index = sprintf('Max freq weight in ref scan fr ames is %d', index); 
 
% Generate ramp vector, muliply by index of max val ue 
dc = linspace(0.0, (-2.0*pi) , ref_size); 
dc = dc.*index; 
 
% Create sinusoid with pure frequency 
cos_dc = cos(dc); 
sin_dc = sin(dc); 
 
% DC mixing 
corr = cos_dc + sin_dc*i; 
ref_raw = ref_norm.*corr; 
 
% Plot corrected Reference data,  and phase correct ion vector 
if (save_plot == 1) 
    plot_complex('Phase correction vector after DC mixing', corr); % fig 9 
    plot_complex('Reference data after DC mixing', ref_raw); % fig 10 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Zero phasing 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
zeroterm =  ref_raw(1); 
% Complex conjugate of the first point in the DC co rrected ref frame 
zeroterm = real(zeroterm) - imag(zeroterm)*i; 
 
% The phase angle is now zero for the first point i n the ref frame 
ref_raw = ref_raw * zeroterm; 
corr = corr * zeroterm; 
 
% Plot corrected Reference data,  and phase correct ion vector 
if (save_plot == 1) 
    plot_complex('Phase correction vector after zer o phase adjustment', corr); % fig 12 
    plot_complex('Reference data after zero phase a djustment', ref_raw); % fig 11 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Linear phase correction factor 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Calculate phase of ref vector 
ref_ang = angle(ref_raw); 
 
% Unwrap Phase of reference frame 
unwr_ref = unwrap( ref_ang); 
 
% Plot phase of reference data, and unwrapped phase  
if (save_plot == 1) 
    plot_2_real('Phase \phi_z_p[n] (radians)', ref_ ang, 'Unwrapped phase \phi_z_p[n] 
(radians)', unwr_ref); % fig 13 
end 
 
% Add up how many periods are present in the ref fr ame 
pscale = unwr_ref(ref_size); 
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% Generate linear phase vector, muliply by unwrappe d phase 
ramp = linspace(0.0, -1 , ref_size); 
lin_phas = pscale.*ramp; 
 
cos_linp = cos( lin_phas); 
sin_linp = sin( lin_phas); 
 
lp_corr = cos_linp + (i*sin_linp); 
 
% Apply linear phase vector to reference frame and to phase corr vector 
ref_raw = lp_corr.*ref_raw; 
corr = lp_corr.*corr; 
 
% Plot corrected Reference data,  and phase correct ion vector 
if (save_plot == 1) 
    plot_complex('Linear phase correction vector', lp_corr); % fig 14 
    plot_complex('Phase correction vector after lin ear phase correction', corr); % fig 16 
    plot_complex('Reference data after linear phase  correction', ref_raw); % fig 15 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Smooth the phase of the Ref Frame 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ref_phas = angle( ref_raw ); 
uref_phas = unwrap(ref_phas); 
 
% compute e**( -0.25*ln(abs(ref_raw)) 
mag_raw = abs(ref_raw); 
ln_raw = -0.25*log(mag_raw); 
dy = exp(ln_raw); 
 
smooth_factor = 0.9999; 
 
% Spline smoothing (DeBoor) 
filt_phas = smooth_spline( uref_phas, dy, ref_size,  smooth_factor); 
 
% Plot unwrapped phase of phase corrected reference  data, and smoothed phase 
if (save_plot == 1) 
    plot_2_real('Unwrapped phase \phi_lp[n] (radian s)', uref_phas, 'Unwrapped phase 
\phi_s[n] (radians)', filt_phas); % fig 17 
end 
 
% Generate sinusoidal waveform based on smoothed ph ase 
filt_phas = -1.0*filt_phas; 
cos_fphs = cos( filt_phas); 
sin_fphs = sin( filt_phas); 
fphs = cos_fphs + i.*sin_fphs; 
 
% Final step.. Multiply by corr vector and by ref v ector 
ref_raw = ref_raw.*fphs; 
corr = corr.*fphs; 
 
% Plot corrected Reference data,  and phase correct ion vector 
if (save_plot == 1) 
    plot_complex('Phase correction vector', corr); % fig 19 
    plot_complex('Reference data after phase correc tion', ref_raw); % fig 18 
end 
 
% return the phase correction vector 
pcor_vector = corr; 
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A.4.2 plot_2_real.m 

% plot_2_real -  Plots 2 real valued vectors 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2004 - All rights reserved. 
% Fred J. Frigo 
% 
% Mar 5, 2004   - Original 
%                 
 
function  plot_2_real( plot1_label, input_data1, pl ot2_label, input_data2 ) 
 
   % get size of vector 
   vector_size = max(size(input_data1)); 
   x = [ 1:vector_size]; 
 
   figure;   
   subplot(2,1,1);   
   plot(x,input_data1,'k'); 
   ylabel(plot1_label); 
   xlabel('time'); 
    
   if (nargin > 2) 
      subplot(2,1,2); 
      plot(x, input_data2, 'k'); 
      ylabel(plot2_label); 
      xlabel('time'); 
   end 
 

A.4.3 plot_complex.m 

% plot_complex -  Plots real, imag and magnitude va lues of complex vector 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2004 - All rights reserved. 
% Fred J. Frigo 
% 
% Mar 5, 2004   - Original 
%                 
% 
 
function  plot_complex( plot_title, input_data ) 
 
   % get size of vector 
   vector_size = max(size(input_data)); 
   x = [ 1:vector_size]; 
 
   figure;   
   subplot(3,1,1);   
   plot(x,real(input_data),'k'); 
   title(plot_title); 
   ylabel('Real'); 
   xlabel('time'); 
    
   subplot(3,1,2); 
   plot(x, imag(input_data), 'k'); 
   ylabel('Imaginary'); 
   xlabel('time'); 
  
   subplot(3,1,3); 
   plot(x, abs(input_data), 'k'); 
   ylabel('Magnitude'); 
   xlabel('time'); 
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   % Entire phase correction vector has magnitude o f 1.0 
   % Check for entire vector with magnitude = 1.0 
   if(( max(abs(input_data) < 1.0000001 )) && ... 
      ( min(abs(input_data) > 0.999999  ))) 
      my_axis=axis; 
      my_axis(3)=0.0;  % ymin 
      my_axis(4)=1.5;  % ymax 
      axis(my_axis); 
   end 

 

A.4.4 plotp.m 

% plotp.m  -  plot raw data from Pfile 
% 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2002, 2003 - All rights reserved. 
% Fred Frigo 
% 
% Date:  Jan 21, 2002  
% 
%   - this is based on MATLAB code from David Zhu -  checkRaw.m 
%   - updated May 14, 2003 to support 11.0 (little endian format) 
% 
 
function plotp( pfile ) 
 
i = sqrt(-1); 
 
 
if(nargin == 0) 
    [fname, pname] = uigetfile('*.*', 'Select Pfile '); 
 
    pfile = strcat(pname, fname); 
end 
 
% Open Pfile to read reference scan data. 
fid = fopen(pfile,'r', 'ieee-be'); 
if fid == -1 
    err_msg = sprintf('Unable to locate Pfile %s', pfile) 
    return; 
end 
 
% Determine size of Pfile header based on Rev numbe r 
status = fseek(fid, 0, 'bof'); 
[f_hdr_value, count] = fread(fid, 1, 'real*4'); 
rdbm_rev_num = f_hdr_value(1); 
if( rdbm_rev_num == 7.0 ) 
    pfile_header_size = 39984;  % LX 
elseif ( rdbm_rev_num == 8.0 ) 
    pfile_header_size = 60464;  % Cardiac / MGD 
elseif (( rdbm_rev_num > 5.0 ) && (rdbm_rev_num < 6 .0))  
    pfile_header_size = 39940;  % Signa 5.5 
else 
    % In 11.0 (ME2) the header and data are stored as little-endian 
    fclose(fid); 
    fid = fopen(pfile,'r', 'ieee-le'); 
    status = fseek(fid, 0, 'bof'); 
    [f_hdr_value, count] = fread(fid, 1, 'real*4');  
    if (f_hdr_value == 9.0) 
        pfile_header_size= 61464; 
    else 
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        err_msg = sprintf('Invalid Pfile header rev ision: %f', f_hdr_value ) 
        return; 
    end 
end   
 
% Read header information 
status = fseek(fid, 0, 'bof'); 
[hdr_value, count] = fread(fid, 102, 'integer*2'); 
npasses = hdr_value(33); 
nslices = hdr_value(35); 
nechoes = hdr_value(36); 
nframes = hdr_value(38); 
point_size = hdr_value(42); 
da_xres = hdr_value(52); 
da_yres = hdr_value(53); 
rc_xres = hdr_value(54); 
rc_yres = hdr_value(55); 
start_recv = hdr_value(101); 
stop_recv = hdr_value(102); 
nreceivers = (stop_recv - start_recv) + 1; 
 
% Determine number of slices in this Pfile:  this d oes not work for all cases. 
slices_in_pass = nslices/npasses; 
 
% Compute size (in bytes) of each frame, echo and s lice 
data_elements = da_xres*2; 
frame_size = data_elements*point_size; 
echo_size = frame_size*da_yres; 
slice_size = echo_size*nechoes; 
mslice_size = slice_size*slices_in_pass; 
 
for k = 500:1000  % give a large number 1000 to loo p forever 
  % Enter slice number to plot 
  if ( slices_in_pass > 1 ) 
      slice_msg = sprintf('Enter the slice number: [1..%d]',slices_in_pass);  
      my_slice = input(slice_msg); 
      if (my_slice > slices_in_pass) 
          err_msg = sprintf('Invalid number of slic es. Slice number set to 1.') 
          my_slice = 1; 
      end 
  else 
      my_slice = 1; 
  end 
   
  % Enter echo number to plot 
  if ( nechoes > 1 ) 
      echo_msg = sprintf('Enter the echo number: [1 ..%d]',nechoes); 
      my_echo = input(echo_msg); 
      if (my_echo > nechoes ) 
          err_msg = sprintf('Invalid echo number. E cho number set to 1.') 
          my_echo = 1; 
      end 
  else 
      my_echo = 1; 
  end 
   
  % Enter receiver number to plot 
  if ( nreceivers > 1 ) 
      recv_msg = sprintf('Enter the receiver number : [1..%d]',nreceivers); 
      my_receiver = input(recv_msg); 
      if (my_receiver > nreceivers) 
          err_msg = sprintf('Invalid receiver numbe r. Receiver number set to 1.') 
          my_receiver = 1; 
      end       
  else 
      my_receiver = 1; 
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  end 
 
  % Enter the view number 
  view_msg = sprintf('Enter the frame number (1 is baseline): [1..%d]',da_yres); 
  my_frame = input(view_msg); 
  if (my_frame > da_yres) 
      err_msg = sprintf('Invalid frame number. Fram e number set to 1.') 
      my_frame = 1; 
  end       
 
  % Compute offset in bytes to start of frame. 
  file_offset = pfile_header_size + ((my_slice - 1) *slice_size) + ... 
                      + ((my_receiver -1)*mslice_si ze) + ... 
                      + ((my_echo-1)*echo_size) + . .. 
                      + ((my_frame-1)*frame_size); 
    
  status = fseek(fid, file_offset, 'bof'); 
 
  % read data: point_size = 2 means 16 bit data, po int_size = 4 means EDR ) 
  if (point_size == 2 ) 
     [raw_data, count] = fread(fid, data_elements, 'integer*2'); 
  else 
      [raw_data, count] = fread(fid, data_elements,  'integer*4'); 
  end 
 
  for m = 1:da_xres 
     frame_data(m) = raw_data((2*m)-1) + i*raw_data (2*m); 
  end 
   
  figure(k); 
  subplot(3,1,1); 
  plot(real(frame_data)); 
  title(sprintf('%s, slice %d, recv %d, echo %d, fr ame %d', fname, my_slice, my_receiver, 
my_echo, my_frame)); 
  %title('Reference data'); 
  xlabel('time'); 
  ylabel('Real'); 
  subplot(3,1,2); 
  plot(imag(frame_data)); 
  %title(sprintf('Imaginary Data')); 
  xlabel('time'); 
  ylabel('Imaginary'); 
  subplot(3,1,3); 
  plot(abs(frame_data)); 
  %title(sprintf('Magnitude Data')); 
  xlabel('time'); 
  ylabel('Magnitude'); 
 
 
  % check to see if we should quit 
  quit_answer = input('Press Enter to continue, "q"  to quit:', 's'); 
  if ( size( quit_answer ) > 0 ) 
     if (quit_answer == 'q') 
         break; 
     end 
  end 
   
end 
fclose(fid); 
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A.4.5 smooth_spline.m 

% Spline smoothing  (DeBoor's algorithm) 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2001 - All rights reserved. 
% Fred Frigo 
%  
% Dec 8, 2001 
% 
% Adapted to MATLAB from the following Fortran sour ce file 
%    found at http://www.psc.edu/~burkardt/src/splp ak/splpak.f90 
 
function spline_sig = smooth_spline( y, dx, npoint,  smooth_factor) 
 
p=smooth_factor; 
a=[npoint:4]; 
v=[npoint:7]; 
a= 0.0; 
v= 0.0; 
 
 
%qty=[npoint:1]; 
%qu=[npoint:1]; 
%u=[npoint:1]; 
 
x = linspace(0.0, (npoint-1.0)/npoint , npoint); 
 
% setupq 
  v(1,4) = x(2)-x(1); 
   
  for i = 2:npoint-1 
    v(i,4) = x(i+1)-x(i); 
    v(i,1) = dx(i-1)/v(i-1,4); 
    v(i,2) = ((-1.0.*dx(i))/v(i,4)) - (dx(i)/v(i-1, 4)); 
    v(i,3) = dx(i+1)/v(i,4); 
  end  
   
    
  v(npoint,1) = 0.0; 
  for i = 2:npoint-1 
    v(i,5) = (v(i,1)*v(i,1)) + (v(i,2)*v(i,2)) + (v (i,3)*v(i,3)); 
  end 
    
  for i = 3:npoint-1 
    v(i-1,6) = (v(i-1,2)*v(i,1)) + (v(i-1,3)*v(i,2) ); 
  end 
    
  v(npoint-1,6) = 0.0; 
 
  for i = 4: npoint-1 
    v(i-2,7) = v(i-2,3)*v(i,1); 
  end 
    
  v(npoint-2,7) = 0.0; 
  v(npoint-1,7) = 0.0; 
%! 
%!  Construct  q-transp. * y  in  qty. 
%! 
  prev = (y(2)-y(1))/v(1,4); 
  for i= 2:npoint-1 
    diff = (y(i+1)-y(i))/v(i,4); 
    %qty(i) = diff-prev; 
    a(i,4) = diff - prev; 
    prev = diff; 
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  end  
   
% end setupq   
 
%chol1d 
 
%! 
%!  Construct 6*(1-p)*q-transp.*(d**2)*q + p*r 
%! 
  six1mp = 6.0.*(1.0-p); 
  twop = 2.0.*p; 
   
  for i = 2: npoint-1 
    v(i,1) = (six1mp.*v(i,5)) + (twop.*(v(i-1,4)) +  v(i,4)); 
    v(i,2) = (six1mp.*v(i,6)) +( p.*v(i,4)); 
    v(i,3) = six1mp.*v(i,7); 
  end  
   
  if ( npoint < 4 )  
    u(1) = 0.0; 
    u(2) = a(2,4)/v(2,1); 
    u(3) = 0.0; 
%! 
%!  Factorization 
%! 
  else 
    for i = 2: npoint-2; 
      ratio = v(i,2)/v(i,1); 
      v(i+1,1) = v(i+1,1)-(ratio.*v(i,2)); 
      v(i+1,2) = v(i+1,2)-(ratio.*v(i,3)); 
      v(i,2) = ratio; 
      ratio = v(i,3)./v(i,1); 
      v(i+2,1) = v(i+2,1)-(ratio.*v(i,3)); 
      v(i,3) = ratio; 
    end  
%! 
%!  Forward substitution 
%! 
    a(1,3) = 0.0; 
    v(1,3) = 0.0; 
    a(2,3) = a(2,4); 
    for i = 2: npoint-2 
      a(i+1,3) = a(i+1,4) - (v(i,2)*a(i,3)) - (v(i- 1,3)*a(i-1,3)); 
    end  
%! 
%!  Back substitution. 
%! 
    a(npoint,3) = 0.0; 
    a(npoint-1,3) = a(npoint-1,3) / v(npoint-1,1); 
 
    for i = npoint-2:-1:2 
      a(i,3) = (a(i,3)/v(i,1)) - (a(i+1,3)*v(i,2)) - (a(i+2,3)*v(i,3)); 
    end  
 
  end 
%! 
%!  Construct Q*U. 
%! 
  prev = 0.0; 
  for i = 2: npoint 
    a(i,1) = (a(i,3)-a(i-1,3))/v(i-1,4); 
    a(i-1,1) = a(i,1)-prev; 
    prev = a(i,1); 
  end  
 
  a(npoint,1) = -1.0.*a(npoint,1); 
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%end chol1d 
 
  for i = 1: npoint 
    spline_sig(i) = y(i)-(6.0.*(1.0-p).*dx(i).*dx(i ).*a(i,1)); 
  end 
   
%  for i = 1: npoint 
%    a(i,3) = 6.0*a(i,3)*p; 
%  end  
 
%  for i = 1: npoint-1 
%    a(i,4) = (a(i+1,3)-a(i,3))/v(i,4); 
%    a(i,2) = (a(i+1,1)-a(i,1))/v(i,4)-(a(i,3)+a(i, 4)/3.*v(i,4))/2.*v(i,4); 
%  end  
 
 
 
 

A.4.6 spectro.m 

% Spectroscopy Mainline 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2001, 2002, 2003 - All rights reserved.  
% Fred J. Frigo 
% 
% 
% This function calls other MR spectroscopy related  functions 
% to compute results from the given raw data file ( Pfile). 
% 
% Oct 15, 2001 - Original 
% Feb 11, 2002 - Multi-channel spectro  
% July 30, 2002 - Combine multi-channel results usi ng reference weighting 
% Jan 1, 2003   - Label PPM axis 
% June 16, 2003 - Pfile updates for MGD2 / 11.0 
 
function spectro( pfilename ) 
 
% Check to see if pfile name was passed in 
if ( nargin == 0 ) 
   % Enter name of Pfile 
   [fname, pname] = uigetfile('*.*', 'Select Pfile' ); 
   pfilename = strcat(pname, fname); 
end 
 
% Open Pfile to read reference scan data. 
fid = fopen(pfilename,'r', 'ieee-be'); 
if fid == -1 
    err_msg = sprintf('Unable to locate Pfile %s', pfile) 
    return; 
end 
 
% Determine size of Pfile header based on Rev numbe r 
status = fseek(fid, 0, 'bof'); 
[f_hdr_value, count] = fread(fid, 1, 'real*4'); 
rdbm_rev_num = f_hdr_value(1); 
if( rdbm_rev_num == 7.0 ) 
    pfile_header_size = 39984;  % LX 
elseif ( rdbm_rev_num == 8.0 ) 
    pfile_header_size = 60464;  % Cardiac / MGD 
elseif (( rdbm_rev_num > 5.0 ) && (rdbm_rev_num < 6 .0))   
    pfile_header_size = 39940;  % Signa 5.5 
else 
    % In 11.0 (ME2) the header and data are stored as little-endian 
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    fclose(fid); 
    fid = fopen(pfilename,'r', 'ieee-le'); 
    status = fseek(fid, 0, 'bof'); 
    [f_hdr_value, count] = fread(fid, 1, 'real*4');  
    if (f_hdr_value == 9.0) 
        pfile_header_size= 61464; 
    else 
        err_msg = sprintf('Invalid Pfile header rev ision: %f', f_hdr_value ) 
        return; 
    end 
end   
 
% Read header to determine number of channels 
status = fseek(fid, 0, 'bof'); 
[hdr_value, count] = fread(fid, 102, 'integer*2'); 
da_xres = hdr_value(52); 
start_recv = hdr_value(101); 
stop_recv = hdr_value(102); 
nreceivers = (stop_recv - start_recv) + 1; 
 
% some other useful scan parameters. 
nex = hdr_value(37); 
 
% Read 'user07' CV  - temperature in degree C 
status = fseek(fid, 0, 'bof'); 
[f_hdr_value, count] = fread(fid, 62, 'real*4'); 
tempC = f_hdr_value(62) 
fclose(fid); 
 
 
% Index for results  (Right Hand Side of water peak ) 
start = round(da_xres*0.025); 
stop = round(da_xres*0.25); 
 
% Create PPM axis:   Must shift spectrum for temper ature 
ppm_start_37C = -4.25; 
ppm_stop_37C = 0.30; 
ppm_per_degree_C=0.01; 
ppm_offset = (tempC-37)*ppm_per_degree_C; 
ppm_start = ppm_start_37C + ppm_offset; 
ppm_stop = ppm_stop_37C + ppm_offset; 
combine_x = linspace(ppm_start,ppm_stop,(stop-start +1)); 
 
% Loop to compute phase correction vector for each receiver 
for loop = 1:nreceivers 
   % Compute phase correction results 
   [pcor_vector, ref_vector, receiver_weight(loop)]  = phascor( pfilename , loop); 
    
   % Compute spectroscopy results 
   results(loop,:) = spectro_proc( pcor_vector, ref _vector, pfilename, loop ); 
    
   % Plot results for each channel 
   figure(100); 
   subplot(nreceivers,1,loop); 
   plot( combine_x, real( results(loop,start:stop)) , 'k' ); 
   mesh_results(loop,:)=real(results(loop,start:sto p)); 
 
   if( loop == 1) 
       my_string= sprintf('Spectro results for: %s ',fname); 
       %title( my_string); 
       xlabel('ppm'); 
       if (nreceivers == 1) 
          ylabel('Absorption'); 
       end 
       set(gca,'XTick',-4.0:0.5:0.0); 
       set(gca,'XTickLabel',{'4.0','3.5','3.0','2.5 ','2.0','1.5','1.0','0.5','0.0'}); 
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   end 
    
end 
 
% Calculate combined results if more than one recei ver 
if nreceivers > 1 
  % Find receiver with strongest signal (using Max reference value) 
  [max_weight, strongest_receiver] = max(receiver_w eight); 
 
  % Dont use channels whose Max is lower than the t hreshold  
  receiver_threshold = 0.05*max_weight;   % 0.45 de fault 
  combined_weight = 0.0; 
  receivers_to_use = 0; 
  for loop = 1:nreceivers 
    if receiver_weight(loop) >receiver_threshold 
       receiver_to_use = receivers_to_use + 1; 
       combined_weight = combined_weight + receiver _weight(loop); 
    end 
  end 
 
  % Linear weighted combination  
  accum_results = zeros(size(results(1,:))); 
  for loop = 1:nreceivers 
    if receiver_weight(loop) >receiver_threshold 
       weight = receiver_weight(loop) / combined_we ight; 
       accum_results = accum_results + (weight.*rea l(results(loop,:))); 
    else 
       weight = 0.0; 
    end 
    weight 
  end 
  combined_results = accum_results; 
 
  % Plot combined results 
  figure; 
  plot( combine_x, real( combined_results(start:sto p)), 'k' ); 
  my_string= sprintf('Combined spectro results for:  %s ',fname); 
  title( my_string); 
  xlabel('ppm'); 
  ylabel('Absorption'); 
  set(gca,'XTick',-4.0:0.5:0.0); 
  set(gca,'XTickLabel',{'4.0','3.5','3.0','2.5','2. 0','1.5','1.0','0.5','0.0'}); 
   
  
  % Plot multiple channel results 
  figure; 
  surf(combine_x, 1:1:8, mesh_results); 
  set(gca,'XTick',-4.0:1.0:0.0); 
  set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0. 0'}); 
  xlabel('ppm'); 
  zlabel('Absorption'); 
  ylabel('receive coil'); 
   
end 
 
 
 

A.4.7 spectro_proc.m 

% Spectroscopy - Phase correct, water subtract and Fourier Transform 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2000, 2001, 2002, 2003, 2004 - All righ ts reserved. 
% Fred Frigo 
% 
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% This function generates MR spectroscopy results f rom: 
% the phase correction vector, pc, (computed by the  phascor function) 
% the averaged reference data, ref, (computed by th e phascor funtion) 
% the name (Pfile) of the raw data file containing water suppressed data. 
% and the receiver number, channel_num. 
% 
% 
% Dec 28, 2000 - Original 
% May 2, 2001  - updates to plot intermediate resul ts 
% June 26, 2001 - updates to accept Pfile name as a rg 
% Oct 15, 2001 - updates to read from Pfile directl y, plus new args 
% Feb 11, 2002 - modified for multi-channel spectro   
% Nov 2, 2003  - Updates to read 5.X and 11.0 forma t files 
% Mar 8, 2004  - Plot enhancements 
% 
 
function results = spectro_proc ( pc, ref, pfilenam e, channel_num) 
 
 
i = sqrt(-1); 
 
% flag set to 1 for plots of intermediate results 
save_plot = 0; 
 
% Open Pfile to read reference scan data. 
fid = fopen(pfilename,'r', 'ieee-be'); 
if fid == -1 
    err_msg = sprintf('Unable to locate Pfile %s', pfilename) 
    return; 
end 
 
% Determine size of Pfile header based on Rev numbe r 
status = fseek(fid, 0, 'bof'); 
[f_hdr_value, count] = fread(fid, 1, 'real*4'); 
rdbm_rev_num = f_hdr_value(1); 
if( rdbm_rev_num == 7.0 ) 
    pfile_header_size = 39984;  % LX 
elseif ( rdbm_rev_num == 8.0 ) 
    pfile_header_size = 60464;  % Cardiac / MGD 
elseif ( rdbm_rev_num == 5.0 )  
    pfile_header_size = 39940;  % Signa 5.5 
else 
    % In 11.0 (ME2) the header and data are stored as little-endian 
    fclose(fid); 
    fid = fopen(pfilename,'r', 'ieee-le'); 
    status = fseek(fid, 0, 'bof'); 
    [f_hdr_value, count] = fread(fid, 1, 'real*4');  
    if (f_hdr_value == 9.0) 
        pfile_header_size= 61464; 
    else 
        err_msg = sprintf('Invalid Pfile header rev ision: %f', f_hdr_value ) 
        return; 
    end 
end   
 
 
status = fseek(fid, 0, 'bof'); 
[hdr_value, count] = fread(fid, 52, 'integer*2'); 
nex = hdr_value(37); 
nframes = hdr_value(38); 
da_xres = hdr_value(52); 
 
% Read 'user19' CV  - number of reference frames 
status = fseek(fid, 0, 'bof'); 
[f_hdr_value, count] = fread(fid, 74, 'real*4'); 
num_ref_frames = f_hdr_value(74); 
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% Read Pfile to get water supressed signal 
ref_offset = 2*da_xres*(num_ref_frames+1)*4; 
frame_size = 2*da_xres*4; 
channel_size = (nframes + 1)*frame_size; 
data_offset = pfile_header_size + (channel_size*(ch annel_num - 1)) + ref_offset; 
 
status = fseek(fid, data_offset, 'bof'); 
num_sig_frames = nframes - num_ref_frames; 
data_elements = 2*da_xres*num_sig_frames; 
[raw_data, count] = fread(fid, data_elements, 'inte ger*4'); 
fclose(fid); 
 
% Store the reference frames in the ref_frames arra y 
vector_size = da_xres; 
sig_frames=[]; 
vtmp = [1:vector_size];  
 
for j = 1:num_sig_frames 
    vector_offset = vector_size*2*(j-1); 
    for k = 1:vector_size 
        vtmp(k) = raw_data((vector_offset + k*2)-1) + (raw_data(vector_offset + k*2)*i); 
    end 
    sig_frames(j,:)=vtmp; 
end 
 
vtmp = 0.0; 
% Average the reference data frames  
for j = 1:num_sig_frames 
   vtmp = vtmp + sig_frames(j,:); 
end 
 
% Create averaged water suppressed signal vector. 
sig = vtmp / num_sig_frames; 
 
% For debug: store water-suppressed signal to file 
recv_string = sprintf('%d', channel_num); 
signal_file = strcat( pfilename, '.recv', recv_stri ng,'.raw.dat'); 
fidref = fopen(signal_file, 'w+b'); 
for findex=1:da_xres 
    fwrite(fidref, real(sig(findex)), 'real*4'); 
    fwrite(fidref, imag(sig(findex)), 'real*4'); 
end 
fclose(fidref); 
 
 
x=[1:da_xres]; 
% Plot input signal 
if (save_plot == 1) 
   plot_complex('Band-limited MR spectroscopy signa l', sig);  % fig20 
end 
 
% Phase Correct Water supressed signal (sig) and Wa ter signal (ref) 
sig = pc.*sig; 
ref = pc.*ref; 
 
% Plot phase corrected signal and ref 
if (save_plot == 1) 
   plot_complex('Phase-corrected water-supressed da ta', sig);  %fig 21 
   plot_complex('Phase corrected non-water-suppress ed reference data', ref); %fig 22 
end 
 
% Subtract to 'signal' from 'water' obtain 'pure wa ter' 
pure_water = ref - sig; 
 
% Plot pure water signal 
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if (save_plot == 1) 
   plot_complex('Pure water', pure_water);  %fig23 
end 
 
% Negate every other element (this shifts the water  peak to the center) 
a_pure_wat = pure_water; 
a_sig = sig; 
for n = 1:(da_xres/2) 
   a_pure_wat(2*n)= -1.0*a_pure_wat(2*n); 
   a_sig(2*n) = -1.0*a_sig(2*n); 
end 
 
% Apodization Window  
hanning_size = da_xres/1.6; 
half_han_size = hanning_size/2; 
win=hanning(hanning_size); 
apod = linspace(0.0, 0.0, da_xres); 
apod(1:half_han_size) = win((half_han_size+1):hanni ng_size); 
 
% Plot apodization window 
if (save_plot == 1) 
   plot_2_real('w_1[n]',apod);  % fig24  
end 
 
% Apply apodization window to water and signal vect ors 
w_pure_wat = apod.*a_pure_wat; 
w_sig = apod.*a_sig; 
 
% Fourier Transform the apodized, alternated water and signal vectors 
ft_wat = fft( w_pure_wat ); 
ft_sig = fft( w_sig); 
 
% Plot Fourier Transform of Pure water and Signal 
if (save_plot == 1) 
   plot_2_real('Fourier transform of pure water, S_ w[k]', abs(ft_wat), ... 
               'Fourier transform of signal, S_s[k] ', abs(ft_sig));  %fig 25 
end 
 
% Scale the pure water.  
%    Assume water in signal and reference is the sa me. 
%    Use 'real' coefficients in 16 element band nea r center 
min_xres=(da_xres/2)-(da_xres/128); 
max_xres=(da_xres/2)+(da_xres/128); 
mag_wat = ft_wat(min_xres:max_xres); 
mag_sig = ft_sig(min_xres:max_xres); 
mag_wat = abs( real( mag_wat) ); 
mag_sig = abs( real( mag_sig) ); 
water_max = max( mag_wat ); 
sig_max = max( mag_sig ); 
 
% Scale the pure water so it can be subtracted off 
scale = sig_max / water_max; 
pure_water = scale.*pure_water; 
 
% Subtract "scaled" pure water from signal.  
pure_sig = sig - pure_water; 
 
% Plot Pure Signal 
if (save_plot == 1) 
   plot_complex('Water-subtracted pure signal', pur e_sig);  %fig 26 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% For debug: save phase-corrected, water-subtracted  signal 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
recv_string = sprintf('%d', channel_num); 



  238 

 

signal_file = strcat( pfilename, '.recv', recv_stri ng,'.signal.dat'); 
fidsig = fopen(signal_file, 'w+b'); 
for findex=1:da_xres 
    fwrite(fidsig, real(pure_sig(findex)), 'real*4' ); 
    fwrite(fidsig, imag(pure_sig(findex)), 'real*4' ); 
end 
fclose(fidsig); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% For debug: save reference signal 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
recv_string = sprintf('%d', channel_num); 
signal_file = strcat( pfilename, '.recv', recv_stri ng,'.ref.dat'); 
fidref = fopen(signal_file, 'w+b'); 
for findex=1:da_xres 
    fwrite(fidref, real(ref(findex)), 'real*4'); 
    fwrite(fidref, imag(ref(findex)), 'real*4'); 
end 
fclose(fidref); 
 
 
% Window for the "pure signal"  
% win=hanning(1024); 
win=hanning((da_xres*2)); 
awin = linspace(0.0, 0.0, da_xres); 
% awin(1:512) = win(513:1024); 
awin(1:da_xres) = win((da_xres+1):(da_xres*2)); 
 
if (save_plot == 1) 
   plot_2_real('w_2[n]', awin);  % fig 27 
end 
 
% Apodize and zero pad the "pure signal" prior to t he Fourier transform 
zero_pad = 1; 
a_pure_sig = linspace( 0.0, 0.0, (da_xres*2)*zero_p ad); 
a_pure_sig(1:da_xres) = awin.*pure_sig; 
nmr_spect = fft( a_pure_sig ); 
  
if (save_plot == 1)  %fig 28 
   plot_complex('Phase-corrected, apodized, water-s uppressed signal with residual water 
removed',a_pure_sig); 
end 
 
results = nmr_spect; 
 
 

A.4.8 sraw_image.m 

% sraw_image.m  -  plot raw data for a single echo from a Pfile 
% 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2002, 2003 - All rights reserved. 
% Fred Frigo 
% 
% Date:  Jan 21, 2002     - based  raw_image.m 
% 
%  - create 2 images, one for reference data, one f or water supressed data 
% 
 
function sraw_image( pfile ) 
 
% Check to see if pfile name was passed in 
if ( nargin == 0 ) 
   % Enter name of Pfile 
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   [fname, pname] = uigetfile('*.*', 'Select Pfile' ); 
   pfile = strcat(pname, fname); 
end 
 
i = sqrt(-1); 
 
% Open Pfile to read reference scan data. 
fid = fopen(pfile,'r', 'ieee-be'); 
if fid == -1 
    err_msg = sprintf('Unable to locate Pfile %s', pfile) 
    return; 
end 
 
% Determine size of Pfile header based on Rev numbe r 
status = fseek(fid, 0, 'bof'); 
[f_hdr_value, count] = fread(fid, 1, 'real*4'); 
rdbm_rev_num = f_hdr_value(1); 
if( rdbm_rev_num == 7.0 ) 
    pfile_header_size = 39984;  % LX 
elseif ( rdbm_rev_num == 8.0 ) 
    pfile_header_size = 60464;  % Cardiac / MGD 
elseif (( rdbm_rev_num > 5.0 ) && (rdbm_rev_num < 6 .0))  
    pfile_header_size = 39940;  % Signa 5.5 
else 
    % In 11.0 (ME2) the header and data are stored as little-endian 
    fclose(fid); 
    fid = fopen(pfile,'r', 'ieee-le'); 
    status = fseek(fid, 0, 'bof'); 
    [f_hdr_value, count] = fread(fid, 1, 'real*4');  
    if (f_hdr_value == 9.0) 
        pfile_header_size= 61464; 
    else 
        err_msg = sprintf('Invalid Pfile header rev ision: %f', f_hdr_value ) 
        return; 
    end 
end   
 
status = fseek(fid, 0, 'bof'); 
 
% Read header information 
[hdr_value, count] = fread(fid, 5122, 'integer*2');  
nechoes = hdr_value(36); 
nframes = hdr_value(38); 
point_size = hdr_value(42); 
da_xres = hdr_value(52); 
da_yres = hdr_value(53); 
rc_xres = hdr_value(54); 
rc_yres = hdr_value(55); 
start_recv = hdr_value(101); 
stop_recv = hdr_value(102); 
nreceivers = (stop_recv - start_recv) + 1; 
slices_in_pass = hdr_value(5122); 
 
% Read 'user19' CV  - number of reference frames 
status = fseek(fid, 0, 'bof'); 
[f_hdr_value, count] = fread(fid, 74, 'real*4'); 
rdbm_rev_num = f_hdr_value(1); 
num_ref_frames = f_hdr_value(74); 
 
 
% Compute size (in bytes) of each frame, echo and s lice 
data_elements = da_xres*2*(da_yres-1); 
frame_size = da_xres*2*point_size; 
echo_size = frame_size*da_yres; 
slice_size = echo_size*nechoes; 
mslice_size = slice_size*nreceivers; 
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for k = 1:1000  % give a large number 1000 to loop forever 
     
  % Enter slice number to plot 
  my_slice = 1; 
  if ( slices_in_pass > 1 ) 
      slice_msg = sprintf('Enter the slice number: [1..%d]',slices_in_pass);  
      my_slice = input(slice_msg); 
      if (my_slice > slices_in_pass) 
          err_msg = sprintf('Invalid number of slic es. Slice number set to 1.') 
          my_slice = 1; 
      end 
  end 
   
  % Enter echo number to plot 
  my_echo = 1; 
  if ( nechoes > 1 ) 
      echo_msg = sprintf('Enter the echo number: [1 ..%d]',nechoes); 
      my_echo = input(echo_msg); 
      if (my_echo > nechoes ) 
          err_msg = sprintf('Invalid echo number. E cho number set to 1.') 
          my_echo = 1; 
      end 
  end 
   
  % Enter receiver number to plot 
  my_receiver = 1; 
  if ( nreceivers > 1 ) 
      recv_msg = sprintf('Enter the receiver number : [1..%d]',nreceivers); 
      my_receiver = input(recv_msg); 
      if (my_receiver > nreceivers) 
          err_msg = sprintf('Invalid receiver numbe r. Receiver number set to 1.') 
          my_receiver = 1; 
      end       
  end 
 
 
  % Compute offset in bytes to start of frame.  (sk ip baseline view) 
  file_offset = pfile_header_size + ((my_slice - 1) *mslice_size) + ... 
                      + ((my_receiver -1)*slice_siz e) + ... 
                      + ((my_echo-1)*echo_size) + . .. 
                      + (frame_size); 
   
  status = fseek(fid, file_offset, 'bof'); 
 
  % read data: point_size = 2 means 16 bit data, po int_size = 4 means EDR ) 
  if (point_size == 2 ) 
      [raw_data, count] = fread(fid, data_elements,  'integer*2'); 
  else 
      [raw_data, count] = fread(fid, data_elements,  'integer*4'); 
  end 
 
  %frame_data = zeros(da_xres); 
  for j = 1:(da_yres -1) 
     row_offset = (j-1)*da_xres*2; 
     for m = 1:da_xres 
        frame_data(j,m) = raw_data( ((2*m)-1) + row _offset) + i*raw_data((2*m) + 
row_offset); 
     end 
  end 
   
  figure(k); 
  subplot(2,1,1); 
  imagesc( abs(frame_data([1:num_ref_frames],:) ));  
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  %title(sprintf('Magnitude of Raw Reference Spectr o Data, slice %d, recv %d, echo %d', 
my_slice, my_receiver, my_echo)); 
  title('Magnitude of Raw Reference Data'); 
  xlabel('time'); 
  ylabel('frame number'); 
  subplot(2,1,2); 
  imagesc( abs(frame_data([num_ref_frames+1:nframes -1],:))); 
  title('Magnitude of Raw Water Suppressed Data'); 
  xlabel('time'); 
  ylabel('frame number'); 
 
  % check to see if we should quit 
  quit_answer = input('Press Enter to continue, "q"  to quit:', 's'); 
  if ( size( quit_answer ) > 0 ) 
     if (quit_answer == 'q') 
         break; 
     end 
  end 
   
end 
fclose(fid); 
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A.5 MATLAB Code for 2D Spectral Estimation 

A.5.1 APESCapon2D.m 

% APESCapon2D.m  - weighted 2D APES / weighted 2D C apon 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
%  Fred J. Frigo, James A. Heinen 
% 
% Nw must be greater than or equal to N/2. 
% k1 and k2 must satisfy 0<=k1<k2<=Nw-1. 
% If bet1=0, only one matrix inversion is used. 
% If bet1=-0.5 and bet2=0, only one fft is used. 
% 0<gam<=1.  gam=1 reduces to 2D APES.  gam=0 would  reduce to 2D Capon. 
% 
 
function S=APESCapon2D(x,N,M,Nsig,Nw,k1,k2,delsig,b et1,bet2,gam,C,g) 
 
delw=pi/Nw; 
x1=x(1,:); 
xbb=x1(ones(M,1)*[1:N]+[0:M-1]'*ones(1,N)); 
if C>1 
   for i=2:C 
      xi=x(i,:); 
      xbb=[xbb 
         xi(ones(M,1)*[1:N]+[0:M-1]'*ones(1,N))]; 
   end 
end 
if bet1==0 
   bet=bet2; 
   Rinv=fRinv(xbb,N,M,bet,C); 
end 
if bet1==-0.5&bet2==0 
   Xbb=fXbb(xbb,N,M,Nw,0,C); 
end 
for m=0:Nsig-1 
   sig=m*delsig; 
   if bet1~=0 
      bet=bet1*sig+bet2; 
      Rinv=fRinv(xbb,N,M,bet,C); 
   end 
   if bet1==-0.5&bet2==0 
      L=fL(N,0.5*sig); 
   else 
      bet=bet1*sig+bet2; 
      Xbb=fXbb(xbb,N,M,Nw,sig+2*bet,C); 
      L=fL(N,sig+bet); 
   end 
   sbb0=exp(-sig*[0:M-1]'*ones(1,k2-k1+1)+j*delw*[0 :M-1]'*[k1:k2]); 
   sbb=g(1)*sbb0; 
   if C>1 
      for i=2:C 
         sbb=[sbb 
            g(i)*sbb0]; 
      end 
   end 
   for k=k1:k2 
      Qinv=Rinv+gam*Rinv*Xbb(:,k+1)*Xbb(:,k+1)'*Rin v/... 
         (L-gam*Xbb(:,k+1)'*Rinv*Xbb(:,k+1)); 
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      S(m+1,k-k1+1)=sbb(:,k-k1+1)'*Qinv*Xbb(:,k+1)/ ... 
         (L*sbb(:,k-k1+1)'*Qinv*sbb(:,k-k1+1)); 
   end 
end 
return 
 
function Rinv=fRinv(xbb,N,M,bet,C) 
e=repmat(exp(-bet*[0:N-1]),M*C,1); 
xbbe=xbb.*e; 
R=xbbe*xbbe'; 
Rinv=inv(R); 
return 
 
function Xbb=fXbb(xbb,N,M,Nw,sig,C) 
e=repmat(exp(-sig*[0:N-1]),M*C,1); 
xbbe=xbb.*e; 
Xbb=fft(xbbe.',2*Nw).'; 
return 
 
function L=fL(N,sig) 
if sig==0 
   L=N; 
else 
   L=(1-exp(-2*sig*N))/(1-exp(-2*sig)); 
end 
return 
 
 
 
 

A.5.2 Capon2D.m 

% Capon2D.m - weighted 2D Capon 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
%  Fred J. Frigo, James A. Heinen 
% 
% K must be 1 or N.  alp1 and alp2 are irrelevant i f K=1. 
% Nw must be greater than or equal to N/2. 
% k1 and k2 must satisfy 0<=k1<k2<=Nw-1. 
% If bet1=0, only one matrix inversion is used. 
% If alp1=-0.5 and alp2=0, only one fft is used. 
% If K=1, no fft's are used. 
% 
function S=Capon2D(x,N,M,K,Nsig,Nw,k1,k2,delsig,alp 1,alp2,bet1,bet2,C,g) 
 
delw=pi/Nw; 
x1=x(1,:); 
xbb=x1(ones(M,1)*[1:N]+[0:M-1]'*ones(1,N)); 
if C>1 
   for i=2:C 
      xi=x(i,:); 
      xbb=[xbb 
         xi(ones(M,1)*[1:N]+[0:M-1]'*ones(1,N))]; 
   end 
end 
if bet1==0 
   bet=bet2; 
   Rinv=fRinv(xbb,N,M,bet,C); 
end 
if K==1 
   Xbb=repmat(x(1,1:M).',1,Nw); 
   if C>1 
      for i=2:C 
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         Xbb=[Xbb 
            repmat(x(i,1:M).',1,Nw)]; 
      end 
   end 
elseif (K~=1)&(alp1==-0.5&alp2==0) 
   Xbb=fXbb(xbb,N,M,Nw,0,C); 
end 
for m=0:Nsig-1 
   sig=m*delsig; 
   if bet1~=0 
      bet=bet1*sig+bet2; 
      Rinv=fRinv(xbb,N,M,bet,C); 
   end 
   if K==1 
      L=1; 
   elseif (K~=1)&(alp1==-0.5&alp2==0) 
      L=fL(N,0.5*sig); 
   else 
      alp=alp1*sig+alp2; 
      Xbb=fXbb(xbb,N,M,Nw,sig+2*alp,C); 
      L=fL(N,sig+alp); 
   end 
   sbb0=exp(-sig*[0:M-1]'*ones(1,k2-k1+1)+j*delw*[0 :M-1]'*[k1:k2]); 
   sbb=g(1)*sbb0; 
   if C>1 
      for i=2:C 
         sbb=[sbb 
            g(i)*sbb0]; 
      end 
   end 
   S(m+1,:)=(ones(1,M*C)*(conj(sbb).*(Rinv*Xbb(:,k1 +1:k2+1))))./... 
      (L*ones(1,M*C)*(conj(sbb).*(Rinv*sbb))); 
end 
return 
 
function Rinv=fRinv(xbb,N,M,bet,C) 
e=repmat(exp(-bet*[0:N-1]),M*C,1); 
xbbe=xbb.*e; 
R=xbbe*xbbe'; 
Rinv=inv(R); 
return 
 
function Xbb=fXbb(xbb,N,M,Nw,sig,C) 
e=repmat(exp(-sig*[0:N-1]),M*C,1); 
xbbe=xbb.*e; 
Xbb=fft(xbbe.',2*Nw).'; 
return 
 
function L=fL(N,sig) 
if sig==0 
   L=N; 
else 
   L=(1-exp(-2*sig*N))/(1-exp(-2*sig)); 
end 
return 
 
 
 

A.5.3 fgest.m 

% fgest.m - gain estimation for multiple-channel si gnals for FID signal 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
%  Fred J. Frigo, James A. Heinen 
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% 
% xlong is the matrix containing signals from C cha nnels 
% 
function gest=fgest(xlong,C) 
one=ones(C,1); 
R=xlong*xlong'; 
Rg=R-trace(R)*eye(C); 
RgRginv=inv(Rg'*Rg); 
gest=RgRginv*one/(one'*RgRginv*one); 
return 

 

A.5.4 frhsqest.m 

% frhosqest.m  - multiple-channel rho-sqaured (nois e variance) estimation for FID signal 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
%  Fred J. Frigo, James A. Heinen 
% 
% xlong is the matrix containing signals from C cha nnels 
% 
% Ns = length of signal (high SRN region of FID sig nal) 
% Nf = total length of FID signal. 
% 
% note:  rho^2 is estimated from "noisy" end of FID  signal 
% 
 
function rhosqest=frhosqest(xlong,Ns,Nf,C) 
xrho=xlong(:,Ns+1:Nf); 
for i=1:C 
   rhosqest(i)=xrho(i,:)*xrho(i,:)'; 
end 
rhosqest=rhosqest.'/(Nf-Ns); 
return 
 
 
 
 

A.5.5 getx.m 

% getx.m - get simulated test signal (5 different d amped sinusoid components) 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
%  Fred J. Frigo, James A. Heinen 
% 
% note: if C > 1, a set of test signals is created,  each with a different 
%       SNR and gain as specified by gideal, dbSNRi deal 
% 
function [xlong,xclean,rhosqideal]=getx(Nf,delw,C,g ideal,dbSNRideal) 
n=[0:Nf-1]; 
t=n; 
xclean=2*exp(j*pi/3)*exp((-0.003+j*20*delw)*t); 
xclean=xclean+4*exp(-j*pi/6)*exp((-0.008+j*25*delw) *t); 
xclean=xclean+2*exp(j*pi)*exp((-0.001+j*50*delw)*t) ; 
xclean=xclean+4*exp(j*pi/6)*exp((-0.008+j*210*delw) *t); 
xclean=xclean+2*exp(-j*pi/3)*exp((-0.003+j*220*delw )*t); 
xeng=xclean*xclean'; 
for i=1:C 
   noise=(randn(size(xclean)))+j*(randn(size(xclean ))); 
   neng=noise*noise'; 
   noisegain(i)=sqrt((abs(gideal(i))^2*xeng)/(neng* 10^(dbSNRideal(i)/10))); 
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   noisei=noisegain(i)*noise; 
   rhosqideal(i)=noisei*noisei'/Nf; 
   xi=gideal(i)*xclean+noisei; 
   if i==1 
      xlong=xi; 
   else 
      xlong=[xlong 
         xi]; 
   end 
end 
rhosqideal=rhosqideal.'; 
return 
 
 
 
 

A.5.6 getxmrs.m 

% getxmrs.m - read phase-corrected, water-suppresse d MRS signal 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
% Fred J. Frigo, James A. Heinen 
% 
% Note: If C > 1, a file for each receive channel w ill be obtained. 
% 
function [xlong,dbSNRideal,fname]=getxmrs(Nf,C); 
for i=1:C 
   [fname, pname] = uigetfile('*.*', 'Select spectr oscopy raw data file'); 
   afile = strcat(pname, fname); 
   fid = fopen(afile,'r', 'ieee-le'); 
   [raw_data, count] = fread(fid, inf, 'real*4'); 
   fclose(fid); 
   for m = 1:(count/2) 
        frame_data(m) = raw_data((2*m)-1) + j*raw_d ata(2*m); 
   end 
   xi=frame_data(1:Nf)*0.0001; 
   xeng(i)=xi*xi'; 
   if i==1 
      xlong=xi; 
   else 
      xlong=[xlong 
         xi]; 
   end 
end 
dbSNRideal=NaN; 
return 
 
 

A.5.7 peak.m 

% peak.m - peak-enhancement, plot peaks as Dirac de lta functions   
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
%  Fred J. Frigo, James A. Heinen 
% 
% S - Input is 2D (real or complex) surface. 
% thresh - threshold; peaks must have magnitude gre ater than this 
% suppreslastrow - if set to 1, ignore peaks from l ast row (recommended) 
% Sp - Output representing 2D peak-enhanced surface  
% 
function Sp=peak(S,thresh,suppresslastrow) 
S=abs(S); 
[Nsig,Nw]=size(S); 
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Sb=zeros(Nsig+2,Nw+2); 
Sbp=zeros(Nsig+2,Nw+2); 
for m=1:Nsig 
   for k=1:Nw 
      Sb(m+1,k+1)=S(m,k); 
   end 
end 
for m=2:Nsig+1 
   for k=2:Nw+1 
      if Sb(m,k)>=max([Sb(m+1,k-1) Sb(m+1,k) Sb(m+1 ,k+1) Sb(m,k-1) ... 
            Sb(m,k+1) Sb(m-1,k-1) Sb(m-1,k) Sb(m-1, k+1)])&Sb(m,k)>=thresh 
       Sbp(m,k)=Sb(m,k); 
    end 
   end 
end 
for m=1:Nsig 
   for k=1:Nw 
      Sp(m,k)=Sbp(m+1,k+1); 
   end 
end 
if suppresslastrow==1 
   for k=1:Nw 
      Sp(Nsig,k)=0; 
   end 
end 
return 
 
 
 

A.5.8 peakproj.m 

% peakproj.m - Create peak projection plot of a 2D surface 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
%  Fred J. Frigo, James A. Heinen 
% 
function Spp=peakproj(S,thresh) 
S=abs(S); 
[Nsig,Nw]=size(S); 
for k=1:Nw 
   Spp(k)=max(S(:,k)); 
   if Spp(k)<=thresh 
      Spp(k)=0; 
   end 
end 
return 
 
 
 

A.5.9 spectrum2D.m 

% spectrum2D.m - mainline function to evaluate 2D C apon / 2D APES 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
% Fred J. Frigo, James A. Heinen 
% 
% This is the main MATLAB code used to analyze: 
%   weighted 2D Capon  
%   weighted 2D APES 
%   combined weighted 2D APES / 2D APES 
%   2D multiple-channel spectral estimation using s ignal averaging 
%   2D multiple-channel spectral estimation using s pectrum averaging 
% 
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% Use datatype=1 to use simulated test signal or 
%     datatype=2 to use phase-corrected, water-supp ressed MRS data 
% 
% Note: 
%   Standard 2D Capon:   alp1=alp2=bet1=bet2=gam=0;    spectrumtype=1 
%   Standard 2D APES: alp1=alp2=bet1=bet2=0; gam=1;    spectrumtype=2 
% 
clear all 
close all 
N=1792;  %512   % Note: for MRS data N+M should = 2 048 for optimum results! 
M=256;   %128 
Ns=1800;   %1800 
Nf=2048;%0<Ns<Nf.  Nf>=N+M-1. 
K=N;%K must be 1 or N.  alp1 and alp2 are irrelevan t if K=1. 
Nsig=40; 
Nw=N/2;%Nw must be greater than or equal to N/2. 
k1=0; 
k2=Nw-1;%0<=k1<k2<=Nw-1. 
delsig=0.0005; 
alp1=0; 
alp2=0; 
bet1=0;  % 0 = default - set this to 0.5 to increas e peak picking sensitivity 
bet2=0; 
gam=0;%0<gam<=1.  gam=1 reduces to 2D APES.  gam=0 would reduce to 2D Capon. 
C=1; 
 
datatype=2;%=1 for simulated data, 2 for mrs data. 
spectrumtype=1;%=1 for 2D Capon, 2 for 2D APES/Capo n. 
 
if C>1 
   combotype=1;%=1 for signal averaging, 2 for spec trum averaging, 3 for composite 
spectrum. 
   gtype=2;%=1 for ideal g's, 2 for estimated g's. 
           %ideal can be used only for simulated da ta. 
   rhosqtype=2;%=1 for ideal rhosq's, 2 for estimat ed rhosq's. 
               %ideal can be used only for simulate d data. 
end 
  
delw=pi/Nw; 
mrs_name='x(t)'; 
if datatype==1 
   gideal=[1];%[0.5*j+0.4 0.2 0.15+j*3 0.15-j*3].'; %length(gideal)=C.  If C=1, then 
gideal=1. 
   dbSNRideal=[10];%[40 40 40 40].';%length(dbSNRid eal)=C. 
   [xlong,xclean,rhosqideal]=getx(Nf,delw,C,gideal, dbSNRideal); 
elseif datatype==2 
   [xlong,dbSNRideal,mrs_name]=getxmrs(Nf,C); 
   tempC=37  %37 
   %[xlong,dbSNRideal,mrs_name]=getxmrs_sphere(Nf,C ); 
   k1=floor(0.02*Nw/pi); 
   k2=floor(0.8*Nw/pi); 
end 
 
x=xlong(:,1:N+M-1); 
 
if C>1 
    
   if gtype==1&datatype==1 
      g=gideal; 
   elseif gtype==2 
      g=fgest(xlong,C); 
      %g=fgest(x,C); 
   end 
    
   if rhosqtype==1&datatype==1 
      rhosq=rhosqideal; 
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   elseif rhosqtype==2 
      rhosq=frhosqest(xlong,Ns,Nf,C); 
   end 
    
   Rw=diag(rhosq); 
   Rwinv=inv(Rw);    
   w=Rwinv*g/(g'*Rwinv*g); 
   xest=w'*x; 
 
else % if C == 1, then g = 1 
    g=1; 
end 
 
tic 
 
if (C==1)|(C>1&combotype==3) 
   if spectrumtype==1 
      S=Capon2D(x,N,M,K,Nsig,Nw,k1,k2,delsig,alp1,a lp2,bet1,bet2,C,g); 
   elseif spectrumtype==2 
      S=APESCapon2D(x,N,M,Nsig,Nw,k1,k2,delsig,bet1 ,bet2,gam,C,g); 
   end 
end 
 
if C>1&combotype==1 
   if spectrumtype==1 
      S=Capon2D(xest,N,M,K,Nsig,Nw,k1,k2,delsig,alp 1,alp2,bet1,bet2,1,1); 
   elseif spectrumtype==2 
      S=APESCapon2D(xest,N,M,Nsig,Nw,k1,k2,delsig,b et1,bet2,gam,1,1); 
   end 
end 
 
if C>1&combotype==2 
   S=zeros(Nsig,k2-k1+1); 
   for i=1:C 
      if spectrumtype==1 
         Si=Capon2D(x(i,:),N,M,K,Nsig,Nw,k1,k2,dels ig,alp1,alp2,bet1,bet2,1,1); 
      elseif spectrumtype==2 
         Si=APESCapon2D(x(i,:),N,M,Nsig,Nw,k1,k2,de lsig,bet1,bet2,gam,1,1); 
      end 
      S=S+conj(w(i))*Si; 
   end 
end 
 
toc 
 
if spectrumtype==1 
   paras=['N = ',num2str(N),', M = ',num2str(M),', K = ',num2str(K),... 
         ', alp1 = ',num2str(alp1),', alp2 = ',num2 str(alp2),... 
         ', bet1 = ',num2str(bet1),', bet2 = ',num2 str(bet2),... 
         ', SNR = ',num2str(dbSNRideal'),' db']; 
elseif spectrumtype==2 
   paras=['N = ',num2str(N),', M = ',num2str(M),...  
         ', bet1 = ',num2str(bet1),', bet2 = ',num2 str(bet2),... 
         ', gam = ',num2str(gam),', SNR = ',num2str (dbSNRideal'),' db']; 
end 
 
sigset=delsig*[0:Nsig-1]; 
wset=delw*[k1:k2]; 
n=[0:N+M-2]; 
 
Sp=peak(S,0,1); 
Spp=peakproj(Sp,0); 
 
% create projection of the non-peak enhanced spectr um (fig38 phD) 
rawSpp=peakproj(abs(S), 0); 
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% Plots 
if( spectrumtype == 1) 
  analysis_string = '2D Capon '; 
else 
  analysis_string = '2D Capon/APES '; 
end 
 
figure 
title_string = strcat([analysis_string, 'surface pl ot of |S(\sigma,\omega)| for ', 
mrs_name]);  
surf(wset,sigset,abs(S)),title(title_string), xlabe l('\omega'), 
ylabel('\sigma'),zlabel('|S(\sigma,\omega)|'); 
 
figure 
title_string = strcat([analysis_string, 'contour pl ot of |S(\sigma,\omega)| for ', 
mrs_name]);  
contour(wset,sigset,abs(S)),title(title_string),xla bel('\omega'),ylabel('\sigma'); 
 
figure 
title_string = strcat([analysis_string, 'peak-enhan ced surface plot of |S(\sigma,\omega)| 
for ', mrs_name]);  
surf(wset,sigset,Sp),title(title_string),xlabel('\o mega'),ylabel('\sigma'),zlabel('|S(\si
gma,\omega)|'); 
  
figure 
title_string = strcat([analysis_string, 'peak-enhan ced contour plot of |S(\sigma,\omega)| 
for ', mrs_name]);  
contour(wset,sigset,Sp),title(title_string),xlabel( '\omega'),ylabel('\sigma'); 
% using sign(Sp) causes all peaks to be shown, no m atter how small 
% contour(wset,sigset,sign(Sp)),title(title_string) ,xlabel('\omega'),ylabel('\sigma'); 
 
figure 
title_string = strcat([analysis_string, 'projected peaks of |S(\sigma,\omega)| for ', 
mrs_name]);  
plot(wset,Spp),title(title_string),xlabel('\omega') ,ylabel('|S(\sigma,\omega)|'); 
 
figure 
title_string = strcat([analysis_string, 'projection  of |S(\sigma,\omega)| for ', 
mrs_name]);  
plot(wset,rawSpp),title(title_string),xlabel('\omeg a'),ylabel('|S(\sigma,\omega)|'); 
 
X=fft(x.').'; 
[Cft,Nft]=size(abs(X)); 
k1ft=floor(Nft*k1/(2*Nw)); 
k2ft=floor(Nft*k2/(2*Nw)); 
wfset=[k1ft:k2ft]*2*pi/Nft; 
figure 
plot(wfset,abs(X(:,k1ft+1:k2ft+1))/Nft),title(strca t(['Fourier transform of 
',mrs_name])),xlabel('\omega'),ylabel('|S(\omega)|' ); 
%plot(wfset,abs(X(:,k1ft+1:k2ft+1))/Nft),title('abs (FFT)s of observed 
signal(s)'),xlabel(paras) 
if C>1 
   Xest=fft(xest.').'; 
   figure 
   plot(wfset,abs(Xest(:,k1ft+1:k2ft+1))/Nft),title ('average abs(FFT)'),xlabel(paras) 
end 
figure 
plot(n,abs(x).'),title(strcat(['Input signal ',mrs_ name])), xlabel('t'),ylabel('x(t)'); 
%plot(n,abs(x).'),title('observed signal(s)'),xlabe l(paras) 
 
% Plots identical to above, but scaled to ppm axis.  
% PPM axis  ( calibrated for 37C ) 
% tempC must be set for proper ppm axis scaling. (t empC=37) for in vivo 
ppm_start_37C = -4.55;   
ppm_stop_37C = 0.30; 
ppm_per_degree_C=0.01; 
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ppm_offset = (tempC-37)*ppm_per_degree_C; 
ppm_start = ppm_start_37C + ppm_offset; 
ppm_stop = ppm_stop_37C + ppm_offset; 
ppm_x = linspace(ppm_start,ppm_stop,(k2-k1+1)); 
 
 
figure 
title_string = strcat([analysis_string, 'surface pl ot of |S(\sigma,\omega)| for ', 
mrs_name]);  
surf(ppm_x,sigset,abs(S)), xlabel('ppm'), ylabel('\ sigma'),zlabel('|S(\sigma,\omega)|'); 
set(gca,'XTick',-4.0:1.0:0.0); 
set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0.0' }); 
 
figure 
title_string = strcat([analysis_string, 'contour pl ot of |S(\sigma,\omega)| for ', 
mrs_name]);  
contour(ppm_x,sigset,abs(S)),xlabel('ppm'),ylabel(' \sigma'); 
set(gca,'XTick',-4.0:1.0:0.0); 
set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0.0' }); 
 
figure 
title_string = strcat([analysis_string, 'peak enhan ced surface plot of |S(\sigma,\omega)| 
for ', mrs_name]);  
surf(ppm_x,sigset,Sp),xlabel('ppm'),ylabel('\sigma' ),zlabel('|S(\sigma,\omega)|'); 
set(gca,'XTick',-4.0:1.0:0.0); 
set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0.0' }); 
 
figure 
title_string = strcat([analysis_string, 'peak enhan ced contour plot of |S(\sigma,\omega)| 
for ', mrs_name]);  
contour(ppm_x,sigset,Sp),xlabel('ppm'),ylabel('\sig ma'); 
set(gca,'XTick',-4.0:1.0:0.0); 
set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0.0' }); 
 
figure 
title_string = strcat([analysis_string, 'projected peaks of |S(\sigma,\omega)| for ', 
mrs_name]);  
plot(ppm_x,Spp),xlabel('ppm'),ylabel('|S(\sigma,\om ega)|'); 
set(gca,'XTick',-4.0:1.0:0.0); 
set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0.0' }); 
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A.6 MATLAB Code for Simulations 

A.6.1 check_for_nan.m 

% check_for_nan.m - Check for NaN and set all prior  points to NaN if found. 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2004 - All rights reserved. 
% Fred J. Frigo 
% Feb 10, 2004  - original 
%  
% 
 
function out_data=check_for_nan(in_data) 
 
array_size = max(size(in_data)); 
 
% Check for NaN and set all prior points to NaN if found. 
for m=array_size:-1:1 
    if( isnan(in_data(m)) == 1 ) 
        for k=m:-1:1 
            out_data(k)=NaN; 
        end 
        break;    
    else 
        out_data(m)=in_data(m); 
    end 
end 
return; 
 
 

A.6.2 count_peaks.m 

% count_peaks.m - Count the number of peaks that ex ceed a threshold 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003 - All rights reserved. 
% Fred J. Frigo 
% Dec 23, 2003 
% 
% 
 
function peaks_found=count_peaks(S,thresh) 
peaks_found = 0; 
S=abs(S); 
[Nsig,Nw]=size(S); 
for k=1:Nw 
   Spp(k)=max(S(:,k)); 
   if Spp(k)>thresh 
      peaks_found = peaks_found + 1; 
   end 
end 
return 
 
 

A.6.3 create_noise.m 

% create_noise.m  -  create 10 noise instances and save to files 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
% Fred Frigo 
% Dec 10, 2003 
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% Feb 20, 2004  - added extra noise files for multi -channel testing 
 
clear all 
close all 
 
% size of desired noise frame 
N=1024; 
 
% number of noise frames to create 
num_noise_frames = 40; 
filename=[ 
    'noise_0.dat'; 
    'noise_1.dat'; 
    'noise_2.dat'; 
    'noise_3.dat'; 
    'noise_4.dat'; 
    'noise_5.dat'; 
    'noise_6.dat'; 
    'noise_7.dat'; 
    'noise_8.dat'; 
    'noise_9.dat'; 
    'noise10.dat'; 
    'noise11.dat'; 
    'noise12.dat'; 
    'noise13.dat'; 
    'noise14.dat'; 
    'noise15.dat'; 
    'noise16.dat'; 
    'noise17.dat'; 
    'noise18.dat'; 
    'noise19.dat'; 
    'noise20.dat'; 
    'noise21.dat'; 
    'noise22.dat'; 
    'noise23.dat'; 
    'noise24.dat'; 
    'noise25.dat'; 
    'noise26.dat'; 
    'noise27.dat'; 
    'noise28.dat'; 
    'noise29.dat'; 
    'noise30.dat'; 
    'noise31.dat'; 
    'noise32.dat'; 
    'noise33.dat'; 
    'noise34.dat'; 
    'noise35.dat'; 
    'noise36.dat'; 
    'noise37.dat'; 
    'noise38.dat'; 
    'noise39.dat']; 
     
% debug flag for plotting 
do_plot=0; 
 
% Loop to create complex noise frames and plot them  
for index=1:num_noise_frames 
    
   % Create complex noise  
   noise=(randn(N) + j*(randn(N)))./sqrt(2.0); 
    
   if (index ==1) 
       figure; 
       subplot(2,1,1); 
       plot(1:N, abs(noise), 'k' );   
       if (index == num_noise_frames) 



  254 

 

           xlabel('Magnitude of noise'); 
       end 
        
       subplot(2,1,2); 
       plot(1:N, angle(noise), 'k' ); 
       if (index == num_noise_frames) 
           xlabel('Phase of noise'); 
       end 
   end 
    
   % Save to file 
   fidsig = fopen(filename(index,:), 'w+b'); 
   for findex=1:N 
      fwrite(fidsig, real(noise(findex)), 'real*4') ; 
      fwrite(fidsig, imag(noise(findex)), 'real*4') ; 
   end 
   fclose(fidsig); 
    
end 
 
 

A.6.4 create_signals.m 

% create_signals.m  -  create 3 simulation signals and save to files 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
% Fred Frigo 
% Dec 10, 2003 
% Mar 14, 2004 - plot enhancements 
 
clear all 
close all 
 
% size of desired signals 
Nf=1024; 
N=512; 
Nw=N/2; 
delw=pi/Nw; 
t=[0:Nf-1]; 
 
% signal I 
signal_1=1.0*exp(j*pi/4.0)*exp((-0.002+j*(63.0)*del w)*t); 
signal_1=signal_1+(0.75)*exp(j*(-pi/2.0))*exp((-0.0 06+j*(127.0)*delw)*t); 
signal_1=signal_1+(0.25)*exp(j*0.0)*exp((-0.004+j*( 191.0)*delw)*t); 
 
%------------------------------ 
% plot of signal I 
%------------------------------ 
plot_complex('Signal I', signal_1); 
 
% Save to file 
fidsig = fopen('signal_1.dat', 'w+b'); 
for findex=1:Nf 
   fwrite(fidsig, real(signal_1(findex)), 'real*4') ; 
   fwrite(fidsig, imag(signal_1(findex)), 'real*4') ; 
end 
fclose(fidsig); 
 
%------------------------------ 
% signal II 
%------------------------------ 
signal_2=1.0*exp(j*pi/4.0)*exp((-0.001+j*(30.0)*del w)*t); 
signal_2=signal_2+(25.0)*exp(j*0.0)*exp((-0.002+j*( 40.0)*delw)*t); 
signal_2=signal_2+(0.75)*exp(j*(-pi/4.0))*exp((-0.0 04+j*(50.0)*delw)*t); 
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signal_2=signal_2+(0.25)*exp(j*0.0)*exp((-0.003+j*( 100.0)*delw)*t); 
signal_2=signal_2+(1.0)*exp(j*0.0)*exp((-0.001+j*(1 20.0)*delw)*t); 
signal_2=signal_2+(10.0)*exp(j*(pi/2.0))*exp((-0.00 2+j*(125.0)*delw)*t); 
signal_2=signal_2+(0.5)*exp(j*(-pi/2.0))*exp((-0.00 2+j*(195.0)*delw)*t); 
signal_2=signal_2+(1.0)*exp(j*0.0)*exp((-0.003+j*(2 25.0)*delw)*t); 
 
% plot of signal II 
plot_complex('Signal II', signal_2); 
 
% Save to file 
fidsig = fopen('signal_2.dat', 'w+b'); 
for findex=1:Nf 
   fwrite(fidsig, real(signal_2(findex)), 'real*4') ; 
   fwrite(fidsig, imag(signal_2(findex)), 'real*4') ; 
end 
fclose(fidsig); 
 
%------------------------------ 
% signal III 
%------------------------------ 
signal_3=0.5*exp(j*0.0)*exp((-0.004+j*(0.0)*delw)*t ); 
signal_3=signal_3+(0.75)*exp(j*(-pi/2.0))*exp((-0.0 02+j*(10.0)*delw)*t); 
signal_3=signal_3+(1.0)*exp(j*(pi/4.0))*exp((-0.003 +j*(31.0)*delw)*t); 
signal_3=signal_3+(0.75)*exp(j*(0.0))*exp((-0.003+j *(34.0)*delw)*t); 
signal_3=signal_3+(0.5)*exp(j*(-pi/2.0))*exp((-0.00 5+j*(55.0)*delw)*t); 
signal_3=signal_3+(1.0)*exp(j*(pi/2.0))*exp((-0.001 +j*(63.0)*delw)*t); 
signal_3=signal_3+(1.0)*exp(j*(-3.0*pi/4.0))*exp((- 0.005+j*(66.0)*delw)*t); 
signal_3=signal_3+(0.25)*exp(j*(0.0))*exp((-0.004+j *(73.0)*delw)*t); 
signal_3=signal_3+(0.5)*exp(j*(pi/2.0))*exp((-0.000 +j*(95.0)*delw)*t); 
signal_3=signal_3+(0.5)*exp(j*(-pi/2.0))*exp((-0.00 6+j*(104.0)*delw)*t); 
 
% plot of signal III 
plot_complex('Signal III', signal_3); 
 
% Save to file 
fidsig = fopen('signal_3.dat', 'w+b'); 
for findex=1:Nf 
   fwrite(fidsig, real(signal_3(findex)), 'real*4') ; 
   fwrite(fidsig, imag(signal_3(findex)), 'real*4') ; 
end 
fclose(fidsig); 
 
 
 

A.6.5 find_peak.m 

% find_peak.m - Find peak and compute squared error  for amplitude, phase 
%               and damping 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
% Fred J. Frigo 
% Dec 23, 2003 - original  
% Jan 20, 2004 - Added bias error computation 
% 
% 
%    Inputs: 
%           S = input data signal 
%           component_info = contains info about ea ch peak in the signal 
%                       [ A, theta, sigma, omega_in dex, next_omega_flag] 
%                       A = expected magnitude 
%                       theta = expected phase 
%                       sigma = expected sigma (dam ping) 
%                       omega_index = omega index f or expected peak 
%                       next_omega_flag = 1 if OK t o use next omega index  
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%           delw = step size for omega (freq) 
%           delsig = step size for sigma (damping) 
%           threshold = magnitude required to be cl assified as a peak 
% 
%    Outputs: 
%           rms_mag_err = rms error for magnitude 
%           rms_phase_err = rms error for phase  
%           rms_sigma_err = rms error for sigma (da mping) 
%           pct_mag_err = percent error for magnitu de 
%           pct_phase_err = percent error for phase   
%           pct_sigma_err = percent error for sigma  (damping) 
%           bias_mag_err = bias error for magnitude  
%           bias_phase_err = bias error for phase  
%           bias_sigma_err = bias error for sigma ( damping) 
 
 
function [found_peak_flag, rms_mag_err, rms_phase_e rr, rms_sigma_err, ... 
                             pct_mag_err, pct_phase _err, pct_sigma_err, ... 
                             bias_mag_err, bias_pha se_err, bias_sigma_err] = find_peak( 
S, component_info, delw, delsig, threshold ) 
 
rms_mag_err = 0.0; 
rms_phase_err = 0.0; 
rms_sigma_err = 0.0; 
pct_mag_err = 0.0; 
pct_phase_err = 0.0; 
pct_sigma_err = 0.0; 
bias_mag_err = 0.0; 
bias_phase_err = 0.0; 
bias_sigma_err = 0.0; 
 
 
expected_magnitude = component_info(1); 
expected_theta = component_info(2); 
expected_sigma = component_info(3); 
omega_start = component_info(4)+1; 
next_omega_flag = component_info(5); 
 
% Obtain num of sigma values 
num_sigma = min(size( S(:,:)));  % Nsig 
 
% Check to see if we need to include two values of omega for search (boundary condition) 
if (next_omega_flag == 1) 
    omega_end = omega_start + 1; 
else 
    omega_end = omega_start; 
end 
     
found_peak_flag = 0; 
found_mag = 0.0; 
found_phase = 0.0; 
found_sigma = 0.0; 
 
for omega = omega_start:omega_end 
    [max_amp sigma_index] = max( abs(S(:,omega)) );  
    if (max_amp > threshold) 
       found_mag = abs(S(sigma_index, omega)); 
       S(sigma_index, omega); 
       found_phase = angle(S(sigma_index, omega)); 
       found_sigma = delsig*(sigma_index-1); 
       threshold = max_amp; 
       found_peak_flag = 1; 
    end 
end 
 
% Compute error terms if peak was found 
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if (found_peak_flag==1 ) 
    mag_diff = found_mag - expected_magnitude; 
    rms_mag_err = (mag_diff*mag_diff)/(expected_mag nitude*expected_magnitude); 
    pct_mag_err = abs(mag_diff)/abs(expected_magnit ude); 
    bias_mag_err = mag_diff/expected_magnitude; 
     
    phase_diff = found_phase - expected_theta; 
    % -pi < phase_diff < pi 
    if (phase_diff > pi )  
        phase_diff = phase_diff - (2.0*pi); 
    elseif ( -pi > phase_diff ) 
        phase_diff = phase_diff + (2.0*pi); 
    end 
    rms_phase_err = (phase_diff*phase_diff)/((2.0*p i)*(2.0*pi)); 
    pct_phase_err = abs(phase_diff)/(2.0*pi); 
    bias_phase_err = phase_diff/(2.0*pi); 
     
    sigma_diff = found_sigma - expected_sigma; 
    max_sigma = (num_sigma-1)*delsig; 
    rms_sigma_err = (sigma_diff*sigma_diff)/(max_si gma*max_sigma); 
    pct_sigma_err = abs(sigma_diff)/abs(max_sigma);  
    bias_sigma_err = sigma_diff/max_sigma; 
end 
 
return 
 
 

A.6.6 mplot_1.m 

% mplot_1.m - Mainline script to generate multichan nel plot #1 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2004 - All rights reserved. 
% Fred J. Frigo 
% Feb 29, 2004  - original 
%  
% Plots are obtained from msim_1_results.txt create d by 
%  the msim_1.m MATLAB file. 
% 
% Standard Capon with number of channels, C = 1 
% Standard Capon with signal averaging, C = 4 
% Standard Capon with spectrum averaging, C=4 
% 3 curves 
 
clear all 
close all 
 
% File to read 
results_file = 'msim_1_results.txt'; 
 
     
% SNR values 
num_snr_values = 12; 
snr_value=[ -18.0, -12.0, -6.0, 0.0, 6.0, 12.0, 18. 0, 24.0, 30.0, 36.0, 42.0, 48.0]; 
 
% Open results file 
fid=fopen(results_file, 'rt'); 
 
% First three lines contain labels to discard 
line1=fgets(fid); 
line2=fgets(fid); 
line3=fgets(fid); 
 
% Loop through report 
num_sigs =1;  % only one signal for this report 
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num_C_values=3;  % 3 different tests 
for sig_id=1:num_sigs   
   for cloop = 1: num_C_values % num_C_values  
       % SNR loop 
       for snrloop = 1: num_snr_values  % num_snr_v alues   
           % read the block of data  
           for field = 1: 12 
                
               text_line=fgets(fid); 
               % The 'mean' field occurs in the sub -string starting at 60 
               %      this depends on the results f ile being used 
               result_mean = sscanf(text_line(60:71 ),'%f');   
               results(sig_id, cloop, snrloop, fiel d)=result_mean; 
                
            end  % field loop            
        end % SNR loop 
    end % C loop 
end % signal loop    
fclose(fid); 
 
% Average results for all signals 
for cloop = 1: num_C_values  % num_m_values    
        
       % SNR loop 
       for snrloop = 1: num_snr_values  % num_snr_v alues 
            
              avg_missed_peaks( cloop, snrloop)= me an( 
results(1:num_sigs,cloop,snrloop,1)); 
              avg_false_peaks( cloop, snrloop)= mea n( 
results(1:num_sigs,cloop,snrloop,2)); 
              avg_mag_rms_error( cloop, snrloop)= m ean( 
results(1:num_sigs,cloop,snrloop,3)); 
              avg_sigma_rms_error( cloop, snrloop)=  mean( 
results(1:num_sigs,cloop,snrloop,5)); 
                     
       end  
       % Check for NaN and set all prior points to NaN if found. 
       avg_mag_rms_error( cloop,:) = check_for_nan(  avg_mag_rms_error( cloop,:)); 
       avg_sigma_rms_error( cloop,:) = check_for_na n( avg_sigma_rms_error( cloop,:)); 
        
end %  C loop 
 
% Missed peaks plot 
figure; 
plot( snr_value, squeeze(avg_missed_peaks(1,:)), 'k o-', ... 
      snr_value, squeeze(avg_missed_peaks(2,:)), 'b x-', ... 
      snr_value, squeeze(avg_missed_peaks(3,:)), 'g +-');  
legend('C=1','C=4; signal averaging','C=4; spectrum  averaging'); 
xlabel('SNR (dB)'); 
ylabel('% Missed Peaks'); 
title('Capon, K=N');  
 
% False peaks 
figure; 
plot( snr_value, squeeze(avg_false_peaks(1,:)), 'ko -', ... 
      snr_value, squeeze(avg_false_peaks(2,:)), 'bx -', ... 
      snr_value, squeeze(avg_false_peaks(3,:)), 'g+ -');  
legend('C=1','C=4; signal averaging','C=4; spectrum  averaging'); 
xlabel('SNR (dB)'); 
ylabel('% False Peaks'); 
title('Capon, K=N');  
 
% Magnitude RMS errors 
figure; 
plot( snr_value, squeeze(avg_mag_rms_error(1,:)), ' ko-', ... 
      snr_value, squeeze(avg_mag_rms_error(2,:)), ' bx-', ... 
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      snr_value, squeeze(avg_mag_rms_error(3,:)), ' g+-');  
legend('C=1','C=4; signal averaging','C=4; spectrum  averaging'); 
xlabel('SNR (dB)'); 
ylabel('Relative RMS Magnitude Error'); 
title('Capon, K=N');  
 
% Sigma RMS errors 
figure; 
plot( snr_value, squeeze(avg_sigma_rms_error(1,:)),  'ko-', ... 
      snr_value, squeeze(avg_sigma_rms_error(2,:)),  'bx-', ... 
      snr_value, squeeze(avg_sigma_rms_error(3,:)),  'g+-');  
legend('C=1','C=4; signal averaging','C=4; spectrum  averaging'); 
xlabel('SNR (dB)'); 
ylabel('Relative RMS Damping Error'); 
title('Capon, K=N');  
 
% ------------------------------------------------- ------ 
% Combined plot 
% ------------------------------------------------- ------ 
 
figure; 
 
% Missed peaks plot 
subplot(2,2,1); 
plot( snr_value, squeeze(avg_missed_peaks(1,:)), 'k o-', ... 
      snr_value, squeeze(avg_missed_peaks(2,:)), 'b x-', ... 
      snr_value, squeeze(avg_missed_peaks(3,:)), 'g +-');  
legend('C=1','C=4; signal averaging','C=4; spectrum  averaging'); 
xlabel('SNR (dB)'); 
ylabel('% Missed Peaks'); 
 
% False peaks 
subplot(2,2,2); 
plot( snr_value, squeeze(avg_false_peaks(1,:)), 'ko -', ... 
      snr_value, squeeze(avg_false_peaks(2,:)), 'bx -', ... 
      snr_value, squeeze(avg_false_peaks(3,:)), 'g+ -');  
legend('C=1','C=4; signal averaging','C=4; spectrum  averaging'); 
xlabel('SNR (dB)'); 
ylabel('% False Peaks'); 
 
% Magnitude RMS errors 
subplot(2,2,3); 
plot( snr_value, squeeze(avg_mag_rms_error(1,:)), ' ko-', ... 
      snr_value, squeeze(avg_mag_rms_error(2,:)), ' bx-', ... 
      snr_value, squeeze(avg_mag_rms_error(3,:)), ' g+-');  
legend('C=1','C=4; signal averaging','C=4; spectrum  averaging'); 
xlabel('SNR (dB)'); 
ylabel('Relative RMS Magnitude Error'); 
 
% Sigma RMS errors 
subplot(2,2,4); 
plot( snr_value, squeeze(avg_sigma_rms_error(1,:)),  'ko-', ... 
      snr_value, squeeze(avg_sigma_rms_error(2,:)),  'bx-', ... 
      snr_value, squeeze(avg_sigma_rms_error(3,:)),  'g+-');  
legend('C=1','C=4; signal averaging','C=4; spectrum  averaging'); 
xlabel('SNR (dB)'); 
ylabel('Relative RMS Damping Error'); 
 
 
 

A.6.7 msim_1.m 

% msim_1.m - Mainline script to run multiple channe l simulation #1 
% Marquette University,   Milwaukee, WI  USA 
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% Copyright 2004 - All rights reserved. 
% Fred J. Frigo 
% Feb 22, 2004  - original 
 
 
clear all 
close all 
 
results_file = 'msim_1_results.txt'; 
simulation_id = 9; 
 
% Noise files   
num_noise_frames = 10; 
noise_files=[ 
    'noise_0.dat';  
    'noise_1.dat';  
    'noise_2.dat';  
    'noise_3.dat';  
    'noise_4.dat';  
    'noise_5.dat';  
    'noise_6.dat';  
    'noise_7.dat';  
    'noise_8.dat';  
    'noise_9.dat';  
    'noise10.dat';  
    'noise11.dat';  
    'noise12.dat';  
    'noise13.dat';  
    'noise14.dat';  
    'noise15.dat';  
    'noise16.dat';  
    'noise17.dat';  
    'noise18.dat';  
    'noise19.dat';  
    'noise20.dat';  
    'noise21.dat';  
    'noise22.dat';  
    'noise23.dat';  
    'noise24.dat';  
    'noise25.dat';  
    'noise26.dat';  
    'noise27.dat';  
    'noise28.dat';  
    'noise29.dat';  
    'noise30.dat';  
    'noise31.dat';  
    'noise32.dat';  
    'noise33.dat';  
    'noise34.dat';  
    'noise35.dat';  
    'noise36.dat';  
    'noise37.dat';  
    'noise38.dat';  
    'noise39.dat']; 
 
     
 
% Signal files 
num_signals = 3; 
signal_file=[ 
    'signal_1.dat'; 
    'signal_2.dat'; 
    'signal_3.dat']; 
     
% SNR per channel  
num_snr_values = 12; 
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snr_values=[ -18.0 ,  -18.0,  -18.0,  -18.0 ; 
            -12.0 ,  -12.0,  -12.0,  -12.0 ; 
             -6.0,    -6.0,   -6.0,   -6.0 ; 
              0.0,     0.0,    0.0,    0.0 ; 
              6.0,     6.0,    6.0,    6.0 ; 
             12.0,    12.0,   12.0,   12.0 ; 
             18.0,    18.0,   18.0,   18.0 ; 
             24.0,    24.0,   24.0,   24.0 ; 
             30.0,    30.0,   30.0,   30.0 ; 
             36.0,    36.0,   36.0,   36.0 ; 
             42.0,    42.0,   42.0,   42.0 ; 
             48.0,    48.0,   48.0,   48.0 ]; 
         
% Ideal gain per channel          
gideal = [1.0  1.0  1.0  1.0].'; 
 
 
% Signal Components: (these match signal definition  in create_signals.m) 
%    [ A, theta, sigma, omega_index, next_omega_fla g] 
%    A = magnitude 
%    theta = phase 
%    sigma = sigma (damping) 
%    omega_index = frequency index for peak 
%    next_omega_flag = 1 if OK to use next omega in dex (for peaks the are 
%                                                           on boundaries) 
%   
signal_components_1 = [ 
    1.0,   pi/4.0,    0.002, 63,   0; 
    0.75,  -pi/2.0,   0.006, 127,  0; 
    0.25,  0.0,       0.004, 191,  0]; 
 
signal_components_2 = [ 
    1.00,   pi/4.0,   0.001,  30,  0; 
   25.00,   0.0,      0.002,  40,  0; 
    0.75,  -pi/4.0,   0.004,  50,  0; 
    0.25,   0.0,      0.003, 100,  0; 
    1.00,   0.0,      0.001, 120,  0; 
   10.00,   pi/2.0,   0.002, 125,  0; 
    0.50,  -pi/2.0,   0.002, 195,  0; 
    1.00,   0.0,      0.003, 225,  0]; 
 
signal_components_3 = [ 
    0.50,   0.0,      0.004, 0,    0; 
    0.75,  -pi/2.0,   0.002, 10,   0; 
    1.00,   pi/4.0,   0.003, 31,   0; 
    0.75,   0.0,      0.003, 34,   0; 
    0.50,  -pi/2.0,   0.005, 55,   0; 
    1.00,   pi/2.0,   0.001, 63,   0; 
    1.00,   0.75*pi,  0.005, 66,   0; 
    0.25,   0.0,      0.004, 73,   0; 
    0.50,   pi/2.0,   0.000, 95,   0; 
    0.50,  -pi/2.0,   0.006, 104,  0]; 
 
num_C_values = 3;  % number of simulation loops 
C_values = [1, 4, 4]; % number of channels for each  loop 
combotype_values = [ 1, 1, 2];  % 1= signal averagi ng, 2= spectrum averaging 
gtype_values = [1, 1, 1];  % 1= ideal (known) gains  per chan, =2 estimate from data 
 
N=512; 
 
% Frame size  (max is 1024) 
frame_size = N + 256; 
 
% Get time and date 
ctime = clock; 
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% Open results file 
fid=fopen(results_file, 'wt+'); 
fprintf(fid,'Simulation: %2d\n', simulation_id); 
fprintf(fid,'started: %2.2d/%2.2d/%4.4d  %2.2d:%2.2 d:%2.2d -                                               
\n',... 
                                                   ctime(2), ctime(3), ctime(1),ctime(4), 
ctime(5),round(ctime(6))); 
fprintf(fid,'           Parameter  signal  SNR     C  combo  gtype   N     mean          
max          min         std        variance \n'); 
fclose(fid); 
     
% Signal loop 
for sig_id = 3:3 % num_signals 
     
   % Get data 
   fidsig = fopen(signal_file(sig_id,:), 'r+b'); 
   [raw_data, count] = fread(fidsig, frame_size*2, 'real*4'); 
   fclose(fidsig); 
   for m = 1:(count/2) 
      sig_data(m) = raw_data((2*m)-1) + j*raw_data( 2*m); 
   end 
    
   % Compute signal energy for mixing SNR 
   sig_energy=sum(abs(sig_data.*sig_data)); 
    
   % Select structure with signal component info  
   if (sig_id == 1) 
      peak_info = signal_components_1; 
   elseif (sig_id == 2) 
      peak_info = signal_components_2; 
   elseif (sig_id == 3) 
      peak_info = signal_components_3; 
   end 
            
   % C loop 
   for cloop = 1: num_C_values  % num_C_values 
       C = C_values(cloop); 
       combotype = combotype_values(cloop); 
       gtype = gtype_values(cloop); 
        
       % SNR loop 
       for snrloop = 1: num_snr_values  % num_snr_v alues 
            % Compute desired weight for noise to y ield desired SNR ratio in dB 
            dbSNRideal = snr_values(snrloop,:); 
             
            % Noise loop 
            for noise_id = 1: num_noise_frames   % num_noise_frames 
               % signal energy 
               xeng=sig_data*sig_data';    
                
               for chan_id = 1:C  % channel loop 
                    
                   % Get noise for this channel 
                   noise_file_index = noise_id + nu m_noise_frames*(chan_id-1); 
                   fidn = fopen(noise_files(noise_f ile_index,:), 'r+b'); 
                   [raw_data, count] = fread(fidn, frame_size*2, 'real*4'); 
                   fclose(fidn); 
                   for m = 1:(count/2) 
                       noise(m) = raw_data((2*m)-1)  + j*raw_data(2*m); 
                       noise(m)=0.1*noise(m); 
                   end 
                    
                   % compute noise energy 
                   neng=noise*noise'; 
                    
                   % combine signal and noise with desired SNR 
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noisegain(chan_id)=sqrt((abs(gideal(chan_id))^2*xen g)/(neng*10^(dbSNRideal(chan_id)/10)))
; 
                   noise_scaled=noisegain(chan_id)* noise; 
                   rhosqideal(chan_id)=noise_scaled *noise_scaled'/frame_size; % 
Nf=frame_size 
                   sig_and_noise=gideal(chan_id)*si g_data+noise_scaled; 
                    
                   % Create input signal matrix 
                   if (chan_id == 1) 
                      x=sig_and_noise; 
                   else 
                      x=[x   
                          sig_and_noise]; 
                   end 
              end % channel loop 
              rhosqideal=rhosqideal.'; 
               
              % Call function to do processing on a lgorithm to test 
              [missed_peaks(noise_id), false_peaks( noise_id), mag_err_rms(noise_id), 
phase_err_rms(noise_id),... 
                       sigma_err_rms(noise_id), mag _err_pct(noise_id), 
phase_err_pct(noise_id), ... 
                       sigma_err_pct(noise_id), mag _err_bias(noise_id), 
phase_err_bias(noise_id), ... 
                       sigma_err_bias(noise_id), el apsed_time(noise_id)] = ... 
                       msim_proc(x, C, combotype, r hosqideal, gideal, gtype, peak_info); 
 
            end  % noise loop 
           
            % Log results for each parameter for a set of noise instances 
            for result_loop=1:12 
               
                if result_loop == 1 
                    result_data = missed_peaks; 
                    result_string = 'Missed_Peaks';  
                elseif result_loop == 2 
                    result_data = false_peaks; 
                    result_string = 'False_Peaks'; 
                elseif result_loop == 3 
                     result_data = mag_err_rms; 
                     result_string = 'Mag_Err_RMS';  
                elseif result_loop == 4 
                     result_data = phase_err_rms; 
                     result_string = 'Phase_Err_RMS '; 
                elseif result_loop == 5 
                     result_data = sigma_err_rms; 
                     result_string = 'Sigma_Err_RMS '; 
                elseif result_loop == 6 
                     result_data = mag_err_pct; 
                     result_string = 'Mag_Err_perce nt'; 
                elseif result_loop == 7 
                     result_data = phase_err_pct; 
                     result_string = 'Phase_Err_per cent'; 
                elseif result_loop == 8 
                     result_data = sigma_err_pct; 
                     result_string = 'Sigma_Err_per cent'; 
                elseif result_loop == 9 
                     result_data = mag_err_bias; 
                     result_string = 'Mag_Err_Bias' ; 
                elseif result_loop == 10 
                     result_data = phase_err_bias; 
                     result_string = 'Phase_Err_Bia s'; 
                elseif result_loop == 11 
                     result_data = sigma_err_bias; 
                     result_string = 'Sigma_Err_Bia s'; 
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                elseif result_loop == 12 
                     result_data = elapsed_time; 
                     result_string = 'Elapsed_time' ; 
                end 
           
                % Discard invalid results 
                num_results=0; 
                for (rindex = 1:num_noise_frames) 
                    % If result is valid number, st ore it for computation 
                    if ( isnan(result_data(rindex))  == 0 ) 
                        num_results = num_results+1 ; 
                        valid_results(num_results) = result_data(rindex); 
                    end 
                end 
                % Compute mean, std and variance on  valid results. 
                if ( num_results > 0 ) 
                    result_mean = mean(valid_result s(1:num_results)); 
                    result_std = std(valid_results( 1:num_results)); 
                    result_var = var(valid_results( 1:num_results)); 
                    result_max = max(valid_results( 1:num_results)); 
                    result_min = min(valid_results( 1:num_results)); 
                else 
                    result_mean = NaN; 
                    result_std = NaN; 
                    result_var = NaN; 
                    result_max = NaN; 
                    result_min = NaN; 
                end 
                 
                % Log results to output file: 
                % 'Parameter  signal  SNR    C   co mbo   N   mean     max    min     std     
variance' 
                fid=fopen(results_file, 'at'); 
                fprintf(fid,'%20.20s   %2.2d    %5. 1f   %2.2d    %2.2d     %2.2d   %2.2d    
%9.5f     %9.5f    %9.5f   %9.5f   %9.5f\n', ... 
                       result_string, sig_id, dbSNR ideal(1), C, combotype, gtype, 
num_results, result_mean, result_max, ... 
                       result_min, result_std, resu lt_var ); 
                fclose(fid); 
                  
            end  % results loop            
        end % SNR loop 
    end %combo loop 
end % signal loop    
 
% Get time and date to add for "completed timestamp " 
ctime = clock; 
fid=fopen(results_file, 'rt+'); 
fseek(fid,47,0); % insert timestamp at beginning of  file after "started" 
fprintf(fid,' completed: %2.2d/%2.2d/%4.4d  %2.2d:% 2.2d:%2.2d',... 
                ctime(2), ctime(3), ctime(1),ctime( 4), ctime(5),round(ctime(6))); 
fclose(fid); 
 
 
 

A.6.8 msim_proc.m 

% msim_proc.m - Processing associated with multiple  channel simulations 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2004 - All rights reserved. 
% Fred J. Frigo 
% Feb 22, 2004  - original 
% 
%  Inputs:  
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%           xlong = signal+noise 
%           C = number of channels 
%           combotype = 1 for signal averaging, 2 f or spectrucm averaging 
%           rhosqideal = rho ^2  
%           gideal = ideal gains for each channel 
%           gytpe = 1 ideal (known) gains per chann el, = 2 estimate gains 
%           peak_info = contains info about each pe ak in the signal 
%                       [ A, theta, sigma, omega_in dex, next_omega_flag] 
%                       A = expected magnitude 
%                       theta = expected phase 
%                       sigma = expected sigma (dam ping) 
%                       omega_index = omega index f or expected peak 
%                       next_omega_flag = 1 if OK t o use next omega index  
% 
%  Outputs:    
%           missed_peaks = percentage of missed pea ks 
%           false_peaks = percentage of false peaks  
%           rms_mag_err = RMS error for magnitude 
%           rms_phase_err = RMS error for phase  
%           rms_sigma_err = RMS error for sigma (da mping) 
%           pct_mag_err = RMS error for magnitude 
%           pct_phase_err = RMS error for phase  
%           pct_sigma_err = RMS error for sigma (da mping) 
%           elapsed_time = elaspsed time in seconds  
 
function [missed_peaks, false_peaks, rms_mag_err, r ms_phase_err, rms_sigma_err, ... 
             pct_mag_err, pct_phase_err, pct_sigma_ err, ... 
             bias_mag_err, bias_phase_err, bias_sig ma_err,elapsed_time] = ... 
             msim_proc(xlong, C, combotype, rhosqid eal, gideal, gtype, peak_info); 
 
matched_peaks = 0; 
total_peaks = 0; 
missed_peaks = 0.0; 
false_peaks = 0.0; 
rms_mag_err = NaN;  % If no peaks are found, RMS er ror = NaN 
rms_phase_err = NaN; 
rms_sigma_err = NaN; 
pct_mag_err = NaN; % If no peaks are found, Percent  error = NaN 
pct_phase_err = NaN; 
pct_sigma_err = NaN; 
bias_mag_err = NaN; % If no peaks are found, Bias e rror = NaN 
bias_phase_err = NaN; 
bias_sigma_err = NaN; 
 
% Find out how many signal components there are 
num_expected_peaks = max( size(peak_info(:,5))); 
 
% set flag = 1 to display all plots 
show_plots=0; 
 
N=512; 
M=128;  
Ns=640;   %1800  ?Try N+M 
Nf=768;%0<Ns<Nf.  Nf>=N+M-1. % Frame_size  
K=N;%K must be 1 or N.  alp1 and alp2 are irrelevan t if K=1. 
Nsig=40; 
Nw=N/2;%Nw must be greater than or equal to N/2. 
k1=0; 
k2=Nw-1;%0<=k1<k2<=Nw-1. 
delsig=0.0002; 
alp1=0; 
alp2=0; 
bet1=0;  % 0 = default - set this to 0.5 to increas e peak picking sensitivity 
bet2=0; 
gam=0;%0<gam<=1.  gam=1 reduces to 2D APES.  gam=0 would reduce to 2D Capon. 
%C=1; 
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spectrumtype=1;%=1 for 2D Capon, 2 for 2D APES/Capo n. 
 
if C>1 
   % combotype=1;%=1 for signal averaging, 2 for sp ectrum averaging, 3 for composite 
spectrum. 
   % gtype=1;%=1 for ideal g's, 2 for estimated g's . 
           %ideal can be used only for simulated da ta. 
   rhosqtype=1;%=1 for ideal rhosq's, 2 for estimat ed rhosq's. 
               %ideal can be used only for simulate d data. 
end 
  
delw=pi/Nw; 
 
%  signal plus noise 
x=xlong(:,1:N+M-1); 
 
if C>1 
    
   if gtype==1 
      g=gideal; 
   elseif gtype==2 
      g=fgest(xlong,C); 
   end 
    
   if rhosqtype==1 
      rhosq=rhosqideal; 
   elseif rhosqtype==2 
      rhosq=frhosqest(xlong,Ns,Nf,C); 
   end 
    
   Rw=diag(rhosq); 
   Rwinv=inv(Rw); 
   w=Rwinv*g/(g'*Rwinv*g); 
   
   xest=w'*x; 
 
else % if C == 1, then g = a single value 
    g=gideal(1); 
end 
 
tic; 
 
if (C==1)|(C>1&combotype==3) 
   if spectrumtype==1 
      S=Capon2D(x,N,M,K,Nsig,Nw,k1,k2,delsig,alp1,a lp2,bet1,bet2,C,g); 
   elseif spectrumtype==2 
      S=APESCapon2D(x,N,M,Nsig,Nw,k1,k2,delsig,bet1 ,bet2,gam,C,g); 
   end 
end 
 
if C>1&combotype==1 
   if spectrumtype==1 
      S=Capon2D(xest,N,M,K,Nsig,Nw,k1,k2,delsig,alp 1,alp2,bet1,bet2,1,1); 
   elseif spectrumtype==2 
      S=APESCapon2D(xest,N,M,Nsig,Nw,k1,k2,delsig,b et1,bet2,gam,1,1); 
   end 
end 
 
if C>1&combotype==2 
   S=zeros(Nsig,k2-k1+1); 
   for i=1:C 
      if spectrumtype==1 
         Si=Capon2D(x(i,:),N,M,K,Nsig,Nw,k1,k2,dels ig,alp1,alp2,bet1,bet2,1,1); 
      elseif spectrumtype==2 
         Si=APESCapon2D(x(i,:),N,M,Nsig,Nw,k1,k2,de lsig,bet1,bet2,gam,1,1); 



  267 

 

      end 
      S=S+conj(w(i))*Si; 
   end 
end 
 
elapsed_time = toc; 
 
sigset=delsig*[0:Nsig-1]; 
wset=delw*[k1:k2]; 
n=[0:N+M-2]; 
 
% Create peak enhanced 2D surface where each peak i s a dirac delta function 
Sp=peak_complex(S,0,1); 
 
% Compute peak projections  
Spp=peakproj(Sp,0); 
 
% Set threshold for valid peaks:  (Max component am plitude = 1.0) 
%  - Use max projection (for determination of thres hold) 
% max_peak_value = max(abs(Spp)); 
% peak_threshold = max_peak_value*0.1; 
peak_threshold = 0.025;  
 
% Count number of peaks that exceed threshold 
total_peaks = count_peaks(Spp, peak_threshold); 
 
% Search for expected signal components, computing error terms if found 
rms_mag_sum = 0.0; 
rms_phase_sum = 0.0; 
rms_sigma_sum = 0.0; 
pct_mag_sum = 0.0; 
pct_phase_sum = 0.0; 
pct_sigma_sum = 0.0; 
bias_mag_sum = 0.0; 
bias_phase_sum = 0.0; 
bias_sigma_sum = 0.0; 
peaks_found = 0; 
for peak_component = 1: num_expected_peaks 
    component_info = squeeze(peak_info(peak_compone nt, :)); 
    % Search for expected peak calculating magnitud e, phase and damping errors 
    [found_peak_flag, sq_mag_err, sq_phase_err, sq_ sigma_err, abs_mag_err, abs_phase_err, 
... 
           abs_sigma_err, diff_mag_err, diff_phase_ err, diff_sigma_err] = find_peak( Sp, 
component_info, delw, delsig, peak_threshold ); 
    rms_mag_sum = rms_mag_sum + sq_mag_err; 
    rms_phase_sum = rms_phase_sum + sq_phase_err; 
    rms_sigma_sum = rms_sigma_sum + sq_sigma_err; 
    pct_mag_sum = pct_mag_sum + abs_mag_err; 
    pct_phase_sum = pct_phase_sum + abs_phase_err; 
    pct_sigma_sum = pct_sigma_sum + abs_sigma_err; 
    bias_mag_sum = bias_mag_sum + diff_mag_err; 
    bias_phase_sum = bias_phase_sum + diff_phase_er r; 
    bias_sigma_sum = bias_sigma_sum + diff_sigma_er r; 
 
 
    if (found_peak_flag == 1) 
        peaks_found = peaks_found + 1; 
    end 
end 
 
% Compute error values if we found any peaks 
if peaks_found > 0  
    rms_mag_err = sqrt( (rms_mag_sum/peaks_found) ) ; 
    rms_phase_err = sqrt( (rms_phase_sum/peaks_foun d) ); 
    rms_sigma_err = sqrt( (rms_sigma_sum/peaks_foun d) ); 
    pct_mag_err = (pct_mag_sum/peaks_found)*100.0; 



  268 

 

    pct_phase_err = (pct_phase_sum/peaks_found)*100 .0; 
    pct_sigma_err = (rms_sigma_sum/peaks_found)*100 .0; 
    bias_mag_err = bias_mag_sum/peaks_found; 
    bias_phase_err = bias_phase_sum/peaks_found; 
    bias_sigma_err = bias_sigma_sum/peaks_found; 
end 
 
% False positives ( as a percentage) 
false_peaks = ((total_peaks - peaks_found)/Nw)*100. 0; 
 
% Missed peaks (as a percentage) 
missed_peaks = ((num_expected_peaks - peaks_found)/ num_expected_peaks)*100.0; 
 
% Create plots if selected.  
if (show_plots == 1) 
    
   mrs_name='x(t)'; 
    
   % Plots 
   if( spectrumtype == 1) 
     analysis_string = '2D-Capon '; 
   else 
     analysis_string = '2D-APES '; 
   end 
 
   figure 
   title_string = strcat([analysis_string, 'surface  plot of |S(\sigma,\omega)| for ', 
mrs_name]);  
   surf(wset,sigset,abs(S)),title(title_string), xl abel('\omega'), 
ylabel('\sigma'),zlabel('|S(\sigma,\omega)|'); 
 
   figure 
   title_string = strcat([analysis_string, 'contour  plot of |S(\sigma,\omega)| for ', 
mrs_name]);  
   contour(wset,sigset,abs(S)),title(title_string), xlabel('\omega'),ylabel('\sigma'); 
 
   figure 
   title_string = strcat([analysis_string, 'peak en hanced surface plot of 
|S(\sigma,\omega)| for ', mrs_name]);  
   
surf(wset,sigset,abs(Sp)),title(title_string),xlabe l('\omega'),ylabel('\sigma'),zlabel('|
S(\sigma,\omega)|'); 
  
   figure 
   title_string = strcat([analysis_string, 'peak en hanced contour plot of 
|S(\sigma,\omega)| for ', mrs_name]);  
   contour(wset,sigset,abs(Sp)),title(title_string) ,xlabel('\omega'),ylabel('\sigma'); 
 
   figure 
   title_string = strcat([analysis_string, 'project ed peaks of |S(\sigma,\omega)| for ', 
mrs_name]);  
   plot(wset,Spp),title(title_string),xlabel('\omeg a'),ylabel('|S(\sigma,\omega)|'); 
 
   X=fft(x.').'; 
   [Cft,Nft]=size(abs(X)); 
   k1ft=floor(Nft*k1/(2*Nw)); 
   k2ft=floor(Nft*k2/(2*Nw)); 
   wfset=[k1ft:k2ft]*2*pi/Nft; 
   figure 
   plot(wfset,abs(X(:,k1ft+1:k2ft+1))/Nft),title(st rcat(['Fourier Transform of 
',mrs_name])),xlabel('\omega'),ylabel('|S(\omega)|' ); 
   if C>1 
      Xest=fft(xest.').'; 
      figure 
      plot(wfset,abs(Xest(:,k1ft+1:k2ft+1))/Nft),ti tle('average abs(FFT)'),xlabel(paras) 
   end 
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   figure 
   plot(n,abs(x).'),title(strcat(['Input signal ',m rs_name])), 
xlabel('t'),ylabel('x(t)'); 
 
end % (show_plots == 1) 
 
return 
 
 
 
 
 

A.6.9 peak_complex.m 

% peak_complex.m - Peak Enhancement 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003,2004 - All rights reserved. 
% 
%    Fred J. Frigo, James A. Heinen 
% 
%    This function accepts a 2D input (S) and retur ns a 2D output (Sp) 
%    of the same dimension with peaks plotted as Di rac delta functions. 
% 
%    Changed to return complex valued peak-enhanced  2D output. 
% 
function Sp=peak_complex(S_input,thresh,suppresslas trow) 
S=abs(S_input); 
[Nsig,Nw]=size(S); 
Sb=zeros(Nsig+2,Nw+2); 
Sbp=zeros(Nsig+2,Nw+2); 
for m=1:Nsig 
   for k=1:Nw 
      Sb(m+1,k+1)=S(m,k); 
   end 
end 
for m=2:Nsig+1 
   for k=2:Nw+1 
      if Sb(m,k)>=max([Sb(m+1,k-1) Sb(m+1,k) Sb(m+1 ,k+1) Sb(m,k-1) ... 
            Sb(m,k+1) Sb(m-1,k-1) Sb(m-1,k) Sb(m-1, k+1)])&Sb(m,k)>=thresh 
       Sbp(m,k)=S_input(m-1,k-1); 
    end 
   end 
end 
for m=1:Nsig 
   for k=1:Nw 
      Sp(m,k)=Sbp(m+1,k+1); 
   end 
end 
if suppresslastrow==1 
   for k=1:Nw 
      Sp(Nsig,k)=0; 
   end 
end 
return 
 
 
 

A.6.10 plot_3.m 

% plot_3.m - Mainline script to generate plots #3 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2004 - All rights reserved. 
% Fred J. Frigo 
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% Feb 10, 2004 - original 
%  
% Plots are obtained from sim_1_results.txt created  by 
%  the sim_1.m MATLAB file. 
% 
% Capon K=1  
% 4 curves 
 
clear all 
close all 
 
% File to read 
results_file = 'sim_1_results.txt'; 
 
% SNR values 
num_snr_values = 12; 
snr_value=[ -18.0, -12.0, -6.0, 0.0, 6.0, 12.0, 18. 0, 24.0, 30.0, 36.0, 42.0, 48.0]; 
 
% Values of M to test 
num_m_values = 4; 
m_values=[ 32, 64, 128, 256]; 
 
% Values of alpha1 to test 
num_alp1_values = 1; 
alp1_values=[ 0.0]; 
 
% Open results file 
fid=fopen(results_file, 'rt'); 
 
% First three lines contain labels to discard 
line1=fgets(fid); 
line2=fgets(fid); 
line3=fgets(fid); 
 
% Loop through report  
for sig_id=1:3 
   for mloop = 1: num_m_values  % num_m_values   
     for aloop = 1: num_alp1_values   % num_alp1_va lues   
       % SNR loop 
       for snrloop = 1: num_snr_values  % num_snr_v alues   
           % read the block of data  
           for field = 1: 12 
                
               text_line=fgets(fid); 
               % The 'mean' field occurs in the sub -string starting at 57 
               %      this depends on the results f ile being used 
               result_mean = sscanf(text_line(50:61 ),'%f');   
               results(sig_id, mloop, aloop, snrloo p, field)=result_mean; 
                
            end  % field loop            
        end % SNR loop 
      end %alpha loop 
    end % M loop 
end % signal loop    
% size(results) 
fclose(fid); 
 
 
% Average results for all signals 
for mloop = 1: num_m_values  % num_m_values    
    for aloop = 1: num_alp1_values  %num_alp1_value s      
       % SNR loop 
       for snrloop = 1: num_snr_values  % num_snr_v alues 
            
              avg_missed_peaks( mloop, aloop, snrlo op)= mean( 
results(1:3,mloop,aloop,snrloop,1)); 
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              avg_false_peaks( mloop, aloop, snrloo p)= mean( 
results(1:3,mloop,aloop,snrloop,2)); 
              avg_mag_rms_error( mloop, aloop, snrl oop)= mean( 
results(1:3,mloop,aloop,snrloop,3)); 
              avg_sigma_rms_error( mloop, aloop, sn rloop)= mean( 
results(1:3,mloop,aloop,snrloop,5)); 
                     
       end  
       % Check for NaN and set all prior points to NaN if found. 
       avg_mag_rms_error( mloop, aloop,:) = check_f or_nan( avg_mag_rms_error( mloop, 
aloop,:)); 
       avg_sigma_rms_error( mloop, aloop,:) = check _for_nan( avg_sigma_rms_error( mloop, 
aloop,:)); 
        
   end %alpha loop 
end % M loop 
 
% Missed peaks plot 
figure; 
plot( snr_value, squeeze(avg_missed_peaks(1,1,:)), 'ko-', ... 
      snr_value, squeeze(avg_missed_peaks(2,1,:)), 'bx-', ... 
      snr_value, squeeze(avg_missed_peaks(3,1,:)), 'g+-', ... 
      snr_value, squeeze(avg_missed_peaks(4,1,:)), 'm*-');  
legend('M=32','M=64','M=128','M=256'); 
xlabel('SNR (dB)'); 
ylabel('% Missed Peaks'); 
title('Capon, K=1');  
 
% False peaks 
figure; 
plot( snr_value, squeeze(avg_false_peaks(1,1,:)), ' ko-', ... 
      snr_value, squeeze(avg_false_peaks(2,1,:)), ' bx-', ... 
      snr_value, squeeze(avg_false_peaks(3,1,:)), ' g+-', ... 
      snr_value, squeeze(avg_false_peaks(4,1,:)), ' m*-');  
legend('M=32','M=64','M=128','M=256'); 
xlabel('SNR (dB)'); 
ylabel('% False Peaks'); 
title('Capon, K=1');  
 
% Magnitude RMS errors 
figure; 
plot( snr_value, squeeze(avg_mag_rms_error(1,1,:)),  'ko-', ... 
      snr_value, squeeze(avg_mag_rms_error(2,1,:)),  'bx-', ... 
      snr_value, squeeze(avg_mag_rms_error(3,1,:)),  'g+-', ... 
      snr_value, squeeze(avg_mag_rms_error(4,1,:)),  'm*-');  
legend('M=32','M=64','M=128','M=256'); 
xlabel('SNR (dB)'); 
ylabel('Relative RMS Magnitude Error'); 
title('Capon, K=1');  
 
% Sigma RMS errors 
figure; 
plot( snr_value, squeeze(avg_sigma_rms_error(1,1,:) ), 'ko-', ... 
      snr_value, squeeze(avg_sigma_rms_error(2,1,:) ), 'bx-', ... 
      snr_value, squeeze(avg_sigma_rms_error(3,1,:) ), 'g+-', ... 
      snr_value, squeeze(avg_sigma_rms_error(4,1,:) ), 'm*-');  
legend('M=32','M=64','M=128','M=256'); 
xlabel('SNR (dB)'); 
ylabel('Relative RMS Damping Error'); 
title('Capon, K=1');  
 
% ------------------------------------------------- ------ 
% Combined plot 
% ------------------------------------------------- ------ 
 
figure; 
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subplot(2,2,1); 
plot( snr_value, squeeze(avg_missed_peaks(1,1,:)), 'ko-', ... 
      snr_value, squeeze(avg_missed_peaks(2,1,:)), 'bx-', ... 
      snr_value, squeeze(avg_missed_peaks(3,1,:)), 'g+-', ... 
      snr_value, squeeze(avg_missed_peaks(4,1,:)), 'm*-');  
legend('M=32','M=64','M=128','M=256'); 
xlabel('SNR (dB)'); 
ylabel('% Missed Peaks');  
 
   
% False peaks 
subplot(2,2,2); 
plot( snr_value, squeeze(avg_false_peaks(1,1,:)), ' ko-', ... 
      snr_value, squeeze(avg_false_peaks(2,1,:)), ' bx-', ... 
      snr_value, squeeze(avg_false_peaks(3,1,:)), ' g+-', ... 
      snr_value, squeeze(avg_false_peaks(4,1,:)), ' m*-');  
legend('M=32','M=64','M=128','M=256'); 
xlabel('SNR (dB)'); 
ylabel('% False Peaks'); 
 
% Magnitude RMS errors 
subplot(2,2,3); 
plot( snr_value, squeeze(avg_mag_rms_error(1,1,:)),  'ko-', ... 
      snr_value, squeeze(avg_mag_rms_error(2,1,:)),  'bx-', ... 
      snr_value, squeeze(avg_mag_rms_error(3,1,:)),  'g+-', ... 
      snr_value, squeeze(avg_mag_rms_error(4,1,:)),  'm*-');  
legend('M=32','M=64','M=128','M=256'); 
xlabel('SNR (dB)'); 
ylabel('Relative RMS Magnitude Error'); 
 
% Adjust scale 
myaxis = axis; 
myaxis(3)=0; 
myaxis(4)=2.0; 
axis(myaxis); 
 
% Sigma RMS errors 
subplot(2,2,4); 
plot( snr_value, squeeze(avg_sigma_rms_error(1,1,:) ), 'ko-', ... 
      snr_value, squeeze(avg_sigma_rms_error(2,1,:) ), 'bx-', ... 
      snr_value, squeeze(avg_sigma_rms_error(3,1,:) ), 'g+-', ... 
      snr_value, squeeze(avg_sigma_rms_error(4,1,:) ), 'm*-');  
legend('M=32','M=64','M=128','M=256'); 
xlabel('SNR (dB)'); 
ylabel('Relative RMS Damping Error'); 
 
 
 

A.6.11 plot_timing.m 

% plot_timing.m - Mainline script to generate timin g plots 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2004 - All rights reserved. 
% Fred J. Frigo 
% Feb 29, 2004  - original 
%  
% Plots are obtained from timing_sim_results.txt cr eated by 
%  the timing_sim_results.m MATLAB file. 
% 
% For M= 32, 64, 128, 256 
% Capon (K=N): 
%    alp1=alp2=bet1=bet2=0 
%    alp1=alp2=0;   bet1=0.001, bet2=0.0 
%    alp1=-0.5, alp2=0.0;  bet1=bet2=0 
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%    alp1=-0.5, alp2=0.0;  bet1=0.001, bet2=0.0 
% Capon (K=1) 
%    alp1=alp2=0.0 
%    alp1=0.001, alp2=0.0 
% APES/Capon (gamma=0.5) 
%    bet1=bet2=0 
%    bet1=0.001, bet2=0 
%    bet1=-0.5,  bet2=0 
% 9 curves 
 
clear all 
close all 
 
% File to read 
results_file = 'timing_sim_results.txt'; 
 
num_snr_values = 1;  % using SNR=18 for this simula tion 
num_beta_values = 9; 
 
% M values 
num_M_values=4; 
M_value=[ 32, 64, 128, 256 ]; 
 
% Open results file 
fid=fopen(results_file, 'rt'); 
 
% First three lines contain labels to discard 
line1=fgets(fid); 
line2=fgets(fid); 
line3=fgets(fid); 
 
% Loop through report 
num_sigs =1;  % only one signal for this report 
 
for sig_id=1:num_sigs   
   for mloop = 1: num_M_values % num_C_values  
        
       for bloop = 1: num_beta_values % num_beta_va lues 
          
           % read the block of data  
           for field = 1: 12 
                
               text_line=fgets(fid); 
               % The 'mean' field occurs in the sub -string starting at 60 
               %      this depends on the results f ile being used 
               result_mean = sscanf(text_line(71:84 ),'%f');   
               results(sig_id, mloop, bloop, field) =result_mean; 
                
            end  % field loop            
        end % beta loop 
    end % M loop 
end % signal loop    
fclose(fid); 
 
% Average results for all signals 
for mloop = 1: num_M_values  % num_m_values    
     for bloop = 1:num_beta_values   
         avg_execution_time( mloop, bloop)= mean( r esults(1:num_sigs,mloop, bloop,12));                 
     end    
end %  M loop 
 
% Execution time:  Capon 
figure; 
plot( M_value, squeeze(avg_execution_time(:,1)), 'k o-', ... 
      M_value, squeeze(avg_execution_time(:,2)), 'b x-', ... 
      M_value, squeeze(avg_execution_time(:,3)), 'g +-', ... 
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      M_value, squeeze(avg_execution_time(:,4)), 'm d-', ... 
      M_value, squeeze(avg_execution_time(:,5)), 'k s-', ... 
      M_value, squeeze(avg_execution_time(:,6)), 'b ^-'); 
legend('K=N, \alpha\neq-\sigma/2, \beta=constant', ... 
       'K=N, \alpha\neq-\sigma/2, \beta=function(\s igma)',... 
       'K=N, \alpha=-\sigma/2,\beta=constant',... 
       'K=N, \alpha=-\sigma/2, \beta=function(\sigm a)',... 
       'K=1, \beta=constant', 'K=1, \beta=function( \sigma)'); 
xlabel('M'); 
ylabel('Execution time (seconds)'); 
 
% Execution time: Capon/APES 
figure; 
plot( M_value, squeeze(avg_execution_time(:,7)), 'k o-', ... 
      M_value, squeeze(avg_execution_time(:,8)), 'b x-', ... 
      M_value, squeeze(avg_execution_time(:,9)), 'g +-'); 
legend('\beta=constant', '\beta=function(\sigma), \ beta\neq-\sigma/2',... 
       '\beta=-\sigma/2'); 
xlabel('M');,  
ylabel('Execution time (seconds)'); 
 
 
 

A.6.12 sim_1.m 

% sim_1.m - Mainline script to run simulation #1 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
% Fred J. Frigo 
% Dec 21, 2003  - original 
% Jan 7, 2004   - Updates to perform statistics on results 
% Jan 20, 2004  - Updates to modify parameters and add bias error 
 
clear all 
close all 
 
results_file = 'sim_1_results.txt'; 
simulation_id = 1; 
 
% Noise files 
num_noise_frames = 10; 
noise_file=[ 
    'noise_0.dat'; 
    'noise_1.dat'; 
    'noise_2.dat'; 
    'noise_3.dat'; 
    'noise_4.dat'; 
    'noise_5.dat'; 
    'noise_6.dat'; 
    'noise_7.dat'; 
    'noise_8.dat'; 
    'noise_9.dat']; 
 
% Signal files 
num_signals = 3; 
signal_file=[ 
    'signal_1.dat'; 
    'signal_2.dat'; 
    'signal_3.dat']; 
     
% SNR values 
num_snr_values = 12; 
snr_value=[ -18.0, -12.0, -6.0, 0.0, 6.0, 12.0, 18. 0, 24.0, 30.0, 36.0, 42.0, 48.0]; 
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% Signal Components: (these match signal definition  in create_signals.m) 
%    [ A, theta, sigma, omega_index, next_omega_fla g] 
%    A = magnitude 
%    theta = phase 
%    sigma = sigma (damping) 
%    omega_index = frequency index for peak 
%    next_omega_flag = 1 if OK to use next omega in dex (for peaks the are 
%                                                           on boundaries) 
%   
signal_components_1 = [ 
    1.0,   pi/4.0,    0.002, 63,   0; 
    0.75,  -pi/2.0,   0.006, 127,  0; 
    0.25,  0.0,       0.004, 191,  0]; 
 
signal_components_2 = [ 
    1.00,   pi/4.0,   0.001,  30,  0; 
   25.00,   0.0,      0.002,  40,  0; 
    0.75,  -pi/4.0,   0.004,  50,  0; 
    0.25,   0.0,      0.003, 100,  0; 
    1.00,   0.0,      0.001, 120,  0; 
   10.00,   pi/2.0,   0.002, 125,  0; 
    0.50,  -pi/2.0,   0.002, 195,  0; 
    1.00,   0.0,      0.003, 225,  0]; 
 
signal_components_3 = [ 
    0.50,   0.0,      0.004, 0,    0; 
    0.75,  -pi/2.0,   0.002, 10,   0; 
    1.00,   pi/4.0,   0.003, 31,   0; 
    0.75,   0.0,      0.003, 34,   0; 
    0.50,  -pi/2.0,   0.005, 55,   0; 
    1.00,   pi/2.0,   0.001, 63,   0; 
    1.00,   0.75*pi,  0.005, 66,   0; 
    0.25,   0.0,      0.004, 73,   0; 
    0.50,   pi/2.0,   0.000, 95,   0; 
    0.50,  -pi/2.0,   0.006, 104,  0]; 
 
 
% Values of M to test 
num_m_values = 4; 
m_values=[ 32, 64, 128, 256]; 
 
N=512; 
 
% Frame size  (max is 1024) 
frame_size = N + 256; 
 
% Get time and date 
ctime = clock; 
 
% Open results file 
fid=fopen(results_file, 'wt+'); 
fprintf(fid,'Simulation: %2d\n', simulation_id); 
fprintf(fid,'started: %2.2d/%2.2d/%4.4d  %2.2d:%2.2 d:%2.2d -                                                
\n',... 
                                                   ctime(2), ctime(3), ctime(1),ctime(4), 
ctime(5),round(ctime(6))); 
fprintf(fid,'           Parameter   signal   SNR     M     N     mean          max          
min         std        variance \n'); 
fclose(fid); 
 
% Signal loop 
for sig_id = 1: num_signals % num_signals 
     
   % Get data 
   fidsig = fopen(signal_file(sig_id,:), 'r+b'); 
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   [raw_data, count] = fread(fidsig, frame_size*2, 'real*4'); 
   fclose(fidsig); 
   for m = 1:(count/2) 
      sig_data(m) = raw_data((2*m)-1) + j*raw_data( 2*m); 
   end 
    
   % Compute signal energy for mixing SNR 
   sig_energy=sum(abs(sig_data.*sig_data)); 
    
   % Select structure with signal component info  
   if (sig_id == 1) 
      peak_info = signal_components_1; 
   elseif (sig_id == 2) 
      peak_info = signal_components_2; 
   elseif (sig_id == 3) 
      peak_info = signal_components_3; 
   end 
            
   % M loop 
   for mloop = 1:num_m_values  % num_m_values 
       M_value = m_values(mloop); 
        
       % SNR loop 
       for snrloop = 1: num_snr_values  % num_snr_v alues 
            % Compute desired weight for noise to y ield desired SNR ratio in dB 
            SNR_in_dB = snr_value(snrloop); 
            SNR_exponent = SNR_in_dB/10.0;  % numer ator = desired SNR ratio in dB 
         
            % Noise loop 
            for noise_id = 1:num_noise_frames   % n um_noise_frames 
               % Get noise  
               fidn = fopen(noise_file(noise_id,:),  'r+b'); 
               [raw_data, count] = fread(fidn, fram e_size*2, 'real*4'); 
               fclose(fidn); 
               for m = 1:(count/2) 
                   noise(m) = raw_data((2*m)-1) + j *raw_data(2*m); 
                   noise(m)=0.1*noise(m); 
               end 
    
               % Compute Noise energy for creating desired mix of 
               %  signal + noise 
               noise_energy=sum(abs(noise.*noise));  
               noise_weight = sqrt( (sig_energy/noi se_energy)/power(10.0,SNR_exponent)); 
                
               % build the signal plus noise 
               x= sig_data + (noise_weight*noise); 
              
               % Call function to do processing on algorithm to test 
               [missed_peaks(noise_id), false_peaks (noise_id), mag_err_rms(noise_id), 
phase_err_rms(noise_id),... 
                       sigma_err_rms(noise_id), mag _err_pct(noise_id), 
phase_err_pct(noise_id), ... 
                       sigma_err_pct(noise_id), mag _err_bias(noise_id), 
phase_err_bias(noise_id), ... 
                       sigma_err_bias(noise_id), el apsed_time(noise_id)] = sim_1_proc(x, 
M_value, peak_info); 
 
            end  % noise loop 
           
            % Log results for each parameter for a set of noise instances 
            for result_loop=1:12 
               
                if result_loop == 1 
                    result_data = missed_peaks; 
                    result_string = 'Missed_Peaks';  
                elseif result_loop == 2 
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                    result_data = false_peaks; 
                    result_string = 'False_Peaks'; 
                elseif result_loop == 3 
                     result_data = mag_err_rms; 
                     result_string = 'Mag_Err_RMS';  
                elseif result_loop == 4 
                     result_data = phase_err_rms; 
                     result_string = 'Phase_Err_RMS '; 
                elseif result_loop == 5 
                     result_data = sigma_err_rms; 
                     result_string = 'Sigma_Err_RMS '; 
                elseif result_loop == 6 
                     result_data = mag_err_pct; 
                     result_string = 'Mag_Err_perce nt'; 
                elseif result_loop == 7 
                     result_data = phase_err_pct; 
                     result_string = 'Phase_Err_per cent'; 
                elseif result_loop == 8 
                     result_data = sigma_err_pct; 
                     result_string = 'Sigma_Err_per cent'; 
                elseif result_loop == 9 
                     result_data = mag_err_bias; 
                     result_string = 'Mag_Err_Bias' ; 
                elseif result_loop == 10 
                     result_data = phase_err_bias; 
                     result_string = 'Phase_Err_Bia s'; 
                elseif result_loop == 11 
                     result_data = sigma_err_bias; 
                     result_string = 'Sigma_Err_Bia s'; 
                elseif result_loop == 12 
                     result_data = elapsed_time; 
                     result_string = 'Elapsed_time' ; 
                end 
           
                % Discard invalid results 
                num_results=0; 
                for (rindex = 1:num_noise_frames) 
                    % If result is valid number, st ore it for computation 
                    if ( isnan(result_data(rindex))  == 0 ) 
                        num_results = num_results+1 ; 
                        valid_results(num_results) = result_data(rindex); 
                    end 
                end 
                % Compute mean, std and variance on  valid results. 
                if ( num_results > 0 ) 
                    result_mean = mean(valid_result s(1:num_results)); 
                    result_std = std(valid_results( 1:num_results)); 
                    result_var = var(valid_results( 1:num_results)); 
                    result_max = max(valid_results( 1:num_results)); 
                    result_min = min(valid_results( 1:num_results)); 
                else 
                    result_mean = NaN; 
                    result_std = NaN; 
                    result_var = NaN; 
                    result_max = NaN; 
                    result_min = NaN; 
                end 
                 
                % Log results to output file: 
                % 'parameter  signal  SNR    M    N     mean     max    min     std     
variance' 
                fid=fopen(results_file, 'at'); 
                fprintf(fid,'%20.20s     %2.2d    % 5.1f   %3.3d   %2.2d   %9.5f     %9.5f    
%9.5f   %9.5f   %9.5f\n', ... 
                       result_string, sig_id, SNR_i n_dB, M_value, num_results, 
result_mean, result_max, ... 
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                       result_min, result_std, resu lt_var ); 
                fclose(fid); 
                  
            end  % results loop            
        end % SNR loop 
    end % M loop 
end % signal loop    
 
% Get time and date to add for "completed timestamp " 
ctime = clock; 
fid=fopen(results_file, 'rt+'); 
fseek(fid,47,0); % insert timestamp at beginning of  file after "started" 
fprintf(fid,' completed: %2.2d/%2.2d/%4.4d  %2.2d:% 2.2d:%2.2d',... 
                ctime(2), ctime(3), ctime(1),ctime( 4), ctime(5),round(ctime(6))); 
fclose(fid); 
 
 
 
 

A.6.13 sim_1_proc.m 

% sim_1_proc.m - Processing associated with simulat ion #1 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2003, 2004 - All rights reserved. 
% Fred J. Frigo 
% Dec 21, 2003  - original 
% Jan 20, 2004  - updates for calculating errors 
% 
%  Inputs:  
%           input_signal = signal+noise 
%           M = filter length 
%           peak_info = contains info about each pe ak in the signal 
%                       [ A, theta, sigma, omega_in dex, next_omega_flag] 
%                       A = expected magnitude 
%                       theta = expected phase 
%                       sigma = expected sigma (dam ping) 
%                       omega_index = omega index f or expected peak 
%                       next_omega_flag = 1 if OK t o use next omega index  
% 
%  Outputs:    
%           missed_peaks = percentage of missed pea ks 
%           false_peaks = percentage of false peaks  
%           rms_mag_err = RMS error for magnitude 
%           rms_phase_err = RMS error for phase  
%           rms_sigma_err = RMS error for sigma (da mping) 
%           pct_mag_err = RMS error for magnitude 
%           pct_phase_err = RMS error for phase  
%           pct_sigma_err = RMS error for sigma (da mping) 
%           elapsed_time = elaspsed time in seconds  
 
function [missed_peaks, false_peaks, rms_mag_err, r ms_phase_err, rms_sigma_err, ... 
             pct_mag_err, pct_phase_err, pct_sigma_ err, ... 
             bias_mag_err, bias_phase_err, bias_sig ma_err,elapsed_time] = 
sim_1_proc(input_signal, M, peak_info); 
 
matched_peaks = 0; 
total_peaks = 0; 
missed_peaks = 0.0; 
false_peaks = 0.0; 
rms_mag_err = NaN;  % If no peaks are found, RMS er ror = NaN 
rms_phase_err = NaN; 
rms_sigma_err = NaN; 
pct_mag_err = NaN; % If no peaks are found, Percent  error = NaN 
pct_phase_err = NaN; 
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pct_sigma_err = NaN; 
bias_mag_err = NaN; % If no peaks are found, Bias e rror = NaN 
bias_phase_err = NaN; 
bias_sigma_err = NaN; 
 
% Find out how many signal components there are 
num_expected_peaks = max( size(peak_info(:,5))); 
 
% set flag = 1 to display all plots 
show_plots=0; 
 
N=512; 
%M=256;  
Ns=1000;   %1800 
Nf=1024;%0<Ns<Nf.  Nf>=N+M-1. 
K=1;%K must be 1 or N.  alp1 and alp2 are irrelevan t if K=1. 
Nsig=40; 
Nw=N/2;%Nw must be greater than or equal to N/2. 
k1=0; 
k2=Nw-1;%0<=k1<k2<=Nw-1. 
delsig=0.0002; 
alp1=0; 
alp2=0; 
bet1=0;  % 0 = default - set this to 0.5 to increas e peak picking sensitivity 
bet2=0; 
gam=0;%0<gam<=1.  gam=1 reduces to 2D APES.  gam=0 would reduce to 2D Capon. 
C=1; 
 
spectrumtype=1;%=1 for 2D Capon, 2 for 2D APES/Capo n. 
 
delw=pi/Nw; 
 
%  signal plus noise 
x=input_signal(:,1:N+M-1); 
 
if C>1 
    
   if gtype==1&datatype==1 
      g=gideal; 
   elseif gtype==2 
      g=fgest(xlong,C); 
      %g=fgest(x,C); 
   end 
    
   if rhosqtype==1&datatype==1 
      rhosq=rhosqideal; 
   elseif rhosqtype==2 
      rhosq=frhosqest(xlong,Ns,Nf,C); 
   end 
    
   Rw=diag(rhosq); 
   Rwinv=inv(Rw); 
   w=Rwinv*g/(g'*Rwinv*g); 
    
   xest=w'*x; 
 
else % if C == 1, then g = 1 
    g=1; 
end 
 
tic; 
 
if (C==1)|(C>1&combotype==3) 
   if spectrumtype==1 
      S=Capon2D(x,N,M,K,Nsig,Nw,k1,k2,delsig,alp1,a lp2,bet1,bet2,C,g); 
   elseif spectrumtype==2 
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      S=APESCapon2D(x,N,M,Nsig,Nw,k1,k2,delsig,bet1 ,bet2,gam,C,g); 
   end 
end 
 
if C>1&combotype==1 
   if spectrumtype==1 
      S=Capon2D(xest,N,M,K,Nsig,Nw,k1,k2,delsig,alp 1,alp2,bet1,bet2,1,1); 
   elseif spectrumtype==2 
      S=APESCapon2D(xest,N,M,Nsig,Nw,k1,k2,delsig,b et1,bet2,gam,1,1); 
   end 
end 
 
if C>1&combotype==2 
   S=zeros(Nsig,k2-k1+1); 
   for i=1:C 
      if spectrumtype==1 
         Si=Capon2D(x(i,:),N,M,K,Nsig,Nw,k1,k2,dels ig,alp1,alp2,bet1,bet2,1,1); 
      elseif spectrumtype==2 
         Si=APESCapon2D(x(i,:),N,M,Nsig,Nw,k1,k2,de lsig,bet1,bet2,gam,1,1); 
      end 
      S=S+conj(w(i))*Si; 
   end 
end 
 
elapsed_time = toc; 
 
sigset=delsig*[0:Nsig-1]; 
wset=delw*[k1:k2]; 
n=[0:N+M-2]; 
 
% Create peak enhanced 2D surface where each peak i s a dirac delta function 
Sp=peak_complex(S,0,1); 
 
% Compute peak projections  
Spp=peakproj(Sp,0); 
 
% Set threshold for valid peaks:  (Max component am plitude = 1.0) 
%  - Use max projection (for determination of thres hold) 
% max_peak_value = max(abs(Spp)); 
% peak_threshold = max_peak_value*0.1; 
peak_threshold = 0.025;  
 
% Count number of peaks that exceed threshold 
total_peaks = count_peaks(Spp, peak_threshold); 
 
% Search for expected signal components, computing error terms if found 
rms_mag_sum = 0.0; 
rms_phase_sum = 0.0; 
rms_sigma_sum = 0.0; 
pct_mag_sum = 0.0; 
pct_phase_sum = 0.0; 
pct_sigma_sum = 0.0; 
bias_mag_sum = 0.0; 
bias_phase_sum = 0.0; 
bias_sigma_sum = 0.0; 
peaks_found = 0; 
for peak_component = 1: num_expected_peaks 
    component_info = squeeze(peak_info(peak_compone nt, :)); 
    % Search for expected peak calculating magnitud e, phase and damping errors 
    [found_peak_flag, sq_mag_err, sq_phase_err, sq_ sigma_err, abs_mag_err, abs_phase_err, 
... 
           abs_sigma_err, diff_mag_err, diff_phase_ err, diff_sigma_err] = find_peak( Sp, 
component_info, delw, delsig, peak_threshold ); 
    rms_mag_sum = rms_mag_sum + sq_mag_err; 
    rms_phase_sum = rms_phase_sum + sq_phase_err; 
    rms_sigma_sum = rms_sigma_sum + sq_sigma_err; 
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    pct_mag_sum = pct_mag_sum + abs_mag_err; 
    pct_phase_sum = pct_phase_sum + abs_phase_err; 
    pct_sigma_sum = pct_sigma_sum + abs_sigma_err; 
    bias_mag_sum = bias_mag_sum + diff_mag_err; 
    bias_phase_sum = bias_phase_sum + diff_phase_er r; 
    bias_sigma_sum = bias_sigma_sum + diff_sigma_er r; 
 
 
    if (found_peak_flag == 1) 
        peaks_found = peaks_found + 1; 
    end 
end 
 
% Compute error values if we found any peaks 
if peaks_found > 0  
    rms_mag_err = sqrt( (rms_mag_sum/peaks_found) ) ; 
    rms_phase_err = sqrt( (rms_phase_sum/peaks_foun d) ); 
    rms_sigma_err = sqrt( (rms_sigma_sum/peaks_foun d) ); 
    pct_mag_err = (pct_mag_sum/peaks_found)*100.0; 
    pct_phase_err = (pct_phase_sum/peaks_found)*100 .0; 
    pct_sigma_err = (rms_sigma_sum/peaks_found)*100 .0; 
    bias_mag_err = bias_mag_sum/peaks_found; 
    bias_phase_err = bias_phase_sum/peaks_found; 
    bias_sigma_err = bias_sigma_sum/peaks_found; 
end 
 
% False positives ( as a percentage) 
false_peaks = ((total_peaks - peaks_found)/Nw)*100. 0; 
 
% Missed peaks (as a percentage) 
missed_peaks = ((num_expected_peaks - peaks_found)/ num_expected_peaks)*100.0; 
 
% Create plots if selected.  
if (show_plots == 1) 
    
   mrs_name='x(t)'; 
    
   % Plots 
   if( spectrumtype == 1) 
     analysis_string = '2D-Capon '; 
   else 
     analysis_string = '2D-APES '; 
   end 
 
   figure 
   title_string = strcat([analysis_string, 'surface  plot of |S(\sigma,\omega)| for ', 
mrs_name]);  
   surf(wset,sigset,abs(S)),title(title_string), xl abel('\omega'), 
ylabel('\sigma'),zlabel('|S(\sigma,\omega)|'); 
 
   figure 
   title_string = strcat([analysis_string, 'contour  plot of |S(\sigma,\omega)| for ', 
mrs_name]);  
   contour(wset,sigset,abs(S)),title(title_string), xlabel('\omega'),ylabel('\sigma'); 
 
   figure 
   title_string = strcat([analysis_string, 'peak en hanced surface plot of 
|S(\sigma,\omega)| for ', mrs_name]);  
   
surf(wset,sigset,abs(Sp)),title(title_string),xlabe l('\omega'),ylabel('\sigma'),zlabel('|
S(\sigma,\omega)|'); 
  
   figure 
   title_string = strcat([analysis_string, 'peak en hanced contour plot of 
|S(\sigma,\omega)| for ', mrs_name]);  
   contour(wset,sigset,abs(Sp)),title(title_string) ,xlabel('\omega'),ylabel('\sigma'); 
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   figure 
   title_string = strcat([analysis_string, 'project ed peaks of |S(\sigma,\omega)| for ', 
mrs_name]);  
   plot(wset,Spp),title(title_string),xlabel('\omeg a'),ylabel('|S(\sigma,\omega)|'); 
 
   X=fft(x.').'; 
   [Cft,Nft]=size(abs(X)); 
   k1ft=floor(Nft*k1/(2*Nw)); 
   k2ft=floor(Nft*k2/(2*Nw)); 
   wfset=[k1ft:k2ft]*2*pi/Nft; 
   figure 
   plot(wfset,abs(X(:,k1ft+1:k2ft+1))/Nft),title(st rcat(['Fourier Transform of 
',mrs_name])),xlabel('\omega'),ylabel('|S(\omega)|' ); 
   if C>1 
      Xest=fft(xest.').'; 
      figure 
      plot(wfset,abs(Xest(:,k1ft+1:k2ft+1))/Nft),ti tle('average abs(FFT)'),xlabel(paras) 
   end 
   figure 
   plot(n,abs(x).'),title(strcat(['Input signal ',m rs_name])), 
xlabel('t'),ylabel('x(t)'); 
 
end % (show_plots == 1) 
 
return 
 
 

A.6.14 timing_sim.m 

% timing_sim.m - Mainline script to run timing simu lation 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2004 - All rights reserved. 
% Fred J. Frigo 
% Feb 29, 2004  - original 
 
 
clear all 
close all 
 
results_file = 'timing_sim_results.txt'; 
simulation_id = 14; 
 
% Noise files 
num_noise_frames = 5;  %10 
noise_file=[ 
    'noise_0.dat'; 
    'noise_1.dat'; 
    'noise_2.dat'; 
    'noise_3.dat'; 
    'noise_4.dat'; 
    'noise_5.dat'; 
    'noise_6.dat'; 
    'noise_7.dat'; 
    'noise_8.dat'; 
    'noise_9.dat']; 
 
% Signal files 
num_signals = 3; 
signal_file=[ 
    'signal_1.dat'; 
    'signal_2.dat'; 
    'signal_3.dat']; 
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% SNR values 
num_snr_values = 1; 
snr_value=[ 18.0 ]; 
 
 
% Signal Components: (these match signal definition  in create_signals.m) 
%    [ A, theta, sigma, omega_index, next_omega_fla g] 
%    A = magnitude 
%    theta = phase 
%    sigma = sigma (damping) 
%    omega_index = frequency index for peak 
%    next_omega_flag = 1 if OK to use next omega in dex (for peaks the are 
%                                                           on boundaries) 
%   
signal_components_1 = [ 
    1.0,   pi/4.0,    0.002, 63,   0; 
    0.75,  -pi/2.0,   0.006, 127,  0; 
    0.25,  0.0,       0.004, 191,  0]; 
 
signal_components_2 = [ 
    1.00,   pi/4.0,   0.001,  30,  0; 
   25.00,   0.0,      0.002,  40,  0; 
    0.75,  -pi/4.0,   0.004,  50,  0; 
    0.25,   0.0,      0.003, 100,  0; 
    1.00,   0.0,      0.001, 120,  0; 
   10.00,   pi/2.0,   0.002, 125,  0; 
    0.50,  -pi/2.0,   0.002, 195,  0; 
    1.00,   0.0,      0.003, 225,  0]; 
 
signal_components_3 = [ 
    0.50,   0.0,      0.004, 0,    0; 
    0.75,  -pi/2.0,   0.002, 10,   0; 
    1.00,   pi/4.0,   0.003, 31,   0; 
    0.75,   0.0,      0.003, 34,   0; 
    0.50,  -pi/2.0,   0.005, 55,   0; 
    1.00,   pi/2.0,   0.001, 63,   0; 
    1.00,   0.75*pi,  0.005, 66,   0; 
    0.25,   0.0,      0.004, 73,   0; 
    0.50,   pi/2.0,   0.000, 95,   0; 
    0.50,  -pi/2.0,   0.006, 104,  0]; 
 
% Number of M values to test 
num_m_values = 4; 
m_values=[ 32, 64, 128, 256]; 
 
N=512; 
 
% Values of K, alpha1, beta1, spectrum_type 
num_beta_values = 9; 
K_values =   [   N,    N,       N,     N,     1,      1,      N,     N,       N]; 
alp1_values= [ 0.0,  0.0,    -0.5,  -0.5,     0.0,    0.0,    0.0,   0.0,     0.0]; 
bet1_values= [ 0.0,  0.001,   0.0,   0.001,   0.0,    0.001,  0.0,   0.001,  -0.5]; 
spect_vals = [   1,     1,     1,       1,     1,        1,    2,       2,      2]; 
 
 
% Frame size  (max is 1024) 
frame_size = N + 256; 
 
% Get time and date 
ctime = clock; 
 
% Open results file 
fid=fopen(results_file, 'wt+'); 
fprintf(fid,'Simulation: %2d\n', simulation_id); 
fprintf(fid,'started: %2.2d/%2.2d/%4.4d  %2.2d:%2.2 d:%2.2d -                                                
\n',... 
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                                                   ctime(2), ctime(3), ctime(1),ctime(4), 
ctime(5),round(ctime(6))); 
fprintf(fid,'           Parameter   signal   SNR   K    alp1    bet1   M   spec   N     
mean          max          min         std        v ariance \n'); 
fclose(fid); 
 
% Signal loop 
for sig_id = 3: 3 % num_signals 
     
   % Get data 
   fidsig = fopen(signal_file(sig_id,:), 'r+b'); 
   [raw_data, count] = fread(fidsig, frame_size*2, 'real*4'); 
   fclose(fidsig); 
   for m = 1:(count/2) 
      sig_data(m) = raw_data((2*m)-1) + j*raw_data( 2*m); 
   end 
    
   % Compute signal energy for mixing SNR 
   sig_energy=sum(abs(sig_data.*sig_data)); 
    
   % Select structure with signal component info  
   if (sig_id == 1) 
      peak_info = signal_components_1; 
   elseif (sig_id == 2) 
      peak_info = signal_components_2; 
   elseif (sig_id == 3) 
      peak_info = signal_components_3; 
   end 
            
   % M loop 
   for mloop = 1: num_m_values  % num_m_values 
     M_value = m_values(mloop); 
        
     for bloop = 1: num_beta_values  % num_beta_val ues 
       bet1 = bet1_values( bloop ); 
       alp1 = alp1_values( bloop ); 
       spectrum_type = spect_vals( bloop); 
       K_value = K_values( bloop ); 
        
       % SNR loop 
       for snrloop = 1: num_snr_values  % num_snr_v alues 
            % Compute desired weight for noise to y ield desired SNR ratio in dB 
            SNR_in_dB = snr_value(snrloop); 
            SNR_exponent = SNR_in_dB/10.0;  % numer ator = desired SNR ratio in dB 
         
            % Noise loop 
            for noise_id = 1:num_noise_frames   % n um_noise_frames 
               % Get noise  
               fidn = fopen(noise_file(noise_id,:),  'r+b'); 
               [raw_data, count] = fread(fidn, fram e_size*2, 'real*4'); 
               fclose(fidn); 
               for m = 1:(count/2) 
                   noise(m) = raw_data((2*m)-1) + j *raw_data(2*m); 
                   noise(m)=0.1*noise(m); 
               end 
    
               % Compute Noise energy for creating desired mix of 
               %  signal + noise 
               noise_energy=sum(abs(noise.*noise));  
               noise_weight = sqrt( (sig_energy/noi se_energy)/power(10.0,SNR_exponent)); 
                
               % build the signal plus noise 
               x= sig_data + (noise_weight*noise); 
              
               % Call function to do processing on algorithm to test 
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               [missed_peaks(noise_id), false_peaks (noise_id), mag_err_rms(noise_id), 
phase_err_rms(noise_id),... 
                       sigma_err_rms(noise_id), mag _err_pct(noise_id), 
phase_err_pct(noise_id), ... 
                       sigma_err_pct(noise_id), mag _err_bias(noise_id), 
phase_err_bias(noise_id), ... 
                       sigma_err_bias(noise_id), el apsed_time(noise_id)] = 
timing_sim_proc(x, K_value, alp1, bet1, M_value, sp ectrum_type, peak_info); 
 
            end  % noise loop 
           
            % Log results for each parameter for a set of noise instances 
            for result_loop=1:12 
               
                if result_loop == 1 
                    result_data = missed_peaks; 
                    result_string = 'Missed_Peaks';  
                elseif result_loop == 2 
                    result_data = false_peaks; 
                    result_string = 'False_Peaks'; 
                elseif result_loop == 3 
                     result_data = mag_err_rms; 
                     result_string = 'Mag_Err_RMS';  
                elseif result_loop == 4 
                     result_data = phase_err_rms; 
                     result_string = 'Phase_Err_RMS '; 
                elseif result_loop == 5 
                     result_data = sigma_err_rms; 
                     result_string = 'Sigma_Err_RMS '; 
                elseif result_loop == 6 
                     result_data = mag_err_pct; 
                     result_string = 'Mag_Err_perce nt'; 
                elseif result_loop == 7 
                     result_data = phase_err_pct; 
                     result_string = 'Phase_Err_per cent'; 
                elseif result_loop == 8 
                     result_data = sigma_err_pct; 
                     result_string = 'Sigma_Err_per cent'; 
                elseif result_loop == 9 
                     result_data = mag_err_bias; 
                     result_string = 'Mag_Err_Bias' ; 
                elseif result_loop == 10 
                     result_data = phase_err_bias; 
                     result_string = 'Phase_Err_Bia s'; 
                elseif result_loop == 11 
                     result_data = sigma_err_bias; 
                     result_string = 'Sigma_Err_Bia s'; 
                elseif result_loop == 12 
                     result_data = elapsed_time; 
                     result_string = 'Elapsed_time' ; 
                end 
           
                % Discard invalid results 
                num_results=0; 
                for (rindex = 1:num_noise_frames) 
                    % If result is valid number, st ore it for computation 
                    if ( isnan(result_data(rindex))  == 0 ) 
                        num_results = num_results+1 ; 
                        valid_results(num_results) = result_data(rindex); 
                    end 
                end 
                % Compute mean, std and variance on  valid results. 
                if ( num_results > 0 ) 
                    result_mean = mean(valid_result s(1:num_results)); 
                    result_std = std(valid_results( 1:num_results)); 
                    result_var = var(valid_results( 1:num_results)); 
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                    result_max = max(valid_results( 1:num_results)); 
                    result_min = min(valid_results( 1:num_results)); 
                else 
                    result_mean = NaN; 
                    result_std = NaN; 
                    result_var = NaN; 
                    result_max = NaN; 
                    result_min = NaN; 
                end 
                 
                % Log results to output file: 
                % 'Parameter   signal   SNR  K   al p1  bet1   M   spect_type   N    mean     
max    min     std     variance' 
                fid=fopen(results_file, 'at'); 
                fprintf(fid,'%20.20s     %1.1d    % 4.1f   %3.3d   %4.1f  %6.3f  %3.3d   
%1.1d    %2.2d   %9.5f     %9.5f    %9.5f   %9.5f   %9.5f\n', ... 
                       result_string, sig_id, SNR_i n_dB, K_value, alp1, bet1, M_value, 
spectrum_type, num_results, result_mean, result_max , ... 
                       result_min, result_std, resu lt_var ); 
                fclose(fid); 
                  
            end  % results loop            
        end % SNR loop 
      end % beta loop 
    end % M loop 
end % signal loop    
 
% Get time and date to add for "completed timestamp " 
ctime = clock; 
fid=fopen(results_file, 'rt+'); 
fseek(fid,47,0); % insert timestamp at beginning of  file after "started" 
fprintf(fid,' completed: %2.2d/%2.2d/%4.4d  %2.2d:% 2.2d:%2.2d',... 
                ctime(2), ctime(3), ctime(1),ctime( 4), ctime(5),round(ctime(6))); 
fclose(fid); 
 
 

A.6.15 timing_sim_proc.m 

% timing_sim_proc.m - Processing associated with ti ming simulation 
% Marquette University,   Milwaukee, WI  USA 
% Copyright 2004 - All rights reserved. 
% Fred J. Frigo 
% Feb 29, 2004  - original 
% 
%  Inputs:  
%           input_signal = signal+noise 
%           K = estimation length 
%           alp1, bet1 = peak sensistivity paramete rs 
%           M = filter length 
%           spectrum_type = 1 = Capon; 2 = Capon/AP ES 
%           peak_info = contains info about each pe ak in the signal 
%                       [ A, theta, sigma, omega_in dex, next_omega_flag] 
%                       A = expected magnitude 
%                       theta = expected phase 
%                       sigma = expected sigma (dam ping) 
%                       omega_index = omega index f or expected peak 
%                       next_omega_flag = 1 if OK t o use next omega index  
% 
%  Outputs:    
%           missed_peaks = percentage of missed pea ks 
%           false_peaks = percentage of false peaks  
%           rms_mag_err = RMS error for magnitude 
%           rms_phase_err = RMS error for phase  
%           rms_sigma_err = RMS error for sigma (da mping) 
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%           pct_mag_err = RMS error for magnitude 
%           pct_phase_err = RMS error for phase  
%           pct_sigma_err = RMS error for sigma (da mping) 
%           elapsed_time = elaspsed time in seconds  
 
function [missed_peaks, false_peaks, rms_mag_err, r ms_phase_err, rms_sigma_err, ... 
             pct_mag_err, pct_phase_err, pct_sigma_ err, ... 
             bias_mag_err, bias_phase_err, bias_sig ma_err,elapsed_time] = ... 
             timing_sim_proc(input_signal, K, alp1,  bet1, M, spectrum_type, peak_info); 
 
matched_peaks = 0; 
total_peaks = 0; 
missed_peaks = 0.0; 
false_peaks = 0.0; 
rms_mag_err = NaN;  % If no peaks are found, RMS er ror = NaN 
rms_phase_err = NaN; 
rms_sigma_err = NaN; 
pct_mag_err = NaN; % If no peaks are found, Percent  error = NaN 
pct_phase_err = NaN; 
pct_sigma_err = NaN; 
bias_mag_err = NaN; % If no peaks are found, Bias e rror = NaN 
bias_phase_err = NaN; 
bias_sigma_err = NaN; 
 
% Find out how many signal components there are 
num_expected_peaks = max( size(peak_info(:,5))); 
 
% set flag = 1 to display all plots 
show_plots=0; 
 
N=512; 
%M=256;  
Ns=1000;   %1800 
Nf=1024;%0<Ns<Nf.  Nf>=N+M-1. 
% K=N;%K must be 1 or N.  alp1 and alp2 are irrelev ant if K=1. 
Nsig=40; 
Nw=N/2;%Nw must be greater than or equal to N/2. 
k1=0; 
k2=Nw-1;%0<=k1<k2<=Nw-1. 
delsig=0.0002; 
%alp1=0; 
alp2=0; 
%bet1=0;  % 0 = default - set this to 0.5 to increa se peak picking sensitivity 
bet2=0; 
gam=0.5;%0<gam<=1.  gam=1 reduces to 2D APES.  gam= 0 would reduce to 2D Capon. 
C=1; 
 
spectrumtype=2;%=1 for 2D Capon, 2 for 2D APES/Capo n. 
 
delw=pi/Nw; 
 
%  signal plus noise 
x=input_signal(:,1:N+M-1); 
 
if C>1 
    
   if gtype==1&datatype==1 
      g=gideal; 
   elseif gtype==2 
      g=fgest(xlong,C); 
      %g=fgest(x,C); 
   end 
    
   if rhosqtype==1&datatype==1 
      rhosq=rhosqideal; 
   elseif rhosqtype==2 



  288 

 

      rhosq=frhosqest(xlong,Ns,Nf,C); 
   end 
    
   Rw=diag(rhosq); 
   Rwinv=inv(Rw); 
   w=Rwinv*g/(g'*Rwinv*g); 
    
   xest=w'*x; 
 
else % if C == 1, then g = 1 
    g=1; 
end 
 
tic; 
 
if (C==1)|(C>1&combotype==3) 
   if spectrumtype==1 
      S=Capon2D(x,N,M,K,Nsig,Nw,k1,k2,delsig,alp1,a lp2,bet1,bet2,C,g); 
   elseif spectrumtype==2 
      S=APESCapon2D(x,N,M,Nsig,Nw,k1,k2,delsig,bet1 ,bet2,gam,C,g); 
   end 
end 
 
if C>1&combotype==1 
   if spectrumtype==1 
      S=Capon2D(xest,N,M,K,Nsig,Nw,k1,k2,delsig,alp 1,alp2,bet1,bet2,1,1); 
   elseif spectrumtype==2 
      S=APESCapon2D(xest,N,M,Nsig,Nw,k1,k2,delsig,b et1,bet2,gam,1,1); 
   end 
end 
 
if C>1&combotype==2 
   S=zeros(Nsig,k2-k1+1); 
   for i=1:C 
      if spectrumtype==1 
         Si=Capon2D(x(i,:),N,M,K,Nsig,Nw,k1,k2,dels ig,alp1,alp2,bet1,bet2,1,1); 
      elseif spectrumtype==2 
         Si=APESCapon2D(x(i,:),N,M,Nsig,Nw,k1,k2,de lsig,bet1,bet2,gam,1,1); 
      end 
      S=S+conj(w(i))*Si; 
   end 
end 
 
elapsed_time = toc; 
 
sigset=delsig*[0:Nsig-1]; 
wset=delw*[k1:k2]; 
n=[0:N+M-2]; 
 
% Create peak enhanced 2D surface where each peak i s a dirac delta function 
Sp=peak_complex(S,0,1); 
 
% Compute peak projections  
Spp=peakproj(Sp,0); 
 
% Set threshold for valid peaks:  (Max component am plitude = 1.0) 
%  - Use max projection (for determination of thres hold) 
% max_peak_value = max(abs(Spp)); 
% peak_threshold = max_peak_value*0.1; 
peak_threshold = 0.025;  
 
% Count number of peaks that exceed threshold 
total_peaks = count_peaks(Spp, peak_threshold); 
 
% Search for expected signal components, computing error terms if found 
rms_mag_sum = 0.0; 
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rms_phase_sum = 0.0; 
rms_sigma_sum = 0.0; 
pct_mag_sum = 0.0; 
pct_phase_sum = 0.0; 
pct_sigma_sum = 0.0; 
bias_mag_sum = 0.0; 
bias_phase_sum = 0.0; 
bias_sigma_sum = 0.0; 
peaks_found = 0; 
for peak_component = 1: num_expected_peaks 
    component_info = squeeze(peak_info(peak_compone nt, :)); 
    % Search for expected peak calculating magnitud e, phase and damping errors 
    [found_peak_flag, sq_mag_err, sq_phase_err, sq_ sigma_err, abs_mag_err, abs_phase_err, 
... 
           abs_sigma_err, diff_mag_err, diff_phase_ err, diff_sigma_err] = find_peak( Sp, 
component_info, delw, delsig, peak_threshold ); 
    rms_mag_sum = rms_mag_sum + sq_mag_err; 
    rms_phase_sum = rms_phase_sum + sq_phase_err; 
    rms_sigma_sum = rms_sigma_sum + sq_sigma_err; 
    pct_mag_sum = pct_mag_sum + abs_mag_err; 
    pct_phase_sum = pct_phase_sum + abs_phase_err; 
    pct_sigma_sum = pct_sigma_sum + abs_sigma_err; 
    bias_mag_sum = bias_mag_sum + diff_mag_err; 
    bias_phase_sum = bias_phase_sum + diff_phase_er r; 
    bias_sigma_sum = bias_sigma_sum + diff_sigma_er r; 
 
 
    if (found_peak_flag == 1) 
        peaks_found = peaks_found + 1; 
    end 
end 
 
% Compute error values if we found any peaks 
if peaks_found > 0  
    rms_mag_err = sqrt( (rms_mag_sum/peaks_found) ) ; 
    rms_phase_err = sqrt( (rms_phase_sum/peaks_foun d) ); 
    rms_sigma_err = sqrt( (rms_sigma_sum/peaks_foun d) ); 
    pct_mag_err = (pct_mag_sum/peaks_found)*100.0; 
    pct_phase_err = (pct_phase_sum/peaks_found)*100 .0; 
    pct_sigma_err = (rms_sigma_sum/peaks_found)*100 .0; 
    bias_mag_err = bias_mag_sum/peaks_found; 
    bias_phase_err = bias_phase_sum/peaks_found; 
    bias_sigma_err = bias_sigma_sum/peaks_found; 
end 
 
% False positives ( as a percentage) 
false_peaks = ((total_peaks - peaks_found)/Nw)*100. 0; 
 
% Missed peaks (as a percentage) 
missed_peaks = ((num_expected_peaks - peaks_found)/ num_expected_peaks)*100.0; 
 
% Create plots if selected.  
if (show_plots == 1) 
    
   mrs_name='x(t)'; 
    
   % Plots 
   if( spectrumtype == 1) 
     analysis_string = '2D-Capon '; 
   else 
     analysis_string = '2D-APES '; 
   end 
 
   figure 
   title_string = strcat([analysis_string, 'surface  plot of |S(\sigma,\omega)| for ', 
mrs_name]);  
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   surf(wset,sigset,abs(S)),title(title_string), xl abel('\omega'), 
ylabel('\sigma'),zlabel('|S(\sigma,\omega)|'); 
 
   figure 
   title_string = strcat([analysis_string, 'contour  plot of |S(\sigma,\omega)| for ', 
mrs_name]);  
   contour(wset,sigset,abs(S)),title(title_string), xlabel('\omega'),ylabel('\sigma'); 
 
   figure 
   title_string = strcat([analysis_string, 'peak en hanced surface plot of 
|S(\sigma,\omega)| for ', mrs_name]);  
   
surf(wset,sigset,abs(Sp)),title(title_string),xlabe l('\omega'),ylabel('\sigma'),zlabel('|
S(\sigma,\omega)|'); 
  
   figure 
   title_string = strcat([analysis_string, 'peak en hanced contour plot of 
|S(\sigma,\omega)| for ', mrs_name]);  
   contour(wset,sigset,abs(Sp)),title(title_string) ,xlabel('\omega'),ylabel('\sigma'); 
 
   figure 
   title_string = strcat([analysis_string, 'project ed peaks of |S(\sigma,\omega)| for ', 
mrs_name]);  
   plot(wset,Spp),title(title_string),xlabel('\omeg a'),ylabel('|S(\sigma,\omega)|'); 
 
   X=fft(x.').'; 
   [Cft,Nft]=size(abs(X)); 
   k1ft=floor(Nft*k1/(2*Nw)); 
   k2ft=floor(Nft*k2/(2*Nw)); 
   wfset=[k1ft:k2ft]*2*pi/Nft; 
   figure 
   plot(wfset,abs(X(:,k1ft+1:k2ft+1))/Nft),title(st rcat(['Fourier Transform of 
',mrs_name])),xlabel('\omega'),ylabel('|S(\omega)|' ); 
   if C>1 
      Xest=fft(xest.').'; 
      figure 
      plot(wfset,abs(Xest(:,k1ft+1:k2ft+1))/Nft),ti tle('average abs(FFT)'),xlabel(paras) 
   end 
   figure 
   plot(n,abs(x).'),title(strcat(['Input signal ',m rs_name])), 
xlabel('t'),ylabel('x(t)'); 
 
end % (show_plots == 1) 
 
return 
 
 
 
 
 
 
 
 
 

 

 


