
i
{{

Equation Section 1

Two-Dimensional Spectral Estimation Techniques with
Applications to Magnetic Resonance Spectroscopy

by

Frederick J. Frigo, B.S., M.S.

A Dissertation submitted to the Faculty of the

Graduate School, Marquette University, in Partial
Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Milwaukee, Wisconsin
April 14, 2004

i
{{

© Copyright by Frederick Joseph Frigo 2004
All Rights Reserved

ii

This is to certify that we have examined this copy of the dissertation by

Frederick J. Frigo, B.S., M.S.

and have found that it is complete and satisfactory in all respects.

iii

Abstract

Single-voxel proton magnetic resonance spectroscopy (MRS) is typically used in

a clinical setting to quantify metabolites in the human brain. By convention, an MRS

absorption spectrum is created by Fourier transformation of phase-corrected raw data

acquired during an MRS experiment. An MRS absorption spectrum shows the relative

concentrations of certain key metabolites, including N-Acetyl-aspartate (NAA), choline,

creatine and others. Certain nonparametric techniques may also be used for MRS

analysis. 2D Capon and 2D amplitude and phase estimation (APES) are two relatively

new nonparametric methods that can be used effectively to estimate both frequency and

damping characteristics of each metabolite. In this dissertation we introduce the

weighted 2D Capon, weighted 2D APES, and combined weighted 2D APES / 2D Capon

methods. Under certain conditions these methods may provide improved estimation

properties and/or reduced computation time, as compared to conventional 2D methods.

Many clinicians routinely use multiple receive coils for magnetic resonance

imaging (MRI) studies of the human brain. In conjunction with these exams, it is often

desired to perform proton MRS experiments to quantify metabolites from a region of

interest. An MRS absorption spectrum can be generated for each coil element; however,

interpreting the results from each channel is a tedious process. Combining MRS

absorption spectra obtained from an experiment in which multiple receive coils are used

would greatly simplify clinical diagnosis. In this dissertation we introduce two methods

iv

for 2D spectral estimation in the case of multi-channel data. To date, no such methods

have appeared in the literature. These new methods employ weighted signal averaging

and weighted spectrum averaging and use any of the 2D techniques described above.

We also introduce a method to optimally estimate the relative channel gains from

observed data.

The new techniques developed in this dissertation are evaluated and compared to

conventional 2D spectral estimation based on extensive computer simulations written in

MATLAB. They are also applied to phantom and in vivo MRS data.

v

Acknowledgements

 I would like to express my sincere gratitude to my research director, Dr. James

A. Heinen. Like so many other Marquette University engineering students, I consider

myself to be very fortunate to have taken classes in Linear Systems Analysis, Digital

Signal Processing, Digital Filter Design, and Adaptive Filtering from Dr. Heinen. His

contributions to this dissertation have been immense, and his scholarly dedication and

patience have been exemplary. Without his mentoring, and involvement, this research

would not have been possible. Both of us have learned a great deal about magnetic

resonance spectroscopy through this research, and have found the application of signal

processing strategies to improving the clinical usefulness of magnetic resonance

spectroscopy to be quite fascinating.

I would also like to acknowledge the other members of my committee: Dr.

Matthew A. Bernstein of the Mayo Clinic, Dr. Ronald H. Brown of Marquette

University, Dr. Bruce D. Collick of General Electric Healthcare, and Dr. James E. Richie

of Marquette University. My committee provided a great deal of encouragement and

focus for the direction of this work.

I am also grateful to Marquette University, the Society of Jesus, and to the many

outstanding professors I have learned from: Dr. Russell J. Niederjohn, Dr. Arthur C.

Moeller, Dr. Douglas J. Harris, Dr. Roger H. Johnson, and many others. In addition, I

would like to acknowledge the contributions of many individuals (from General Electric

vi

Healthcare unless noted otherwise); Dr. Bryan J. Mock, Dr. Jason A. Polzin, Dr.

Thomas E. Raidy of Duke University, Dr. Thoralf Niendorf, Dr. Jeffrey A. Hopkins, Dr.

Kevin F. King, Dr. R. Scott Hinks, Dr. Bipin Salunkhe, Dr. Jean H. Brittain, Dr. Steve G.

Tan, Dr. Steve S. Chen, Dr. David C. Zhu of the University of Chicago, Dr. Michael W.

Bourne of the University Hospital of Wales, Dr. Shawn F. Halpin of the University

Hospital of Wales, Dr. Sarah K. Patch, Dr. Elisabeth C. Angelos, Dr. Dale R. Thayer, Dr.

Manoj Sarananthan, Dr. Sandhya Parameswaran, Louis M. Frigo, David H. Gurr, Charles

R. Giordano, Bo J. Pettersson, Daniel J. Zimmerman, and Mike R. Hartley.

Finally, I would like to express my deepest appreciation and gratitude to my wife,

Jill, and my children, Katherine, William, Joseph and Elizabeth, for their love and

support. Completing this dissertation was a significant challenge, and they provided the

motivation to finish. I would also like to thank my parents, Joseph and Irene Frigo, my

brother, Louis, and my sisters, Julie and Janette, for their prayers, and helpful advice.

My sister, Julie, fought against the ravages of juvenile diabetes, yet had the

courage and tenacity to embark on her own scholarly journey. After graduating from the

College of Pharmacy at the University of Wisconsin at Madison, she enrolled in the

Ph.D. program at the University of Michigan at Ann Arbor to focus on diabetes research.

Her journey ended far too soon, but serves as a source of great inspiration in my journey,

and I dedicate this dissertation in her memory.

vii
{{

Table of Contents

Abstract ... iii

Acknowledgements ..v

List of Figures ..xiv

List of Tables ...xxii

1 Introduction ..1

2 Magnetic Resonance Spectroscopy ...6

2.1 Magnetic Resonance Principles ..6

2.2 Magnetic Resonance Spectroscopy Experiment...11

2.3 Summary...18

3 Magnetic Resonance Spectroscopy Processing Techniques19

3.1 Creating a Phase Correction Vector..21

3.1.1 Reference Normalization ...21

3.1.2 DC Mixing ...23

3.1.3 Zero Phasing ..25

3.1.4 Linear Phase Correction...28

3.1.5 Phase Spline Smoothing ..33

3.2 Computation of Absorption Spectrum..37

3.2.1 Averaging of Water-Suppressed Signal...38

3.2.2 Applying Phase Correction Vector ..39

 viii

3.2.3 Residual Water Removal ...41

3.2.4 Fourier Transform to Compute Absorption Spectrum.................................47

3.3 Summary...51

4 Weighted 2D Spectral Estimation Methods ..52

4.1 Discrete Spectrum of Sum of Continuous-Time Damped Complex Sinusoids....54

4.2 Discrete Spectrum of Arbitrary Complex Signals ..57

4.3 Estimating the Spectrum,(,)S σ ω , from Filter Output, , []x nσ ω60

4.4 Weighted 2D Capon Method ..65

4.5 2D Capon Method in Frequency Domain...67

4.6 Weighted 2D APES Method...70

4.7 Combined Weighted 2D APES / 2D Capon Method..73

4.8 Summary of Methods..75

4.8.1 General Framework for Techniques ..76

4.8.2 Existing Techniques...76

4.8.2.1 2D Capon ..76

4.8.2.2 2D APES...77

4.8.3 New Techniques...77

4.8.3.1 Weighted 2D Capon..78

4.8.3.2 Weighted 2D APES ..78

4.8.3.3 Combined Weighted 2D APES / 2D Capon79

4.9 Computational Considerations..80

4.10 Example ..84

 ix

4.11 Summary...88

5 Multiple-Channel Weighted 2D Spectral Estimation Methods90

5.1 Extensions to Multiple Observations..91

5.2 Estimating the Basic Signal, []x n , from Observations, []'six n92

5.3 Estimating the 2D Spectrum,(,)S σ ω ..95

5.3.1 Weighted Signal Averaging...95

5.3.2 Weighted Spectrum Averaging..96

5.4 Estimating Channel Gains, 'sig , from Observed Data ...97

5.5 Estimating Noise Variances, 'siρ , from Observed Data101

5.6 Summary...102

6 Evaluation of 2D Spectral Estimation Methods..103

6.1 Introduction...103

6.2 Definitions...103

6.2.1 Peak Spectrum ...104

6.2.2 Noise Threshold for Peak Spectrum ..104

6.2.3 Projected Peak Spectrum ...105

6.2.4 Simple Example...105

6.3 Simulation Procedure..112

6.3.1 Peak Analysis...113

6.3.2 Figures of Merit ...114

6.3.2.1 Percent Missed Peaks..114

 x

6.3.2.2 Percent False Peaks...114

6.3.2.3 Relative RMS Magnitude Error ..114

6.3.2.4 Relative RMS Damping (σ) Error...115

6.3.3 Test Signals..115

6.3.3.1 Test Signal I ..115

6.3.3.2 Test Signal II...117

6.3.3.3 Test Signal III ...119

6.3.4 SNR Considerations...121

6.3.5 Comment on Grid Points ...122

6.3.6 Simulations ..122

6.3.6.1 Single-Channel Weighted 2D Spectral Estimation...........................123

6.3.6.2 Multiple-Channel Weighted 2D Spectral Estimation123

6.4 Simulation Results ..123

6.5 Peak Identification Quality Measure ..141

6.6 Computation Time Results ...142

6.7 Discussion of Results..146

6.7.1 Observations from Single-Channel Simulations..146

6.7.2 Observations from Multiple-Channel Simulations149

6.7.3 Observations from Computational Time Simulations150

6.8 Summary...151

7 2D Spectral Estimation Methods Applied to MRS Data..152

 xi

7.1 Conventional 2D Capon and 2D APES Methods Applied to MRS Phantom

Data ...153

7.2 Weighted 2D Capon Method ..160

7.2.1 MRS Phantom Data ...160

7.2.2 In Vivo Data ...165

7.2.3 Weighted 2D Capon Execution Time Considerations for MRS Phantom

Data ...171

7.2.4 Performing 2D Spectral Estimation on MRS Phantom Data with no Phase

Correction ...173

7.3 Multiple-Channel 2D Spectral Estimation..180

7.3.1 Conventional 2D Capon Analysis of MRS Phantom Data180

7.3.2 Conventional 2D Capon Analysis of In Vivo Data187

7.3.3 Weighted 2D Capon Analysis of MRS Phantom Data194

7.4 Summary...199

8 Summary and Conclusions ..201

8.1 Summary...201

8.2 Conclusions...203

8.3 Suggestions for Future Research ..206

References..210

Appendix..216

A.1 Quadratic Minimization ...216

A.1.1 Theorem ..216

 xii

A.1.2 Proof..216

A.2 Matrix Inversion Lemma ...218

A.2.1 Theorem ..218

A.2.2 Proof..219

A.3 Calculation of SNR ..220

A.4 MATLAB Code for Computing MRS Absorption Spectra222

A.4.1 phascor.m ..222

A.4.2 plot_2_real.m ..226

A.4.3 plot_complex.m...226

A.4.4 plotp.m ..227

A.4.5 smooth_spline.m ...230

A.4.6 spectro.m...232

A.4.7 spectro_proc.m..234

A.4.8 sraw_image.m ...238

A.5 MATLAB Code for 2D Spectral Estimation ...242

A.5.1 APESCapon2D.m ...242

A.5.2 Capon2D.m ...243

A.5.3 fgest.m...244

A.5.4 frhsqest.m..245

A.5.5 getx.m..245

A.5.6 getxmrs.m..246

A.5.7 peak.m...246

 xiii

A.5.8 peakproj.m...247

A.5.9 spectrum2D.m...247

A.6 MATLAB Code for Simulations..252

A.6.1 check_for_nan.m...252

A.6.2 count_peaks.m...252

A.6.3 create_noise.m...252

A.6.4 create_signals.m..254

A.6.5 find_peak.m...255

A.6.6 mplot_1.m ...257

A.6.7 msim_1.m..259

A.6.8 msim_proc.m...264

A.6.9 peak_complex.m ...269

A.6.10 plot_3.m ..269

A.6.11 plot_timing.m..272

A.6.12 sim_1.m...274

A.6.13 sim_1_proc.m..278

A.6.14 timing_sim.m ..282

A.6.15 timing_sim_proc.m ...286

xiv
{{

List of Figures

Fig. 1. Net angular momentum of hydrogen..8

Fig. 2. Single voxel quantification example. ...12

Fig. 3. Chemical shift imaging example. ...13

Fig. 4. Raw data frame obtained during MRS reference acquisition.................................14

Fig. 5. Raw data frame obtained during water-suppressed MRS acquisition....................15

Fig. 6. Magnitude of raw data for an MRS scan..16

Fig. 7. Block diagram of MRS processing steps..20

Fig. 8. Averaged non-water-suppressed reference data. ..22

Fig. 9. Phase correction vector after DC mixing. ..24

Fig. 10. Reference data after DC mixing. ..25

Fig. 11. Reference data after zero-phase adjustment. ..27

Fig. 12. Phase correction vector after zero-phase adjustment. ..28

Fig. 13. Phase of DC mixed, zero-phase adjusted reference data......................................29

Fig. 14. Linear phase correction vector determined from reference data.30

Fig. 15. DC mixed, zero-phase adjusted, linear phase-corrected reference data.32

Fig. 16. DC-mixed, zero-phase, linear phase-corrected phase correction vector.33

Fig. 17. Spline smoothed phase of phase-corrected reference data.34

Fig. 18. Spline smoothed phase-corrected reference data..36

Fig. 19. Final phase correction vector..37

 xv

Fig. 20. Water-suppressed MR spectroscopy signal..39

Fig. 21. Water-suppressed MRS data with phase correction applied.40

Fig. 22. Reference data with phase correction applied. ...41

Fig. 23. Pure water signal. ...42

Fig. 24. Apodization window for residual water removal. ..44

Fig. 25. Fourier transform of pure water and water-suppressed signal.45

Fig. 26. Phase-corrected water-suppressed signal with residual water removed...............46

Fig. 27. Apodization window applied prior to final Fourier transform.47

Fig. 28. Phase-corrected, apodized signal with residual water removed.48

Fig. 29. Absorption spectrum of GE MRS phantom. ..50

Fig. 30. Polar representation of (,)A σ ω . ..56

Fig. 31. Rectangular representation of (,)A σ ω57

Fig. 32. 2D Capon surface of simulated signal with SNR=48dB.85

Fig. 33. 2D Capon contour of simulated signal with SNR=48dB.86

Fig. 34. 2D Capon surface of simulated signal with SNR=12dB.87

Fig. 35. 2D Capon contour of simulated signal with SNR=12dB.88

Fig. 36. Raw 2D Capon spectrum surface. ..106

Fig. 37. Raw 2D Capon spectrum contour...107

Fig. 38. Raw 2D Capon spectrum projection...108

Fig. 39. Peak-enhanced 2D Capon spectrum surface. ...109

Fig. 40. Peak-enhanced 2D Capon spectrum contour..110

 xvi

Fig. 41. Peak-enhanced 2D Capon spectrum projection..111

Fig. 42. Fourier transform..112

Fig. 43. Test signal I. ...116

Fig. 44. Test signal II. ..118

Fig. 45. Test signal III..121

Fig. 46. Weighted 2D Capon ()K N= for various 'sM (conventional 2D Capon)........126

Fig. 47. Weighted 2D Capon (), 2K N σα= = − for various 'sM127

Fig. 48. Weighted 2D Capon ()1K = for various 'sM ..128

Fig. 49. Weighted 2D Capon (), 128K N M= = for various 'sα and 'sβ129

Fig. 50. Weighted 2D Capon (), 128K N M= = for various 'sα and 'sβ130

Fig. 51. Weighted 2D Capon ()1, 128K M= = for various 'sβ131

Fig. 52. Weighted 2D APES for various 'sM (conventional 2D APES).........................132

Fig. 53. Various weighted 2D spectral estimators for 128M =133

Fig. 54. Combined weighted 2D APES / 2D Capon ()128M = for various 'sγ134

Fig. 55. Weighted 2D APES ()128M = for various 'sβ135

Fig. 56. Multiple-channel conventional 2D Capon (equal SNR’s).136

Fig. 57. Multiple-channel conventional 2D Capon (SNR’s reduced by 6 dB for three

channels). ...137

 xvii

Fig. 58. Multiple-channel conventional 2D Capon (SNR’s reduced by 12 dB for three

channels). ...138

Fig. 59. Multiple-channel conventional 2D Capon (SNR’s reduced by 18 dB for three

channels). ...139

Fig. 60. Multiple-channel conventional 2D Capon (equal SNR’s – ideal gains and

estimated gains). ..140

Fig. 61. PIQM plot vs. SNR for 2D Capon and selected weighted 2D Capon methods

with 128M = ...142

Fig. 62. Weighted 2D Capon timing vs. filter length, M . ..144

Fig. 63. Combined weighted 2D APES / 2D Capon timing vs. filter length, M145

Fig. 64. MRS absorption spectrum from GE MRS phantom using single-channel head

coil..155

Fig. 65. Conventional 2D Capon (top) and conventional 2D APES (bottom) spectra

obtained from the GE MRS phantom. ...156

Fig. 66. Conventional 2D Capon (top) and conventional 2D APES (bottom) peak-

enhanced spectra obtained from the GE MRS phantom..157

Fig. 67. Conventional 2D Capon (top) and conventional 2D APES (bottom) contour

plots obtained from the GE MRS phantom..158

Fig. 68. Conventional 2D Capon (top) and conventional 2D APES (bottom) maximum

peak projections obtained from the GE MRS phantom...159

 xviii

Fig. 69. Weighted 2D Capon with 2
σβ = − (top) and weighted 2D Capon with

0.004β = (bottom) spectra obtained from the GE MRS phantom.................................161

Fig. 70. Weighted 2D Capon with 2
σβ = − (top) and weighted 2D Capon with

0.004β = (bottom) peak-enhanced spectra obtained from the GE MRS phantom.162

Fig. 71. Weighted 2D Capon with 2
σβ = − (top) and weighted 2D Capon with

0.004β = (bottom) contour plots obtained from the GE MRS phantom.163

Fig. 72. Weighted 2D Capon with 2
σβ = − (top) and weighted 2D Capon with

0.004β = (bottom) maximum peak projections obtained from the GE MRS phantom.164

Fig. 73. MRS absorption spectrum from human volunteer using single-channel head coil.166

Fig. 74. Conventional 2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom)

spectra obtained from the brain of a human volunteer. ...167

Fig. 75. Conventional 2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom)

peak-enhanced spectra obtained from the brain of a human volunteer.168

Fig. 76. Conventional 2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom)

contour plots obtained from the brain of a human volunteer...169

Fig. 77. Conventional 2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom)

maximum peak projections obtained from the brain of a human volunteer.170

Fig. 78. Effectiveness of peak detection using weighted 2D Capon analysis..................173

 xix

Fig. 79. Fourier transform of water-suppressed MRS data with (top) and without

(bottom) phase-correction and residual water removal. ..175

Fig. 80. Conventional 2D Capon analysis of water-suppressed MRS data with (top) and

without (bottom) phase-correction and residual water removal.176

Fig. 81. Conventional 2D Capon peak-enhanced spectra of water-suppressed MRS data

with (top) and without (bottom) phase-correction and residual water removal...............177

Fig. 82. Conventional 2D Capon contour plots with (top) and without (bottom) phase-

correction and residual water removal...178

Fig. 83. Conventional 2D Capon maximum peak projections of water-suppressed MRS

data with (top) and without (bottom) phase-correction and residual water removal.179

Fig. 84. MRS absorption spectrum from GE MRS phantom using 8-channel head coil.181

Fig. 85. “Stacked” MRS absorption spectra from each receive coil for GE MRS phantom.182

Fig. 86. Signal averaging (top) and spectrum averaging (bottom) used with conventional

2D Capon analysis on a GE MRS phantom...183

Fig. 87. Peak-enhanced spectra obtained by signal averaging (top) and spectrum

averaging (bottom) with conventional 2D Capon analysis on a GE MRS phantom.184

Fig. 88. Contour plots obtained by signal averaging (top) and spectrum averaging

(bottom) with conventional 2D Capon analysis on a GE MRS phantom.185

Fig. 89. Maximum peak projections obtained by signal averaging (top) and spectrum

averaging (bottom) with conventional 2D Capon analysis on a GE MRS phantom.186

Fig. 90. MRS absorption spectrum from human volunteer using eight-channel head coil.188

 xx

Fig. 91. “Stacked” MRS absorption spectra from each receive coil from brain of human

volunteer. ...189

Fig. 92. Signal averaging (top) and spectrum averaging (bottom) used with conventional

2D Capon analysis on the brain of a human volunteer. ...190

Fig. 93. Peak-enhanced spectra obtained by signal averaging (top) and spectrum

averaging (bottom) with conventional 2D Capon analysis on the brain of a human

volunteer. ...191

Fig. 94. Contour plots obtained by signal averaging (top) and spectrum averaging

(bottom) with conventional 2D Capon analysis on the brain of a human volunteer.192

Fig. 95. Maximum peak projections obtained by signal averaging (top) and spectrum

averaging (bottom) with conventional 2D Capon analysis on the brain of a human

volunteer. ...193

Fig. 96. 8-channel signal averaging for conventional 2D Capon (top) and weighted 2D

Capon with 2
σβ = − (bottom) on the GE MRS phantom. ...195

Fig. 97. Peak-enhanced spectra from 8-channel signal averaging for conventional 2D

Capon (top) and weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS phantom.196

Fig. 98. Contour plots from 8-channel signal averaging for conventional 2D Capon (top)

and weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS phantom..................197

 xxi

Fig. 99. Maximum peak projections from 8-channel signal averaging for conventional

2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS

phantom..198

xxii
{{

List of Tables

Table 1. Computational Requirements. ...83

Table 2. Parameters for simulated signal. ..84

Table 3. Parameters for test signal I...116

Table 4. Parameters for test signal II. ..117

Table 5. Parameters for test signal III. ...120

Table 6. Single-channel simulation specifications...124

Table 7. Multiple-channel simulation specifications. ..125

Table 8. Parameters for timing simulation...143

 1

C h a p t e r 1

1 Introduction

Single-voxel proton MRS is typically used in a clinical setting to quantify

metabolites in the human brain. MRS studies are vitally important for diagnosis,

monitoring therapy, and early detection of a number of diseases including

neurodegenerative disease associated with normal aging, Alzheimer’s disease, non-

Alzheimer’s dementia, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral

Sclerosis (ALS), alcohol abuse, epilepsy, stroke, Creutzfeldt-Jakob (mad cow) disease,

cerebral-vascular disease and cancer[1].

In a clinical setting, an MRS absorption spectrum is created that shows the

relative concentration of certain key metabolites, including NAA, choline, creatine and

others. Certain nonparametric techniques may also be used for MRS analysis. 2D Capon

and 2D APES are two relatively new nonparametric methods that can be used effectively

to estimate both frequency and damping characteristics of each metabolite[2]. One

benefit of 2D Capon and 2D APES over conventional techniques for MRS data analysis

is improved accuracy for peak detection, especially for peaks that are close to each other.

Another benefit of 2D Capon and 2D APES is that estimates of damping are provided in

addition to frequency estimates, providing the clinician with an additional parameter to

use in the diagnosis and evaluation of results from an MRS study.

 2

Several new techniques for 2D spectral estimation related to 2D Capon and 2D

APES will be introduced in this dissertation. Under certain conditions, these techniques

show improvement over standard 2D Capon and 2D APES in terms of accuracy in peak

detection and/or computational efficiency. Although the new 2D spectral estimation

techniques are general purpose in nature, they have been developed as a result of their

utility toward the problem of MRS signal processing.

Multiple-channel receive coils are regularly used in a clinical setting for magnetic

resonance imaging (MRI) studies since images created from multiple-channel receive

coils can offer improved image quality. In conjunction with imaging studies that use

multiple-channel receive coils, it is often desired to perform MRS studies during the same

examination. An effective technique for creating a combined MRS absorption spectrum

from multiple-channel receive coils has been recently introduced by Frigo, Heinen, et al.

[3],[4], and has gained clinical acceptance.

Combining 2D spectral estimates obtained from an experiment in which multiple-

channel receive coils are used would greatly simplify clinical diagnosis. Two new

techniques for multiple-channel 2D spectral estimation will be introduced in this

dissertation. The new techniques apply to standard 2D Capon and 2D APES, and to the

new 2D spectral estimation methods that have been proposed in this dissertation. The

primary motivation to introduce the new multiple-channel 2D spectral estimation

techniques was for multiple-channel MRS studies; however, these techniques may be

extended to other signal processing applications as well.

 3

We begin our discussion with a brief review of the principles of nuclear magnetic

resonance in Chapter 2. The underlying physics and science behind this technology has

provided a foundation upon which magnetic resonance (MR) scanners have been

designed and built, and the impact of these medical imaging machines to the practice of

modern medicine has been extraordinary.

 In Chapter 3 we extend our discussion to single-voxel quantitation (SVQ) proton

MRS which is typically used in a clinical setting to quantify metabolites in the human

brain. Our focus will be to break down and analyze the signal processing steps that are

typical for MRS SVQ scans. We have carefully documented each processing step, and

have implemented efficient algorithms in MATLAB to create a conventional MRS

absorption spectrum from data acquired during an SVQ study. The signal processing

steps applied to MRS data are vitally important to provide a framework for the new

techniques that will be introduced in later chapters.

Motivated primarily by finding improved techniques for analyzing MRS data, we

introduce in Chapter 4 several new nonparametric two-dimensional spectral estimation

techniques: the weighted 2D Capon method, the weighted 2D APES method, and the

combined weighted 2D APES/Capon method. Each of these techniques provides

spectral estimates of damping as well as frequency, making them useful for MRS data

analysis.

 4

Multiple-channel receive coils have become increasing popular for magnetic

resonance imaging (MRI) since they often provide improved image quality over single

channel coils. In a clinical setting, it is common to perform MRS studies along with MRI

studies, especially for neurological exams. In Chapter 5 we introduce two new

algorithms for multiple-channel 2D spectral estimation that can be used effectively for

MRS studies. We also introduce a method to optimally estimate the relative channel

gains from observed data.

In Chapter 6, we evaluate the proposed new algorithms of Chapter 4 and Chapter

5 through extensive simulations. The motivation for doing simulations is that the signal

processing algorithms can be subjected to controlled conditions, unlike in a standard

MRS experiment, where unknown variations can occur from scan to scan.

In Chapter 7 we apply the algorithms developed in Chapters 4 and 5, and

simulated in Chapter 6, to data collected during MRS experiments. Examples are

provided demonstrating how these algorithms work in MRS studies involving phantoms

with known concentrations of metabolites, as well as in a limited number of in vivo MRS

studies involving human volunteers.

We then reflect on our conclusions in Chapter 8, enlightened by the discussion

and examination of the MRS signal processing details that are fundamental to its success

in a clinical scenario, but mindful of the potential improvements that can be achieved

through new techniques. Based on the results of extensive simulations, we are confident

 5

that these new techniques have the potential to add clinical value and improve the overall

quality of spectral analysis for MRS studies.

 6

C h a p t e r 2

2 Magnetic Resonance Spectroscopy

MRS is used to find the relative spectral amplitudes resulting from frequency

components of different molecules. MRS can be used for the quantification of a number

of metabolites in vivo. Since the hydrogen atom is abundant in vivo, many clinical

applications for proton MRS have been developed.

MRS is used for diagnosis, surgical planning, monitoring therapy and early

detection of the following diseases: neurodegenerative disease associated with normal

aging, Alzheimer’s disease, non-Alzheimer’s dementia, Parkinson’s disease,

Huntington’s disease, amyotrophic lateral sclerosis (ALS), alcohol abuse, epilepsy,

stroke, Creutzfeldt-Jakob (mad cow) disease, cerebral-vascular disease, and cancer [1].

Improved data acquisition capabilities, in particular, increased sampling

resolution and multiple-channel receive coils, have created opportunities for

implementing new signal processing algorithms to improve the sensitivity and accuracy

of MRS experiments. The motivation for introducing these new algorithms is to reduce

scan time and improve clinical diagnostic capabilities.

2.1 Magnetic Resonance Principles

All nuclei have charge and mass. Some nuclei also possess spin or angular

momentum. This spinning charge generates a magnetic field and an associated angular

 7

momentum as first described by Wolfgang Pauli [5]. Inspired by the early work of Pauli,

and Rabi[6],[7] two groups of researchers independently discovered the property of

nuclear magnetic resonance: Felix Bloch of Stanford University [8] led one group and

Edward Purcell of Harvard University [9] led the other group. Bloch and Purcell were

jointly awarded the Nobel Prize for physics in 1952 as a result of their discovery.

At first, nuclear magnetic resonance was used primarily in the laboratory by

chemists. Later, nuclear magnetic resonance was shown to be useful for medical

purposes. Raymond Damadian demonstrated in 1971 that nuclear magnetic resonance

spectroscopy could be used in vivo to detect cancerous tumors in mice [10]. Paul

Lauterbur created the first two-dimensional nuclear magnetic resonance image of human

anatomy [11]. For this discovery Lauterbur earned the Nobel Prize in physiology or

medicine in 2003 with Sir Peter Mansfield who was also responsible for many

innovations in the area of nuclear magnetic resonance [12].

The following is a summary of MR principles adapted from material found in a

number of references [13] - [20]. Magnetic resonance originates from the interaction

between an atom and an external magnetic field. Atoms with an odd number of either

neutrons or protons possess a net nuclear spin or intrinsic nuclear spin angular

momentum. Nuclear spin has an associated magnetic field. Nuclear magnetic

resonance is based on the interaction of these spins with three types of magnetic fields:

the main field, 0Β ; the radio-frequency field, 1Β ; and linear gradient fields, G .

 8

Placed in the main static magnetic field, 0Β , the net nuclear angular momentum

of hydrogen atoms with a single proton will begin to rotate, or precess, about the

magnetic field as shown in Fig. 1.

Fig. 1. Net angular momentum of hydrogen.

The frequency of this precession is proportional to the strength of the magnetic field and

is given by the Larmor equation:

 0 0f γ= Β (2.1)

y

x

z

B0

 9

where 0f is the Larmor frequency in megahertz (MHz), 0Β is the magnetic field in Tesla

(T) and γ is a constant known as the gyromagnetic ratio. For hydrogen with a single

proton the value of γ is 42.5774 MHz/T.

To obtain a nuclear magnetic resonance signal, an electromagnetic pulse, 1Β ,

tuned to the resonant frequency of the spins, as described in Eqn. (2.1), is applied in the

transverse (xy) plane to excite these spins out of equilibrium. After this pulse is turned

off, relaxation back to equilibrium occurs and the rotating magnetization vectors induce

an electromotive force (EMF) in a receiver coil oriented in such a way as to detect

changes in the transverse plane. The generated time signal is known as a free induction

decay (FID).

It is possible to perform spatial localization in an MR experiment by applying

linear gradient magnetic fields in addition to 0Β . Gradient fields in the x, y, and z

direction can be combined to provide the spatial localization desired. If a gradient field,

xG , is applied in the x direction, then the resonant frequency,()f x , will vary with the x-

location:

 0 0() ()x xf x G x f G xγ γ= Β + = + (2.2)

The behavior of the magnetization vector M is described by the Bloch equation:

 10

 0

2 1

()x y zd

dt T T
γ

Μ + Μ Μ − Μ= × − −
i j kM

M B (2.3)

where , ,i j and k are unit vectors in the x, y, and z directions; 0Μ is the equilibrium

magnetization arising from the main field 0Β ; and B includes the various magnetic fields

applied. 1T is the longitudinal relaxation time constant which characterizes the process of

spins returning to equilibrium and 2T is the transverse relaxation time constant which

characterizes the process of decaying transverse magnetization.

Electrons of a particular atom in a molecule may be shared with nearby atoms

forming a “cloud” of electrons. The distribution of these electrons is described by

quantum mechanics and varies depending on the type of chemical bond. Oxygen-

hydrogen bonds have a greater electron density associated with the oxygen atom, whereas

carbon-hydrogen bonds are more equally distributed between both atoms. The variation

in electron distribution affects the magnetic resonance of a particular atom. The Larmor

Eqn. (2.1) can be rewritten with a chemical shielding term, iσ , which takes into account

the variations in different chemical bonds affecting the magnetic resonance frequency:

 0(1)i if γ σ= Β − (2.4)

Nuclear magnetic resonance spectroscopy takes advantage of variations in

magnetic resonance frequencies due to chemical bonds to determine molecular structure.

 11

The convention is to measure chemical shifts in a manner that is independent of 0Β and

can be used for all field strengths:

 6() 10 /i i ref reff f fδ = − × (2.5)

where iδ is the chemical shift measured in parts per million (ppm).

The reference frequency, reff , defined to have a shift of 0.0 ppm is obtained from

the methyl (C-H) groups of tetramethylsilane (CH3)4Si. Since silicon (Si) has low

electronegativity, the shielding of protons is greater than in most other organic molecules,

and the chemical shifts thus appear downward in the same direction [21]. As an example,

the hydrogen found in water molecules has a shift measured at 4.7 ppm while the

hydrogen found in the lipids that are a major constituent of body fat has a shift of 1.2

ppm. This represents a difference of 3.5 ppm, or at 1.5T a difference of approximately

225 Hz.

2.2 Magnetic Resonance Spectroscopy Experiment

Proton MRS is used in vivo to measure the concentration of a number of

metabolites. MRS is often used for clinical studies of the human brain. High-field

magnetic resonance scanners (1.5T or greater) are used to perform most of these studies.

Two common types of MRS pulse sequences used in conjunction with clinical studies are

point resolved spectroscopy (PRESS) and stimulated echo mode (STEAM) [22].

 12

Both PRESS and STEAM rely on applied gradient fields to isolate a three-

dimensional region of interest from which the signal will be measured. PRESS and

STEAM differ in how the echoes that give rise to the signal of interest are obtained.

PRESS has a higher signal-to-noise ratio than STEAM by a factor of two since the echo

in PRESS is created by refocusing the entire net magnetization of the region of interest.

STEAM has several advantages over PRESS since it can support a shorter echo time (TE)

and has reduced effects from J coupling [23].

Single-voxel quantification (SVQ) and chemical shift imaging (CSI) are two

types of spectroscopy applications often used in a clinical setting. SVQ quantifies

metabolites in a single volume of interest as shown in Fig. 2. CSI attempts to quantify

metabolites in multiple volumes of interest, often overlaying color maps on top of

anatomical images to create localized maps showing relative concentrations of

metabolites (such as NAA) as shown in Fig. 3.

Fig. 2. Single voxel quantification example.

 13

Fig. 3. Chemical shift imaging example.

Our discussion and exploration of proton MRS will focus primarily on SVQ. A

typical SVQ MRS scan involves a data acquisition scheme in which a set of non-water-

suppressed reference data, along with a set of water-suppressed data is collected. Water-

suppression can be achieved in vivo using a chemical selective saturation (CHESS) pulse-

sequence to reduce the dominant water signal[22],[24]. A typical frame of data

obtained from a FID during the non-water-suppressed reference acquisition is shown in

Fig. 4, and a typical frame of data obtained during a water-suppressed acquisition is

shown in Fig. 5.

 14

Fig. 4. Raw data frame obtained during MRS reference acquisition.

 15

Fig. 5. Raw data frame obtained during water-suppressed MRS acquisition.

An example of the magnitude of the raw data collected during an MRS scan is

shown in Fig. 6 with the horizontal axis representing time, the vertical axis representing

frame number and color indicating signal amplitude. This scan was performed using a

1.5T General Electric® (GE) MR scanner (Milwaukee, WI, USA) on a 8cc volume

contained within the GE MRS phantom, with a TE of 35 msec, a repetition time (TR) of

1500 msec, an acquisition size of 2048 complex data pairs for each frame, a sampling

 16

rate of 16 kHz, and 2 excitations per frame (NEX). The total scan time was 1 minute and

18 seconds to acquire 8 reference frames and 16 water-suppressed frames.

Fig. 6. Magnitude of raw data for an MRS scan.

MRS data acquisition requires that a number of scan parameters be determined for

each region of interest. The center frequency, flip angle, transmit gain, receive gain, and

shimming parameters are determined for each MRS experiment during prescan. These

 17

parameters are optimized for the particular TE and TR selected for the experiment.

Shimming is also extremely important in the region of interest to assure that a

homogeneous magnetic field is present since the patient distorts the magnetic field and

areas within the patient have different magnetic susceptibility[25]. For MRS experiments

conducted in vivo, water suppression is an important consideration due to the abundance

of water in vivo[22].

Many different types of MRS scans can be taken in a clinical setting[26]-[28].

The parameters of these scans are selected to provide the desired clinical information. For

example, depending on the metabolite of interest, different TEs may be selected. MRS

scans usually have scan TRs greater than one second. The smallest TEs supported are

approximately 30 msec. The signal-to-noise ratio (SNR) of the data acquired during an

MRS scan can be improved by increasing the number of data frames acquired for a given

scan. This increases the scan time however. Another way to increase SNR is to increase

the size of the volume under study.

In an MRS experiment it is possible to detect the magnetization that is transverse

to the main longitudinal field,0B , with more than one receive coil simultaneously.

Multiple-channel receive coils provide greater sensitivity and improved SNRs for MRI

applications [15],[29]-[38]. Multiple-receive coils can also be used effectively for MRS

studies [3],[39]-[42]. In Chapter 5 we will extend these techniques to 2D spectral

estimation of MRS data from multiple receive coils.

 18

2.3 Summary

In this chapter, we have reviewed the fundamental theory behind magnetic

resonance spectroscopy and have introduced how it is used in a clinical setting for in vivo

studies. We have introduced two conventional pulse-sequences, PRESS and STEAM,

that can be used for MRS experiments, and also have described briefly how metabolites

can be quantified using SVQ.

 19

C h a p t e r 3

3 Magnetic Resonance Spectroscopy Processing Techniques

This chapter describes conventional MRS data processing, and in particular, the

processing associated with SVQ [22],[43]-[45]. Conventional single-voxel MRS

involves collecting a set of non-water suppressed reference data along with a set of water-

suppressed data. The processing involves phase correction, removal of residual water

present in the water-suppressed data, and computation of an MRS absorption spectrum

from which information about metabolite concentration can be determined.

The GE MRS phantom provides an effective model of the human brain. It

contains known solutions of metabolites whose concentrations are approximately the

same as what might be found in a human brain. The GE MRS phantom contains a

solution of 12.5 mM NAA, 10.0 mM creatine (Cr), 3.0 mM choline (Ch), 7.5 mM

myoinositol (mI), 12.5 mM L-Glutamic acid (Glu), 5.0 mM lactate, and 0.5 mM γ -

aminobutyric acid (GABA). Data acquired during MRS experiments from this phantom

provide results from which quantitative assessments can be made.

In this chapter we will review in detail the processing involved in computing an

MRS absorption spectrum. We will utilize data acquired using a GE 1.5T MR scanner

with a typical SVQ PRESS sequence on an 8 cc volume from the GE MRS phantom, and

 20

show plots of intermediate results as a means of understanding each processing step. A

block diagram of this processing scheme is shown in Fig. 7.

Fig. 7. Block diagram of MRS processing steps.

Non-water suppressed reference data sets are collected and the individual frames

are averaged to obtain the discrete-time signal, []r n , where n represents normalized time.

DC Mixing

Reference Data r[n] Water-suppressed Data
s[n]

Zero Phasing

Linear Phase Correction

Phase Correction

Water Subtraction

FFT

Phase Spline Smoothing

Phase CorrectionPhase Correction
Vector c[n]

S[k]

 21

The reference data, []r n , are used to compute a phase correction vector, []c n , through the

process of DC mixing, zero phasing, linear phase correction and phase spline smoothing.

Water-suppressed data sets are collected and the individual frames are averaged to obtain

[]s n . The phase correction vector, []c n , is applied to both the reference data, []r n , and

the water-suppressed data, []s n . After phase correction, residual water is removed from

the water-suppressed data by subtracting an appropriately scaled version of []r n from

[]s n . From the phase-corrected water-suppressed data with residual water removed, a

Fourier transform is used to compute the MRS absorption spectrum.

3.1 Creating a Phase Correction Vector

After acquiring non-water suppressed reference data, a phase correction vector,

[]c n , is created. This phase correction vector is applied to both water-suppressed and

non-water-suppressed data during the creation of the MRS absorption spectrum. Data

acquired during the reference acquisition without water suppression, []r n , will be used to

produce a phase correction vector, []c n . Data from the reference acquisition will also be

used to produce an estimate of the water signal necessary to perform residual water

removal.

3.1.1 Reference Normalization

For this example, the number of reference frames acquired, refN , is 16. The

number of complex data points for each reference frame, N , is 2048. All reference

 22

frames are averaged to produce []rawr n , the averaged water reference data as shown in

Fig. 8.

 1

[]
[] for 0

refN

i
i

raw
ref

r n
r n n N

N
== ≤ <
∑

 (3.1)

Fig. 8. Averaged non-water-suppressed reference data.

 23

The averaged water reference signal,[]rawr n , can also be normalized as:

 max | [] | for 0scale rawr r n n N= ≤ < (3.2)

[]

[] for 0raw
norm

scale

r n
r n n N

r
= ≤ < (3.3)

3.1.2 DC Mixing

The most dominant frequency component in vivo is due to the signal from water,

which typically shows up as a very low frequency or DC component since the center

frequency for the acquisition is set to the signal from water during prescan. The purpose

of DC mixing is to mitigate the effects of water components. First, the normalized

averaged water reference data are discrete Fourier transformed:

 [] { []} for 0normR k r n k N= ≤ <F (3.4)

The frequency with the largest magnitude, mω , from []R k is determined:

 max | [] | for 0peakk R k k N= ≤ < (3.5)

2peak

m

k

N

π
ω

⋅
= (3.6)

 24

A complex-valued vector containing the frequency component of mω from Eqn. (3.6) can

then be created as shown in Fig. 9.

 1[] cos() sin() for 0m mc n n j n n Nω ω= − ≤ < (3.7)

or 1[] for 0mj nc n e n Nω−= ≤ < (3.8)

Fig. 9. Phase correction vector after DC mixing.

 25

This result, 1[]c n , is applied to the normalized averaged water reference data, []normr n , to

generate []dcr n as shown in Fig. 10.

 1[] [] [] for 0dc normr n r n c n n N= ⋅ ≤ < (3.9)

Fig. 10. Reference data after DC mixing.

3.1.3 Zero Phasing

By convention, the MRS absorption spectrum is represented as the real part of the

Fourier transformation of the water-suppressed data. Prior to Fourier transformation,

 26

water-suppressed data sets are adjusted so that they begin with zero phase. By adjusting

the signal to begin with zero phase, it is more accurately represented by the cosine or real

components of the Fourier transform [46]. This effectively yields an MRS absorption

spectrum with sharp peaks with narrow line-widths[22],[26].

To adjust the reference signal so that it begins with zero phase, the complex

conjugate (denoted by *) of the first element of the reference data after DC mixing, a

complex-valued scalar, zpA , is obtained and multiplied by []dcr n and 1[]c n as follows and

shown in Fig. 11:

 * [0]zpA r= (3.10)

 [] [] for 0zp zp dcr n A r n n N= ⋅ ≤ < (3.11)

This phase adjustment is also applied to the phase correction vector as shown in Fig. 12:

 1[] [] for 0zp zpc n A c n n N= ⋅ ≤ < (3.12)

 27

Fig. 11. Reference data after zero-phase adjustment.

 28

Fig. 12. Phase correction vector after zero-phase adjustment.

3.1.4 Linear Phase Correction

Several techniques have been proposed to correct for linear phase errors present in

raw data acquired during MRS studies[47]-[51]. Linear phase correction provides a first-

order estimate of phase errors present in the data so that they may be removed. One

technique for doing this is to determine the unwrapped phase of []zpr n as []zp nφ . Then

the last element of []zp nφ , lpφ , is used to generate a complex-valued vector for linear

phase correction as shown in Fig. 13.

 29

 [] unwrap{ []} for 0zp zpn r n n Nφ = ≤ <∢ (3.13)

 [1]lp zp Nφ φ= − (3.14)

The phase discontinuity shown at 1500time≈ in Fig. 13 is located in a low SNR region

of the data where the magnitude is close to zero. This phase oscillation is somewhat

atypical, and perhaps an improved phase unwrapping technique could be used to

eliminate the discontinuity in the unwrapped phase.

Fig. 13. Phase of DC mixed, zero-phase adjusted reference data.

 30

After the last element of the unwrapped phase, lpφ , is determined, a complex-valued

linear phase correction vector, []lp n , shown in Fig. 14 is generated as follows:

2

lp lp N

πω φ= ⋅ (3.15)

 [] cos() sin() for 0lp lplp n n j n n Nω ω= − ≤ < (3.16)

or [] for 0lpj n
lp n e n N

ω−= ≤ < (3.17)

Fig. 14. Linear phase correction vector determined from reference data.

 31

The linear phase correction vector, []lp n , can then be applied to the DC-mixed,

zero-phase adjusted reference data, []zpr n , as well as to the DC-mixed, zero-phase

adjusted phase correction vector, []zpc n , as follows:

 [] [] [] for 0lp zpr n r n lp n n N= ⋅ ≤ < (3.18)

 [] [] [] for 0lp zpc n c n lp n n N= ⋅ ≤ < (3.19)

or 1[] [] [] for 0lp zpc n A c n lp n n N= ⋅ ⋅ ≤ < (3.20)

 [] for 0lpm j nj n
lp zpc n A e e n Nωω −−= ⋅ ⋅ ≤ < (3.21)

 ()[] for 0m lpj n

lp zpc n A e n Nω ω− += ⋅ ≤ < (3.22)

The resulting reference data, []lpr n , is shown in Fig. 15 and the phase correction vector,

[]lpc n , is shown in Fig. 16.

 32

Fig. 15. DC mixed, zero-phase adjusted, linear phase-corrected reference
data.

 33

Fig. 16. DC-mixed, zero-phase, linear phase-corrected phase correction
vector.

3.1.5 Phase Spline Smoothing

The final step in creating the phase correction vector, []c n , is to smooth the

unwrapped phase of the phase correction vector determined by DC mixing, zero phasing

and linear phase correction. For data frames with significant noise, or phase

discontinuities, this step provides a more stable phase correction vector. The smoothing

can be done using the spline method proposed by de Boor [52] (see also [53]). The

unwrapped phase of []lpr n can be determined as:

 34

 [] unwrap{ []} for 0 n<Nlp lpn r nφ = ≤∢ (3.23)

Fig. 17. Spline smoothed phase of phase-corrected reference data.

The unwrapped phase, []lp nφ , is smoothed to create []s nφ as shown in Fig. 17.

 [] { []} for 0s lpn smooth n n Nφ φ= ≤ < (3.24)

where {}smooth is a spline smoothing function as described by de Boor [52].

 35

Once the smoothed phase has been calculated, the complex-valued vector with

smoothed phase, []fp n , as shown in Fig. 18 is created as follows:

 [] cos([]) sin([]) for 0f s sp n n j n n Nφ φ= − ≤ < (3.25)

or [][] for 0sj n
fp n e n Nφ−= ≤ < (3.26)

and this is used to generate the final phase correction vector, []c n , shown in Fig. 19 that

will be used in spectroscopy processing:

 [] [] [] for 0lp fc n c n p n n N= ⋅ ≤ < (3.27)

or

 1[] [] [] [] for 0zp fc n A c n lp n p n n N= ⋅ ⋅ ⋅ ≤ < (3.28)

 [][] for 0lpm sj nj n j n
zpc n A e e e n Nωω φ−− −= ⋅ ⋅ ⋅ ≤ < (3.29)

 [() []][] for 0m lp sj n n
zpc n A e n Nω ω φ− + += ⋅ ≤ < (3.30)

 36

Fig. 18. Spline smoothed phase-corrected reference data.

 37

Fig. 19. Final phase correction vector.

3.2 Computation of Absorption Spectrum

Typical SVQ scans involve acquiring two different types of data: a set of

reference data from which water is not suppressed, and also a set of water-suppressed

data from which signals of metabolites can be identified. An MRS absorption spectrum is

created by applying the phase correction vector, []c n , to both the non-water-suppressed

 38

reference data as well as the water-suppressed data. The steps involved to create an

MRS absorption spectrum are described in the following sections.

3.2.1 Averaging of Water-Suppressed Signal

If the number of water-suppressed frames acquired for a particular scan is 32 and

the NEX for this scan is 2, then a total of 16, or, sigN , water-suppressed frames, []is n ,

are available. If the number of complex data points for each frame is 2048, or N , then

the water-suppressed signal can be averaged to produce []raws n as shown in Fig. 20 in the

following manner:

 1

[]
[] for 0

sigN

i
i

raw
sig

s n
s n n N

N
== ≤ <
∑

 (3.31)

 39

Fig. 20. Water-suppressed MR spectroscopy signal.

3.2.2 Applying Phase Correction Vector

The phase correction vector is applied to both the averaged water-suppressed

signal, []raws n , as shown in Fig. 21 and the averaged reference signal, []rawr n as shown in

Fig. 22 :

 [] [] [] for 0pc rawr n r n c n n N= ⋅ ≤ < (3.32)

 40

where []rawr n is given by Eqn. (3.1), and

 [] [] [] for 0pc raws n s n c n n N= ⋅ ≤ < (3.33)

Fig. 21. Water-suppressed MRS data with phase correction applied.

 41

Fig. 22. Reference data with phase correction applied.

3.2.3 Residual Water Removal

The water-suppressed signal, []pcs n , is now subtracted from the reference signal,

[]pcr n , to create a pure water signal, []pws n as shown in Fig. 23 (see [54]-[56]).

 [] [] [] for 0pw pc pcs n r n s n n N= − ≤ < (3.34)

 42

Fig. 23. Pure water signal.

Next a set of processing steps is performed to determine a scale factor, scalea , to

allow a scaled version of the pure water as shown in Fig. 23 to be subtracted from the

water-suppressed data from which an MRS absorption specturm will be computed. First,

the pure water signal, []pws n , and the phase corrected water suppressed signal, []pcs n are

multiplied by an alternation vector:

 [] [] [] for 0pwa pws n s n a n n N= ⋅ ≤ < (3.35)

 43

 [] [] [] for 0pca pcs n s n a n n N= ⋅ ≤ < (3.36)

where

1 for even
[] for 0

1 for odd

n
a n n N

n

 
= ≤ < − 

 (3.37)

Next a hanning window as shown in Fig. 24 is applied.

 1[] [] [] for 0pww pwas n s n w n n N= ⋅ ≤ < (3.38)

 1[] [] [] for 0pcw pcas n s n w n n N= ⋅ ≤ < (3.39)

where

()
1

2 20.5 1-cos for 0 ; 12802[]

0 otherwise

Kn
Kn K

w n K

π   +
    ≤ < =   =    

   
  

 (3.40)

 44

Fig. 24. Apodization window for residual water removal.

A Fourier transform is then performed on the apodized pure water and also on the

apodized, phase-corrected, water-suppressed signal as shown in Fig. 25.

 [] { []} for 0w pwwS k s n k N= ≤ <F (3.41)

 [] { []} for 0s pcwS k s n k N= ≤ <F (3.42)

and the scale factor, scalea , is then determined from the ratio of the maximum value of the

spectrum obtained from the water-suppressed signal to that of pure water .

 max(Re{ []}) for 0w wa S k k N= ≤ < (3.43)

 max(Re{ []}) for 0s sa S k k N= ≤ < (3.44)

 45

 s
scale

w

a
a

a
= (3.45)

Fig. 25. Fourier transform of pure water and water-suppressed signal.

After the scale factor, scalea , has been determined, it is applied to the windowed,

pure water signal, []pwws n , which is then subtracted from the windowed, water-

suppressed signal, []pcws n , to generate the water-subtracted pure signal, []ss n .

 [] [] for 0w pww scales n s n a n N= ⋅ ≤ < (3.46)

 46

 [] [] [] for 0s pcw ws n s n s n n N= − ≤ < (3.47)

The water-suppressed signal shown in Fig. 20 after phase-correction and residual water

removal is given by Eqn. (3.47) and shown in Fig. 26.

Fig. 26. Phase-corrected water-suppressed signal with residual water

removed.

 47

3.2.4 Fourier Transform to Compute Absorption Spectrum

A hanning window shown in Fig. 27 is then applied to the phase-corrected water-

suppressed signal with residual water removed.

 2[] [] [] for 0sw ss n s n w n n N= ⋅ ≤ < (3.48)

where

()
1

2 20.5 1-cos for 0 ; 40962[]

0 otherwise

Kn
Kn K

w n K

π   +
    ≤ < =   =    

   
  

 (3.49)

Fig. 27. Apodization window applied prior to final Fourier transform.

 48

Fig. 28. Phase-corrected, apodized signal with residual water removed.

After apodization, the signal is zero padded as shown in Fig. 28 and Fourier

transformed.

[] for 0

[]
0 for 2

sw
zp

s n n N
s n

N n N

≤ < 
=  ≤ < 

 (3.50)

 [] { []} for 0 2f zpS k s n k N= ≤ <F (3.51)

 49

The final results, []fS k , are comprised of the MRS absortion spectrum

represented as the real-valued results of the Fourier transform, and the MRS dispersion

spectrum represented as the imaginary-valued results of the Fourier transform[22].

 = Re{ []}fMRS absorption spectrum S k (3.52)

 = Im{ []}fMRS dispersion spectrum S k (3.53)

A typical MRS absorption spectrum used for clinical diagnosis would be displayed in a

range from approximately 4.5 ppm to 0.0 ppm.

Fig. 29 is an example of an MRS absorption spectrum obtained from the GE MRS

phantom. This MRS experiment was performed using PRESS on an 8 cc volume, with a

TE of 35msec and a TR of 1500msec, 2 NEX, 8 reference frames and 16 water-

suppressed (CHESS) frames. The total scan time was 1 minute and 18 seconds. The

largest peak occurring near 2.0 ppm is from NAA. The doublet near 1.3 ppm is from

lactate. The large peak near 3.0 ppm is from creatine. The peak near 3.2 ppm is from

choline. The peak near 3.55 ppm is from myoinositol.

 50

Fig. 29. Absorption spectrum of GE MRS phantom.

For one-dimensional plots representing the absorption spectrum, the peak area or

the peak height (for narrow line-widths), representing a particular frequency component

can be calculated and compared to other peaks[24]. Often, the creatine peak is used as a

reference for in vivo MRS studies[22]. In some cases, the mere presence of a particular

peak may indicate a clinically significant diagnosis. For example, lactate, which shows

up as a doublet near 1.3 ppm, should never occur in a normal human brain, so its

presence would potentially indicate damage from acute stroke[17].

 51

3.3 Summary

In this chapter we have reviewed the signal processing steps associated with the

creation of an MRS absorption spectrum for SVQ scans. This involves the creation of a

phase correction vector from reference data, and the subsequent phase correction of both

the non-water-suppressed reference data and the water-suppressed data containing

spectral information for the metabolites of interest. Residual water is removed from

water-suppressed data by subtracting appropriately scaled reference data prior to creating

the MRS absorption spectrum by Fourier transformation. The processing discussed in

this chapter provides a foundation upon which spectral estimation improvements will be

introduced in later chapters.

 52

C h a p t e r 4

4 Weighted 2D Spectral Estimation Methods

Several nonparametric techniques in addition to the Fourier transform can be used

for spectral analysis of MRS studies. Two nonparametric techniques that can be used for

MRS analysis, which employ adaptive filter bank approaches, are the one-dimensional

Capon method introduced by J. Capon in 1969 [57],[58] and the one-dimensional APES

method [59],[58]. The filter bank approach to power spectral estimation employs a

bandpass filter with a fixed bandwidth to estimate the power spectral density (PSD) of a

given frequency component. The basic periodogram, is a filter bank approach based on

the standard Fourier transform [60] -[62].

 Capon and APES are filter bank approaches that improve the estimate of the PSD

by creating one data-dependent bandpass filter for each spectral point being

estimated[63] - [73]. The bandpass filter is created by a least-squares minimization

process, which attempts to minimize the total output power of the filter, yet pass the

frequency component of interest unaltered. A second least-squares process is then

implemented to estimate the amplitude of the filtered signal. Capon and APES provide

more accurate spectral estimates with lower sidelobes and narrower spectral peaks than

the Fourier transform based periodogram techniques[59].

 53

The Fourier transform, one-dimensional Capon analysis and one-dimensional

APES analysis fail to take into account, at least in a direct way, any damping associated

with each signal component. Thus in these methods, because the detected amplitude will

be altered by the damping, it is difficult to accurately estimate the amplitudes of the

various signal components. To alleviate this problem, two-dimensional Capon and APES

techniques have recently been developed. Stoica and Sundin [2] have shown that the 2D

Capon and 2D APES methods provide high-resolution two-dimensional MRS results

showing both frequency, ω , and damping, σ . Frigo, Heinen, et al., have demonstrated

that these methods have clinical utility for MRS since they provide information about

T2*, the total transverse relaxation time, for each metabolite [74].

In this chapter we propose three new 2D spectral estimation techniques, which

have as their basis the 2D Capon and 2D APES methods introduced by Stoica and

Sundin. These are the weighted 2D Capon method, the weighted 2D APES method and

the combined weighted 2D APES / 2D Capon method. These techniques incorporate

several new design parameters, the proper choice of which may lead to reduced

processing time, better peak identification, and/or better estimates of spectral amplitude,

phase, and damping.

The theoretical development of these methods closely parallels that followed by

Stoica and Sundin [2] in the development of the 2D Capon and 2D APES methods. For

brevity, we will not separately review the 2D Capon and 2D APES methods. Rather,

since these are special cases of our new techniques, we will develop the new techniques

 54

in detail and at appropriate places point out how our new techniques reduce to the

standard 2D Capon and 2D APES methods. Because these derivations are of necessity

quite involved, as a convenience for the reader a summary of the salient results is

presented in Sect. 4.8 and useful derivations are included in the Appendix (see Sec. A.1 –

Sec. A.2). Finally, it is noted that these techniques are generally applicable to a wide

variety of spectral estimation problems, not simply to MRS.

4.1 Discrete Spectrum of Sum of Continuous-Time Damped Complex Sinusoids

Consider a continuous-time signal consisting of R damped complex sinusoids:

1

() , 0r r

R
t j t

r
r

x t S e e tσ ω′ ′−

=

= ≥∑ (4.1)

where , 0r rσ ω′ ′ ≥ and j r
r rS A eθ= is complex with magnitude 0rA > and phase rθ . We

may also consider a sampled version of ()x t with sampling period T :

1

1

1

[] () , 0r r

r r

R
Tn j Tn

r
r

R
n j n

r
r

R
n

r r
r

x n x nT S e e n

S e e

S p

σ ω

σ ω

′ ′−

=

−

=

=

= = ≥

=

=

∑

∑

∑

 (4.2)

where , , r rj
r r r r rT T p e eσ ωσ σ ω ω −′ ′= = = , and where T is chosen such that

0 rω π≤ < , for all r , thus satisfying the Nyquist sampling theorem.

 55

One might consider analyzing []x n using the z-transform, but this presents certain

problems. First, { }() []X z x n= Z has poles at rp , i.e., it has a value of ∞ at rz p= .

Furthermore, ()X z converges only outside a circle with radius equal to the magnitude of

the largest pole.

Alternatively, we may consider using the discrete-time Fourier transform

{ }() []jX e x nω = F to study []x n . ()jX e ω converges as long as 0rσ > for all r .

However, the effects of rσ on the magnitude of the various components of []x n are

difficult to quantify using ()jX e ω . We therefore define the spectrum { }(,) []S x nσ ω = S

of []x n as follows:

{ }

1

1

[] (,)
r r

r

r r

R

r
r

R
j

r
r

x n S S

A e

σ σ ω ω

θ
σ σ ω ω

σ ω δ δ

δ δ

− −
=

− −
=

= =

=

∑

∑

S

 (4.3)

where

1, 0

0, 0ρ
ρ

δ
ρ

=
=  ≠

 (4.4)

We may also extend this definition to a general complex signal, []x n , (implicitly

assuming it to be composed of damped complex sinusoids) in the following manner:

 { } (,)[] (,) (,) jx n S A eθ σ ωσ ω σ ω= =S (4.5)

 56

although at this point it is not clear how to define (,)A σ ω and (,)θ σ ω . We will

address this issue shortly.

We may graphically represent (,)S σ ω , given by Eqn. (4.3) (for the signal []x n

given in Eqn. (4.2)), in two ways as shown in Fig. 30 and Fig. 31.

Fig. 30. Polar representation of (,)A σ ω .

(,)A σ ω

complex plane ()jz e eσ ω−= unit circle

1A

2A

3A

1p
2p

3p

 57

Fig. 31. Rectangular representation of (,)A σ ω .

Similar plots could be constructed for (,)θ σ ω . For (,)S σ ω given by Eqn. (4.5),

for an arbitrary signal []x n , both (,)A σ ω and (,)θ σ ω would appear as surfaces.

4.2 Discrete Spectrum of Arbitrary Complex Signals

We now return to the problem of defining (,)A σ ω and (,)θ σ ω in general. To

define (,)S σ ω at an arbitrary point (,)σ ω and for an arbitrary complex signal

[] ()x n x nT= we proceed as follows. Assume that []x n contains a term of the form

j n j nAe e eθ σ ω− . Construct a filter, specific to the point (,)σ ω , that passes the signal

j n j nAe e eθ σ ω− unaltered while significantly attenuating all other such signals. We will

employ a finite impulse response (FIR) filter for tractability and implement it in a non-

causal manner to avoid start-up transients.

(,)A σ ω

1A 2A
3A

1ω 2ω
3ω

ω
2σ 1σ 3σ

σ

 58

To be specific, assume we have a finite number of samples

[] (), 0,1, , 2x n x nT n N M= = + −⋯ . The filter output at the point (,)σ ω is denoted as

, [], 0,1, , 1x n n Nσ ω = −⋯ , where

 , [] (,) []Hx n h x nσ ω σ ω= (4.6)

where

0

1

1

(,)

(,)
(,)

(,)M

h

h
h

h

σ ω
σ ω

σ ω

σ ω−

 
 
 =
 
 
  

⋮
 (4.7)

is the M -dimensional vector of filter coefficients,

[]

[1]
[] , 0,1, , 1,

[1]

x n

x n
x n n N

x n m

 
 + = = −
 
 + + 

⋯
⋮

 (4.8)

and H denotes the Hermitian (complex) transpose. This filter will be constructed to

meet the conditions:

(1) , [] [] when [] j n j nx n x n x n Ae e eθ σ ω
σ ω

−= = (4.9)

and

 59

(2)
0 0 0

, 0

0 0

[] 0 when [] ,

 and / or

j n j nx n x n A e e eθ σ ω
σ ω

σ σ ω ω

−≈ =
≠ ≠

 (4.10)

We will address the first condition now and return to the second condition later. The first

condition requires that

 (,) [] [], 0,1, , 1Hh x n x n n Nσ ω = = −⋯ (4.11)

if [] j n j nx n Ae e eθ σ ω−= .

Under these circumstances,

()

()(1)

()(1)

[]

j n

j n
j

j n M

e

e
x n Ae

e

σ ω

σ ω
θ

σ ω

− +

− + +

− + + −

 
 
 =
 
 
  

⋮
 (4.12)

or

 ()[] (,) j j nx n s Ae eθ σ ωσ ω − += (4.13)

where

()

2()

(1)()

1

(,)

j

j

M j

e

es

e

σ ω

σ ω

σ ω

σ ω

− +

− +

− − +

 
 
 
 =
 
 
 
 

⋮

. (4.14)

 60

Thus Eqn. (4.11) becomes

 () ()(,) (,) , 0,1, , 1H j j n j j nh s Ae e Ae e n Nθ σ ω θ σ ωσ ω σ ω − + − += = −⋯ . (4.15)

Clearly, Eqn. (4.15) will be satisfied if and only if

 (,) (,) 1Hh sσ ω σ ω = . (4.16)

Thus the first condition will be met exactly if (,)h σ ω satisfies Eqn. (4.16). There is no

easy or unique way to deal with the second condition. There are a number of ways to

deal with Eqn. (4.11), each leading to a different spectral estimation method.

4.3 Estimating the Spectrum, (,)S σ ω , from Filter Output, , []x nσ ω

At this point we consider the problem of estimating (,)S σ ω assuming , []x nσ ω is

available. We will later consider several methods for determining (,)h σ ω , each leading

to a different version of , []x nσ ω . Specifically, we assume we have

, [], 0,1, , 1x n n Nσ ω = −⋯ . If (,)h σ ω has been appropriately designed, then

 , [] j n j nx n Ae e eθ σ ω
σ ω

−≈ (4.17)

More precisely,

 , [] (,) []n j nx n S e e nσ ω
σ ω σ ω ε−= + (4.18)

 61

since (,) jS Aeωσ ω = , where the error []nε is presumably “small.”

It is noted that, if [] j n j nx n Ae e eθ σ ω−= exactly and if our measurement of []x n is

completely noise-free, then, evaluating Eqn. (4.18) at 0n = , we have the simple result

 ,(,) [0]S xσ ωσ ω = (4.19)

In practice, however, []nε will contain remnants of other signal components and noise,

so Eqn. (4.19) may be in error. We will thus proceed to obtain an estimate of (,)S σ ω

from , []x nσ ω in such a manner as to minimize a weighted sum of the squared-error terms

over some range of values of n . Specifically, we will choose (,)S σ ω that minimizes

1 1

2 2 * 2

0 0

[] [] []
K K

n n

n n

J n e n n eα αε ε ε
− −

− −

= =

= =∑ ∑ (4.20)

where * denotes complex conjugate, 1 K N≤ ≤ , and where, from Eqn. (4.18),

 ,[] [] (,) n j nn x n S e eσ ω
σ ωε σ ω −= − (4.21)

The quantity α may be zero (equally weighing all the error terms), positive (more

heavily weighing “early” terms), or even slightly negative (more heavily weighing “late”

terms). Furthermore, α may be a function of σ . It is noted that in the current literature

[2], α is always chosen to be zero and K to be N .

 62

Temporarily denoting (,)S σ ω as S B jC= + and je eσ ω− as p , we have

1

* * 2
, ,

0

[] () [] ()
K

n n n

n

J x n B jC p x n B jC p eα
σ ω σ ω

−
−

=

   = − + − −   ∑ (4.22)

Following standard minimization techniques, (,)S σ ω must satisfy

 0
J

B

∂ =
∂

 (4.23)

and

 0
J

C

∂ =
∂

 (4.24)

This leads to

() ()()
1

* * * * 2
, ,

0

[] [] 0
K

n n n n n

n

J
x n Sp p x n S p p e

B
α

σ ω σ ω

−
−

=

∂
   = − − + − − =   ∂ ∑ (4.25)

and

() ()()
1

* * * * 2
, ,

0

[] [] 0
K

n n n n n

n

J
x n Sp jp x n S p jp e

C
α

σ ω σ ω

−
−

=

∂
   = − + − − =   ∂ ∑ (4.26)

Subtracting Eqn. (4.25) from Eqn. (4.26) after canceling the j in Eqn. (4.26) results in

1

* 2
,

0

2 [] 0
K

n n n

n

x n Sp p e α
σ ω

−
−

=

 − = ∑ (4.27)

 63

Similarly, adding these equations results in

1

* * * 2
,

0

2 [] 0
K

n n n

n

x n S p p e α
σ ω

−
−

=

 − =
 ∑ (4.28)

which is simply the conjugate of Eqn. (4.27). Thus, after canceling the 2, both lead to

1

* 2
,

0

[] 0
K

n n n

n

x n Sp p e α
σ ω

−
−

=

 − = ∑ (4.29)

or,

1 1

* 2 * 2
,

0 0

[]
K K

n n n n n

n n

S p p e x n p eα α
σ ω

− −
− −

= =

=∑ ∑ (4.30)

or,

1 1

2 2
,

0 0

(,) []
K K

n j n n n n j n n

n n

S e e e e x n e e eσ ω σ α σ ω α
σ ωσ ω

− −
− − − − − −

= =

=∑ ∑ (4.31)

Employing Eqn. (4.6), this becomes

1 1

2() (2)

0 0

(,) (,) []
K K

n H n j n

n n

S e h x n e eσ α σ α ωσ ω σ ω
− −

− + − + −

= =

=∑ ∑ (4.32)

Thus

 64

 (,)(,) (,) jS A eθ σ ωσ ω σ ω=

1

(,) (2 ,)
()

H
K

K

h X
L

σ ω σ α ω
σ α

= +
+

 (4.33)

where

1

2

0

()
K

n
K

n

L e σσ
−

−

=

=∑

2

2

1
, 0

1
, 0

Ke

e
K

σ

σ σ

σ

−

−

 − ≠= −
 =

 (4.34)

and

1

0

(,) []
K

n j n
K

n

X x n e eσ ωσ ω
−

− −

=

=∑ (4.35)

where the properties of the geometric sum have been used in Eqn. (4.34). It is noted that

this reduces to the standard result found in the literature [2] when 0α = and K N= ,

namely

1

(,) (,) (,)
()

H
N

N

S h X
L

σ ω σ ω σ ω
σ

= (4.36)

Further, it is observed that when 1K = , Eqn. (4.33) reduces to

 65

 (,) (,) [0]HS h xσ ω σ ω= (4.37)

It is also noted that when 2
σα −=

1

(,) (,) (0,)H
KS h X

K
σ ω σ ω ω= (4.38)

where KX is now a function only of ω .

We have not as yet addressed the determination of (,)h σ ω . Several alternative

approaches are possible. These are discussed in the following sections.

4.4 Weighted 2D Capon Method

In this approach we minimize the weighted total energy in the filter output

, []x nσ ω while passing the signal component at frequency, ω , and damping, σ , unaltered.

We thus define

1

2 2
,

0

[]
N

n
C

n

J x n e β
σ ω

−
−

−

=∑ (4.39)

In the conventional 2D Capon method 0β = [2]. Just as in the case of α in Eqn. (4.20)

β may be zero, positive or slightly negative. Furthermore, β may be a function of σ .

We have, using Eqn. (4.6),

 66

1 2 2

0

(,) []
N

H n
C

n

J h x n e βσ ω
−

−

=

=∑

1

* 2

0

((,) [])((,) [])
N

H T n

n

h x n h x n e βσ ω σ ω
−

−

=

=∑ (4.40)

since
2 *a aa= . Using the fact that the second factor in Eqn. (4.40) is scalar and is thus

its own transpose,

1

2

0

(,) [] [] (,)
N

H H n
C

n

J h x n x n h e βσ ω σ ω
−

−

=

=∑

1

2

0

(,) [] [] (,)
N

H H n

n

h x n x n e hβσ ω σ ω
−

−

=

= ∑

 (,) (,)H
CJ h R hβσ ω σ ω= (4.41)

where

1

2

0

[] []
N

H n

n

R x n x n e β
β

−
−

=

=∑ (4.42)

We thus wish to choose (,)h σ ω to minimize

 (,) (,)H
CJ h R hβσ ω σ ω= (4.43)

subject to

 67

 (,) (,) 1h sσ ω σ ω = (4.44)

as required by Eqn. (4.16). This is a standard quadratic minimization problem with

solution (see Appendix Sec. A.1),

1

1

(,)
(,)

(,) (,)C H

R s
h

s R s
β

β

σ ω
σ ω

σ ω σ ω

−

−= (4.45)

With Eqn. (4.33), this leads to the weighted 2D Capon spectrum

1

1

(,)1
(,) (2 ,)

() (,) (,)C NH
K

s R
S X

L s R s
β

β

σ ω
σ ω σ α ω

σ α σ ω σ ω

−

−= +
+

 (4.46)

since 1Rβ
− is Hermitian. In the standard literature [2], 0, 0, and K Nβ α= = = , for

which Eqn. (4.46) reduces to the conventional 2D Capon spectrum

1

0
1

0

(,)1
(,) (,)

() (,) (,)C NH
N

s R
S X

L s R s

σ ωσ ω σ ω
σ σ ω σ ω

−

−= (4.47)

4.5 2D Capon Method in Frequency Domain

As an alternative to the time-domain minimization criterion of Eqn. (4.39), we

here consider a frequency domain approach. From Eqn. (4.33), assuming K N= , we

have

1

(,) (,) (2 ,)
()

H
N

N

S h X
L

σ ω σ ω σ α ω
σ α

= +
+

 (4.48)

 68

Now, assuming (,)h σ ω to be fixed, we can consider the spectral estimate at another

frequency, kω , given by

1

(,) (,) (2 ,)
()k N k

N

S h X
Lω σ ω σ ω σ α ω

σ α
= +

+
 (4.49)

Letting
2

, 0,1, , 1k k k N
N

πω = = −⋯ , we form

2 1

2

0

()
(,)

N
N

C k
k

L
J S

N ω
σ α σ ω

−

=

+′ = ∑ (4.50)

and will choose (,)h σ ω to minimize CJ′ subject to Eqn. (4.16). The positive constant

in front of the summation is added for convenience and does not affect the minimization

process. Proceeding,

2 1

0

()
(,) (,)

N
HN

C k k
k

L
J S S

N ω ω
σ α σ ω σ ω

−

=

+′ = ∑

1

0

1
(,) (2 ,) (2 ,) (,)

N
H H

N k N k
k

h X X h
N

σ ω σ α ω σ α ω σ ω
−

=

= + +∑

1

0

1
(,) (2 ,) (2 ,) (,)

N
H H

C N k N k
k

J h X X h
N

σ ω σ α ω σ α ω σ ω
−

=

′ = + +∑ (4.51)

The summation in Eqn. (4.51) may be expanded as follows:

 69

1

0

(2 ,) (2 ,)
N

H
N k N k

k

X Xσ α ω σ α ω
−

=

+ +∑

2 21 1 1

(2) (2)

0 0 0

[] []
N N Nj kn j kmn mN N

k n m

x n e e x m e e
π π

σ α σ α
− − −−− + − +

= = =

 
= ⋅ 

 
∑ ∑ ∑

21 1 1 ()

(2)()

0 0 0

[] []
N N N j k n m

H n m N

n m k

x n x m e e
π

σ α
− − − − −− + +

= = =

=∑∑ ∑ (4.52)

It may be shown that [95]

21 ()

0

,

0,

N j k n m
N

k

N m n
e

m n

π− − −

=

=
=  ≠

∑ (4.53)

Hence, from Eqn. (4.52),

1 1

2(2)

0 0

(2 ,) (2 ,) [] []
N N

H H n
N k N k

k n

X X N x n x n e σ ασ α ω σ α ω
− −

− +

= =

+ + =∑ ∑ (4.54)

Substituting Eqn. (4.54) into Eqn. (4.51) results in

1

2(2)

0

(,) [] [] (,)
N

H H n
C

n

J h x n x n e hσ ασ ω σ ω
−

− +

=

′ = ∑

 2(,) (,)Hh R hσ ασ ω σ ω+= (4.55)

This is exactly Eqn. (4.41) with 2β σ α= + . Thus the frequency domain version of the

2D Capon method is simply the weighted 2D Capon method with a particular choice for

 70

β . This development is of value, however, because it suggests the possibility of using

constantβ σ= + in the weighted 2D Capon method.

4.6 Weighted 2D APES Method

In this approach we minimize the weighted least squares fitting error between the

filter output and the signal component at the desired frequency ω and damping σ , while

passing that component unaltered. (APES is an acronym for amplitude and phase

estimation.) We define

1 2() 2

,
0

[] (,)
N

j n n
A

n

J x n S e eσ ω β
σ ω σ ω

−
− + −

=

= −∑ (4.56)

where (,)S σ ω is the spectral estimate given by Eqn. (4.33). Here, however, it is

convenient to choose K N= and α β= in Eqn. (4.33). The usual comments apply to

β . It is noted that when 0β = , AJ corresponds to the minimization criterion employed

in the conventional 2D APES method introduced by Stoica and Sundin[2]. Thus

2

1
() 2

0

1
(,) [] (,) (2 ,)

()

N
H H j n n

A N
n N

J h x n h X e e
L

σ ω βσ ω σ ω σ β ω
σ β

−
− + −

=

= − +
+∑ (4.57)

which is to be minimized over (,)h σ ω subject to Eqn. (4.16). We now have

 71

1

()

0

1
(,) [] (2 ,)

()

N
H j n

A N
n N

J h x n X e
L

σ ωσ ω σ β ω
σ β

−
− +

=

 
= − + + 
∑

() 21

[] (2 ,) (,)
()

H H j n n
N

N

x n X e e h
L

σ ω βσ β ω σ ω
σ β

− − − 
⋅ − + + 

1 1
2 (2)

0 0

1
(,) [] [] (2 ,) []

()

N N
H H n H j n

A N
n nN

J h x n x n e X x n e
L

β σ β ωσ ω σ β ω
σ β

− −
− − − +

= =


= − + +

∑ ∑

1

(2)

0

1
[] (2 ,)

()

N
j n H

N
nN

x n e X
L

σ β ω σ β ω
σ β

−
− − −

=

− +
+ ∑

1
() () 2

2
0

1
(2 ,) (2 ,) (,)

()

N
j n j n n H

N N
nN

e e e X X h
L

σ ω σ ω β σ β ω σ β ω σ ω
σ β

−
− + − − −

=


+ + + + 

∑

1
(,) (2 ,) (2 ,)

()
H H

A N N
N

J h R X X
Lβσ ω σ β ω σ β ω

σ β


= − + + +

1

(2 ,) (2 ,)
()

H
N N

N

X X
L

σ β ω σ β ω
σ β

− + +
+

1
2()

2
0

1
(2 ,) (2 ,) (,)

()

N
n H

N N
nN

e X X h
L

σ β σ β ω σ β ω σ ω
σ β

−
− +

=


+ + + + 

∑

1
(,) (2 ,) (2 ,) (,)

()
H H

A N N
N

J h R X X h
Lβσ ω σ β ω σ β ω σ ω

σ β
 

= − + + + 
 (4.58)

 72

since

1

2()

0

()
N

n
N

n

e Lσ β σ β
−

− +

=

= +∑ (4.59)

Thus

 (,) (,) (,)H
AJ h Q hβσ ω σ ω σ ω= (4.60)

where

1

(,) (2 ,) (2 ,)
()

H
N N

N

Q R X X
Lβ βσ ω σ β ω σ β ω

σ β
= − + +

+
 (4.61)

which is to be minimized subject to Eqn. (4.16). Other than the fact that (,)Qβ σ ω is a

function of and σ ω (whereas Rβ is not), AJ is exactly of the form of CJ in Eqn.

(4.41) in the weighted 2D Capon approach. Thus

1

1

(,) (,)
(,)

(,) (,) (,)A H

Q s
h

s Q s
β

β

σ ω σ ω
σ ω

σ ω σ ω σ ω

−

−= (4.62)

which leads to the weighted 2D APES spectrum

1

1

(,) (,)1
(,) (2 ,)

() (,) (,) (,)

H

A NH
N

s Q
S X

L s Q s
β

β

σ ω σ ω
σ ω σ β ω

σ β σ ω σ ω σ ω

−

−= +
+

 (4.63)

 73

since 1(,)Qβ σ ω− is Hermitian. In the standard literature [2], 0β = , for which Eqn.

(4.63) reduces to the conventional 2D APES spectrum

1

0
1

0

(,) (,)1
(,) (,)

() (,) (,) (,)

H

A NH
N

s Q
S X

L s Q s

σ ω σ ωσ ω σ ω
σ σ ω σ ω σ ω

−

−= (4.64)

It is noted that the Matrix Inversion Lemma [60] (see Appendix Sec. A.2) may be

used to facilitate the computation of 1(,)Qβ σ ω− , leading to

1 1
1 1

1

(2 ,) (2 ,)
(,)

() (2 ,) (2 ,)
N N

H
N N N

R X X R
Q R

L X R X
β β

β β
β

σ β ω σ β ω
σ ω

σ β σ β ω σ β ω

− −
− −

−

+ +
= +

+ − + +
 (4.65)

requiring the inversion only of Rβ .

4.7 Combined Weighted 2D APES / 2D Capon Method

The weighted 2D Capon method and the weighted 2D APES method each offer

certain advantages. It might therefore be expected that a compromise of these advantages

might be obtained by combining these methods. To accomplish this, define

 (1)AC C AJ J Jγ γ= − + (4.66)

where 0 1γ≤ ≤ . For convenience, we choose and K N α β= = in the weighted 2D

Capon method. Using Eqns. (4.41) and (4.60) we have

(1) (,) (,) (,) (,) (,)H H
ACJ h R h h Q hβ βγ σ ω σ ω γ σ ω σ ω σ ω= − +

 74

 ()(,) (1) (,) (,)H
ACJ h R Q hβ βσ ω γ γ σ ω σ ω= − + (4.67)

With Eqn. (4.61) this becomes

(,) (1) (2 ,) (2 ,) (,)
()

H H
AC N N

N

J h R R X X h
Lβ β

γσ ω γ γ σ β ω σ β ω σ ω
σ β

 
= − + − + + + 

(,) (2 ,) (2 ,) (,)
()

H H
AC N N

N

J h R X X h
Lβ

γσ ω σ β ω σ β ω σ ω
σ β

 
= − + + + 

 (4.68)

or

 ,(,) (,) (,)H
ACJ h Q hβ γσ ω σ ω σ ω= (4.69)

where

 , (,) (2 ,) (2 ,)
()

H
N N

N

Q R X X
Lβ γ β

γσ ω σ β ω σ β ω
σ β

= − + +
+

 (4.70)

As usual, (,)h σ ω is chosen to minimize ACJ subject to Eqn. (4.16). We thus have

1
,

1
,

(,) (,)
(,)

(,) (,) (,)AC H

Q s
h

s Q s
β γ

β γ

σ ω σ ω
σ ω

σ ω σ ω σ ω

−

−= (4.71)

and

 75

1
,

1
,

(,) (,)1
(,) (2 ,)

() (,) (,) (,)

H

AC NH
N

s Q
S X

L s Q s
β γ

β γ

σ ω σ ω
σ ω σ β ω

σ β σ ω σ ω σ ω

−

−= +
+

 (4.72)

It is seen that the combined method is nothing more than a parameterized version of the

weighted 2D APES method, which reduces to the normal weighted 2D APES method

when 1γ = and to the weighted 2D Capon method (with K N=) when 0γ = . As

before, the Matrix Inversion Lemma [60] can be employed to rewrite 1
, (,)Qβ γ σ ω− as

1 1
1 1
, 1

(2 ,) (2 ,)
(,)

() (2 ,) (2 ,)

H
N N

H
N N N

R X X R
Q R

L X R X
β β

β γ β
β

γ σ β ω σ β ω
σ ω

σ β γ σ β ω σ β ω

− −
− −

−

+ +
= +

+ − + +
 (4.73)

4.8 Summary of Methods

For the sake of clarity, in this section we will briefly summarize the development

presented earlier in this chapter. We assume we have a signal of the form

,

[] (,) , 0,1, , 2n j nx n S s e noise n N Mσ ω

σ ω
σ ω −= + = + −∑ ⋯ (4.74)

where

 (,)(,) (,) jS A eθ σ ωσ ω σ ω= (4.75)

and where we seek to estimate (,)S σ ω based on []x n .

 76

4.8.1 General Framework for Techniques

All of the techniques are based on the following two stage methodology:

1.) At each (,)σ ω of interest, construct a length-M FIR filter (,)h σ ω for []x n that

passes the signal component at (,)σ ω and attenuates all others, resulting in the

filter output , []x nσ ω .

2.) From , []x nσ ω estimate (,)S σ ω .

4.8.2 Existing Techniques

4.8.2.1 2D Capon

1.) Choose the filter (,)h σ ω that minimizes

1

2

,
0

[]
N

C
n

J x nσ ω

−

=

=∑ (4.76)

subject to (,) (,) 1Hh sσ ω σ ω = (which ensures that the component at (,)σ ω is

passed unaltered).

2.) Choose the estimate (,)S σ ω that minimizes

1

2

0

[]
N

n

J nε
−

=

=∑ (4.77)

where ,[] [] (,) n j nn x n S e eσ ω
σ ωε σ ω −= −

 77

This results in

1
0

1
0

(,)1
(,) (,)

() (,) (,)

H

C NH
N

s R
S X

L s R s

σ ωσ ω σ ω
σ σ ω σ ω

−

−= (4.78)

4.8.2.2 2D APES

1.) Choose the filter (,)h σ ω that minimizes

1

2

0

[]
N

A
n

J nε
−

=

=∑ (4.79)

subject to (,) (,) 1Hh sσ ω σ ω = .

2.) Choose the estimate (,)S σ ω that minimizes

1

2

0

[]
N

n

J nε
−

=

=∑ (4.80)

This results in

1
0

1
0

(,) (,)1
(,) (,)

() (,) (,) (,)

H

A NH
N

s Q
S X

L s Q s

σ ω σ ωσ ω σ ω
σ σ ω σ ω σ ω

−

−= (4.81)

4.8.3 New Techniques

In these proposed techniques certain choices of the parameters , , , and K α β γ

can lead to improved estimation properties and/or reduced computation time.

 78

4.8.3.1 Weighted 2D Capon

1.) Choose the filter (,)h σ ω that minimizes

1

2 2
,

0

(,) []
K

n
C

n

J K x n e β
σ ωβ

−
−

=

=∑ (4.82)

subject to (,) (,) 1Hh sσ ω σ ω = .

2.) Choose the estimate (,)S σ ω that minimizes

1

2 2

0

() []
N

n

n

J n e αα ε
−

−

=

=∑ (4.83)

This results in

1

1

(,)1
(,) (2 ,)

() (,) (,)

H

C KH
N

s R
S X

L s R s
β

β

σ ω
σ ω σ α ω

σ α σ ω σ ω

−

−= +
+

 (4.84)

4.8.3.2 Weighted 2D APES

1.) Choose the filter (,)h σ ω that minimizes

1

2 2

0

() []
N

n
A

n

J n e ββ ε
−

−

=

=∑ (4.85)

subject to (,) (,) 1Hh sσ ω σ ω = .

2.) Choose the estimate (,)S σ ω that minimizes

 79

1

2 2

0

() []
N

n

n

J n e ββ ε
−

−

=

=∑ (4.86)

This results in

1

1

(,) (,)1
(,) (2 ,)

() (,) (,) (,)

H

A NH
N

s Q
S X

L s Q s
β

β

σ ω σ ω
σ ω σ β ω

σ β σ ω σ ω σ ω

−

−= +
+

 (4.87)

4.8.3.3 Combined Weighted 2D APES / 2D Capon

1.) Choose the filter (,)h σ ω that minimizes

 (,) (1) (,) ()AC C AJ J N Jβ γ γ β γ β= − + (4.88)

subject to (,) (,) 1Hh sσ ω σ ω = .

2.) Choose the estimate (,)S σ ω that minimizes

1

2 2

0

() []
N

n

n

J n e ββ ε
−

−

=

=∑ (4.89)

This results in

1
,

1
,

(,) (,)1
(,) (2 ,)

() (,) (,) (,)

H

AC NH
N

s Q
S X

L s Q s
β γ

β γ

σ ω σ ω
σ ω σ β ω

σ β σ ω σ ω σ ω

−

−= +
+

 (4.90)

which reduces to the weighted 2D APES result when 1γ = and the weighted 2D Capon

result (with K N=) when 0γ = .

 80

4.9 Computational Considerations

We may evaluate the weighted 2D Capon spectrum,(,)CS σ ω , and the combined

weighted 2D APES / 2D Capon spectrum, (,)ACS σ ω , for specific values of and σ ω .

(It is not necessary to separately discuss (,)AS σ ω , since it is a special case of

(,)ACS σ ω .) It is generally of interest, however, to evaluate these quantities over an

equally spaced rectangular grid of and σ ω values. Certain computational efficiencies

may be exploited if this is done. Assume

 , 0,1, , 1, 0m m m Nσσ σ σ= ∆ = − ∆ >⋯ (4.91)

and

 , 0,1, , 1, 0k k k Nωω ω ω= ∆ = − ∆ >⋯ (4.92)

That is, we are interested in Nσ values of σ and Nω values of ω . To ensure that

0 ω π≤ < , we choose

Nω

πω∆ = (4.93)

We now consider the evaluation of (2 ,)KX σ α ω+ and (2 ,)NX σ β ω+ , as required by

the methods described above. It suffices to consider only (2 ,)KX σ α ω+ where

0 K N≤ ≤ and where α may be a function of σ . Thus

 81

1

(2)

0

(2 ,) []
K

n j n
K

n

X x n e eσ α ωσ α ω
−

− + −

=

+ =∑ (4.94)

At the grid points this becomes

21

2(2)

0

(2 ,) []
K j kn

Nm n
K m k

n

X x n e e ω

π
σ ασ α ω

− −
− ∆ +

=

+ =∑ (4.95)

or

22 1

2(2)

0

(2 ,) []
N j kn

Nm n
K m k e

n

X x n e e
ω

ω

π
σ ασ α ω

− −
− ∆ +

=

+ = ∑ (4.96)

where

[], 0,1, , 1

[]
0, , 1, ,2 1e

x n n K
x n

n K K Nω

= −
=  = + −

⋯

⋯
 (4.97)

and where we have assumed 2 , or 2
KN K Nω ω≥ ≥ .

From Eqn. (4.96), it is seen that (2 ,)K m kX σ α ω+ is the length-2Nω vector

discrete Fourier transform of the quantity (2)[] m n
ex n e σ α− ∆ + , which may be efficiently

evaluated using the fast Fourier transform (FFT). Thus, for a fixed m , (2 ,)K m kX σ α ω+

may be determined for all , 0,1, , 1k k Nω= −⋯ , using one length-2Nω vector FFT (in

this case one vector FFT consists of M ordinary FFT’s). It is further observed that if α

 82

is chosen as 2
m σα − ∆= , (2 ,)K m kX σ α ω+ becomes the FFT of []ex n , independent of

m . Thus, one vector FFT suffices for all , 0,1, , 1m m Nσ= −⋯ .

As another issue, the evaluation of (,) and (,)C ACS Sσ ω σ ω require the inversion

of Rβ and , (,)Qβ γ σ ω , respectively. If β is fixed, then Rβ needs to be inverted only

once over the entire grid and, if the Matrix Inversion Lemma[60] is used, the inversion of

, (,)Qβ γ σ ω likewise requires only one inversion of Rβ . On the other hand, if β is a

function of σ , then, in both cases, Rβ must be inverted once for each

, 0,1, , 1m m Nσ= −⋯ .

 83

Table 1 lists the number of length-2Nω FFT’s and M M× matrix inversions for

various situations of interest.

Method α β FFT’s Matrix
Inversions

Weighted 2D Capon (K N=) not 2
σ− constant MNσ 1

Weighted 2D Capon (K N=) not 2
σ− function(σ) MNσ Nσ

Weighted 2D Capon (K N=)
2

σ− constant M 1

Weighted 2D Capon (K N=) 2
σ− function(σ) M Nσ

Weighted 2D Capon (1K =) - constant 0 1

Weighted 2D Capon (1K =) - function(σ) 0 Nσ

Combined Weighted
2D APES / 2D Capon

- constant MNσ 1

Combined Weighted
2D APES / 2D Capon

- function(σ),

not 2
σ−

MNσ Nσ

Combined Weighted
2D APES / 2D Capon

-
2

σ− M Nσ

Table 1. Computational Requirements.

 84

4.10 Example

The following simple example will hopefully provide the reader with a better

understanding of the concepts presented in this chapter. We consider the signal

() ()

() ()

() ()

() ()

() ()

20
0.0033 256

22
0.0086 256

50
0.001 256

210
0.0086 256

220
0.0033 256

[] 2

4

2

4

2

j j nn

j j nn

j nj n

j j nn

j j nn

x n e e e

e e e

e e e

e e e

e e e

π π

π π

ππ

π π

π π

−

− −

−

−

− −

= +

+

+

+

 (4.98)

with added Gaussian white noise (refer to Eqn. (4.74)). This signal has the spectral peaks

shown in Table 2.

ω σ A θ

20
256

π -0.003 2
3

π

22
256

π
-0.008 4

6
π−

50
256

π -0.001 2 π

210
256

π -0.008 4
6

π

220
256

π -0.003 2
3

π−

Table 2. Parameters for simulated signal.

 85

In the first instance we assume an SNR of 48 dB. Using the conventional 2D Capon

method with 512N = and 128M = , we obtain the estimated spectrum

(,)(,) (,) jS A eθ σ ωσ ω σ ω= . Fig. 32 is a 3-dimensional plot of (,)A σ ω vs. σ and ω . Fig.

33 is a contour plot of (,)A σ ω . In both cases the five spectral peaks are evident.

Fig. 32. 2D Capon surface of simulated signal with SNR=48dB.

 86

Fig. 33. 2D Capon contour of simulated signal with SNR=48dB.

Fig. 34 and Fig. 35 are similar to Fig. 32 and Fig. 33, respectively, but with an SNR of 12

dB. The effect of greater noise is seen as a broadening of the peaks in the σ direction.

 87

Fig. 34. 2D Capon surface of simulated signal with SNR=12dB.

 88

Fig. 35. 2D Capon contour of simulated signal with SNR=12dB.

4.11 Summary

In this chapter we have introduced several new two-dimensional spectral

estimation techniques: the weighted 2D Capon method, the weighted 2D APES method

and the combined weighted 2D APES / 2D Capon method. It was shown that the

conventional 2D Capon method and the conventional 2D APES method are special cases

of the new methods introduced in this chapter.

 89

The primary motivation for the introduction of these new techniques is to improve

spectral estimation capabilities, peak detection reliability, accuracy, and in some cases to

increase the overall performance of the spectral estimation processing time. The two-

dimensional techniques introduced in this chapter are capable of estimating both

frequency and damping characteristics of a signal and are well-suited to use for MRS

analysis.

 90

C h a p t e r 5

5 Multiple-Channel Weighted 2D Spectral Estimation Methods

Many advancements have been made in the area of MR imaging with multiple

receive coils. The most common technique for creating a single MR image from

multiple-receive coils was introduced by Roemer, et al.[29]. Since multiple receive

coils are widely used in a clinical setting for imaging, it is also desirable to combine MRS

spectra from multiple receive coils. Several techniques for combining MRS absorption

spectra from multiple receive channels have been proposed [39]-[42]. One technique for

combining MRS absorption spectra from multiple receive channels which has gained

clinical acceptance was developed by Frigo, Heinen, et al. [3].

In analyzing MRS results from multiple receive coils, the data from each coil may

be processed separately to create a result for each coil. Signal characteristics from each

coil depend on a number of factors including the orientation of the coil with respect to the

B0 field, the proximity of the coil to the volume generating the signal, coil loading, coil-

to-coil coupling effects, and the permeability and permitivity of the medium through

which the radio-frequency signal travels [75] prior to being received by the coil elements.

Regions of interest close to receive coil elements benefit from improved SNRs[30],[37].

 91

In this chapter we will extend the weighted 2D spectral estimation methods

developed in Chapter 4 to the case of multiple-channel data. We will consider both

weighted signal averaging and weighted spectrum averaging. Although motivated by the

application to MRS signals, the development, as in Chapter 4, is cast in a general setting.

5.1 Extensions to Multiple Observations

In this case we seek to estimate { []} (,)x n Sσ ω=S based on multiple observations

of the signal []x n (multi-channel case). Here we assume we have C noisy scaled

observations [], 1,2, , ,ix n i C= ⋯ of the complex signal []x n , for 0,1, , 2n N M= + −⋯ .

More precisely,

 [] [] [], 1,2, ,i i ix n g x n n i Cυ= + = ⋯ (5.1)

where the []i nυ are noise terms and the 'sig are complex constants (channel gains). The

noise terms []i nυ are assumed to be zero mean with variances

{ }2 2 0, 1,2, ,i i i Cυ ρ= > = ⋯E . We further assume that the []'si nυ are mutually

uncorrelated and uncorrelated with []x n . We will initially assume that the 'sig and 'siρ

are known, and later consider the possibility of estimating these quantities from the data

if they are unknown.

 92

5.2 Estimating the Basic Signal, []x n , from Observations, []'six n

For the first technique to be considered later we require an estimate, ˆ[]x n , of

[]x n . We will choose to seek an estimate of the following form (weighted average):

 *

1

ˆ[] [], 0,1, , 2
C

i i
i

x n w x n n N M
=

= = + −∑ ⋯ (5.2)

where the 'siw are complex constants. We may also write

 ˆ[] []Hx n w x n= ɶ ɶ (5.3)

where

1

2

C

w

w
w

w

 
 
 =
 
 
  

ɶ
⋮

 (5.4)

and

1

2

[]

[]
[]

[]C

x n

x n
x n

x n

 
 
 =
 
 
  

ɶ
⋮

 (5.5)

We may also write

 93

 [] [] []x n gx n nυ= +ɶ ɶ ɶ (5.6)

where

1

2

C

g

g
g

g

 
 
 =
 
 
  

ɶ
⋮

 (5.7)

and

1

2

[]

[]
[]

[]C

n

n
n

n

υ
υ

υ

υ

 
 
 =
 
 
  

ɶ
⋮

 (5.8)

Thus

 ˆ[] [] []H Hx n w gx n w nυ= +ɶ ɶ ɶ ɶ (5.9)

In order to ensure that ˆ[]x n will be equal to []x n in the absence of noise, and is thus

properly scaled, we require that

 1Hw g =ɶ ɶ (5.10)

Then Eqn. (5.8) becomes

 ˆ[] [] []Hx n x n w nυ= + ɶ ɶ (5.11)

 94

We will now determine the optimal wɶ , that is, the one that minimizes the energy

in []Hw nυɶ ɶ . We thus choose

22

0

[]
N M

H
w

n

J w nυ
+ −

=

= ∑ ɶ ɶ

2

0

[] []
N M

H H

n

w n n wυ υ
+ −

=

= ∑ ɶ ɶ ɶ ɶ

2

0

[] []
N M

H H
w

n

J w n n wυ υ
+ −

=

 =  
 
∑ɶ ɶ ɶ ɶ (5.12)

Since the []'si nυ are mutually uncorrelated, the off-diagonal terms of [] []Hn nυ υɶ ɶ will

sum to zero (approximately) and the diagonal terms will sum (approximately) to 2
iρ ,

respectively, provided that N M+ is reasonably large. Thus, wJ becomes, at least

approximately

 H
w wJ w R w= ɶ ɶ (5.13)

where

2
1

2
2

2

0 0

0 0

0 0

w

C

R

ρ
ρ

ρ

 
 
 =
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (5.14)

 95

wJ in Eqn. (5.13) is thus to be minimized subject to Eqn. (5.10). This has solution (see

Appendix Sec. A.1)

1

1
w

H
w

R g
w

g R g

−

−=
ɶ

ɶ
ɶ ɶ

 (5.15)

thus providing the optimum weight vector. In the case where 2 2, 1,2, ,i i Cρ ρ= = ⋯ ,

that is, in the case of equal noise variances, Eqn. (5.15) simplifies to

H

g
w

g g
=
ɶ

ɶ
ɶ ɶ

 (5.16)

or

2

1

, 1,2, ,i
i C

j
j

g
w i C

g
=

= =
∑

⋯ (5.17)

5.3 Estimating the 2D Spectrum, (,)S σ ω

We now consider two approaches to estimating (,)S σ ω in the case of multiple

observations.

5.3.1 Weighted Signal Averaging

Here we use Eqn. (5.3) with the weights given by Eqn. (5.15) to obtain the

estimate

 96

1

1

[]
ˆ[]

H
w

H
w

g R x n
x n

g R g

−

−=
ɶ ɶ

ɶ ɶ
 (5.18)

of []x n . Then we simply replace []x n by ˆ[]x n in any of the methods in Chapter 4 for

determining (,)S σ ω .

5.3.2 Weighted Spectrum Averaging

In this case, we first apply any of the methods of Chapter 4 to obtain the spectrum

(,)iS σ ω of [], 1,2, ,ix n i C= ⋯ . We then form the weighted average spectrum

 *

1

ˆ(,) (,)
C

i i
i

S w Sσ ω σ ω
=

=∑ (5.19)

at each value of and σ ω under consideration. If we were to use the 'siw from Eqn.

(5.15) and if the spectrum operator {}⋅S were linear, then Eqn. (5.19) would produce the

same spectrum as that obtained by the weighted signal averaging method. However,

{}⋅S is not a linear operator. (Although { } { }[] []cx n c x n=S S ,

{ } { } { }1 2 1 2[] [] [] []x n x n x n x n+ ≠ +S S S .) It is therefore not clear what values to choose

for the 'siw in Eqn. (5.19) but those of Eqn. (5.15) would seem to be reasonable. It is

noted that this method requires C spectrum determinations, and is thus considerably

more (C times more) computationally intensive than the weighted signal averaging

method, which requires only one spectrum determination.

 97

5.4 Estimating Channel Gains, 'sig , from Observed Data

Thus far we have assumed that the 'sig (required in each of the methods for

determining the spectrum) are known. In situations where this is not the case we may use

the observed data to obtain estimates of the 'sig to use in determining the spectrum.

Unfortunately, it is clearly impossible to determine the 'sig in an absolute sense, since we

do not know []x n . However, we may estimate the 'sig in a relative sense, i.e., within a

multiplicative constant.

From Eqn. (5.1), we have

1 1
[] [] [], 0,1, , , 0,1, , 2i i

i i

x n x n n i C n N M
g g

υ= + = = + −⋯ ⋯ (5.20)

Thus
1

[], 1,2, ,i
i

x n i C
g

= ⋯ may all be viewed as estimates of []x n . In the absence of

noise, we would thus have

1 1

[] []j i
j i

x n x n
g g

= (5.21)

or

 [] []i j j ig x n g x n= (5.22)

 98

for all combinations of and i j . We will thus attempt to find a set of 'sig , 1,2, ,i C= ⋯ ,

so as to minimize

22

0 1 1

[] []
N M C C

g
i j j i

n j i
i j

J g x n g x n
+ −

= = =
≠

= −∑ ∑∑ (5.23)

Obviously 0, 1,2, ,ig i C= = ⋯ , minimizes gJ , but this is clearly unsuitable for our

purposes. We will therefore, somewhat arbitrarily, impose the additional restriction that

 1 1Hg =ɶ (5.24)

where gɶ is given by Eqn. (5.7) and where

1

1
1

1

 
 
 =
 
 
 

⋮
 (5.25)

The 'sig thus obtained will be estimates (arbitrarily summing to one) of the true 'sig , to

within a multiplicative constant. To carry out the minimization process we must find

g

k

J

g

∂
∂

 for each k , 1,2, ,k C= ⋯ . We can simplify this process for a specific k by looking

at only the terms of gJ that contain kg . These terms are given by

 99

2 22

0 1 1

[] [] [] []
N M C C

g
k i k k i k j j k

n i j
i k j k

J g x n g x n g x n g x n
+ −

= = =
≠ ≠

 
 = − + −
 
  

∑ ∑ ∑

2

2 2

0 1 1

[] [] [] []
N M C C

i k k i k i i k
n i i

i k i k

g x n g x n g x n g x n
+ −

= = =
≠ ≠

 
 = − + −
 
  

∑ ∑ ∑

2

2

0 1

2 [] []
N M C

g
k i k k i

n i
i k

J g x n g x n
+ −

= =
≠

 
 = −
 
  

∑ ∑ (5.26)

This is of the form of Eqn. (4.22), so by an analogous procedure to that which produced

Eqn. (4.29), we have

2

*

0 1 1

[] [] [] 0
N M C C

i k k i i
n i i

i k i k

g x n g x n x n
+ −

= = =
≠ ≠

 
 − =
  
 

∑ ∑ ∑ (5.27)

or

2

* *

1 0 1

[] [] [] [] 0
C N M C

i k i k i i
i n i
i k i k

g x n x n g x n x n
+ −

= = =
≠ ≠

 
   − =      

 

∑ ∑ ∑ (5.28)

or

1 1

0
C C

i ki k ii
i i
i k i k

g r g r
= =
≠ ≠

− =∑ ∑ (5.29)

 100

where

2

*

0

[] []
N M

ij i j
n

r x n x n
+ −

=

= ∑ (5.30)

Defining

1

C

g ii
i

r r
=

=∑ (5.31)

Eqn. (5.29) may be rewritten as

1

() 0
C

i ki k kk g
i
i k

g r g r r
=
≠

+ − =∑ (5.32)

Combining Eqn. (5.32) for all 1,2, ,k C= ⋯ , we have

 0gR g =ɶ (5.33)

where

11 12 1

21 22 2

1 2

g C

g C

g

C C CC g

r r r r

r r r r
R

r r r r

− 
 − =
 
 −  

⋯

⋯

⋮ ⋮ ⋮

⋯

 (5.34)

 101

We thus want to choose gɶ so as to make gR gɶ as close as possible, in some sense, to

zero, subject to 1 1Hg =ɶ . We will choose therefore to minimize

 H H
g g gJ g R R g= ɶ ɶ (5.35)

subject to

 1 1Hg =ɶ (5.36)

This has solution (see Appendix Sec. A.1)

()

()

1

1

1
ˆ

1 1

H
g g

H H
g g

R R
g

R R

−

−=ɶ (5.37)

which provides our estimate of ˆ of g gɶ ɶ , to within a multiplicative constant.

5.5 Estimating Noise Variances, 'siρ , from Observed Data

Just as in the case of 'sig , we have thus far assumed that the 'siρ are known. If

the 'siρ are not known, we may be able to obtain estimates of them, provided that we

have sufficient data and provided that no signal components have zero damping. To

accomplish this, we assume that we have observations [], 1,2, ,ix n i C= ⋯ , for

0,1, , 1fn N= −⋯ where 1fN N M≥ + − . We further assume that for n in the range

, 1, , 1s s fn N N N= + −⋯ , all signal components are sufficiently small so as to be

 102

negligible. Then in this range we will have [] []i ix n nυ≈ and we may thus form the

estimates

1

22 1
ˆ []

f

s

N

i i
n Nf s

x n
N N

ρ
−

=

=
− ∑

1

2 *1
ˆ [] [], 1,2, ,

f

s

N

i i i
n Nf s

x n x n i C
N N

ρ
−

=

= =
− ∑ ⋯ (5.38)

5.6 Summary

In this chapter we have introduced two methods for performing two-dimensional

spectral estimation from multiple-channel data: weighted signal averaging and weighted

spectrum averaging. Both techniques offer simple and effective means of creating a

single combined spectral estimate from multiple-channel data. We also introduced a

method to optimally estimate the relative channel gains from observed data. From a

clinical standpoint with respect to MRS, these methods greatly simplify interpretation of

results from multiple-channel data.

 103

C h a p t e r 6

6 Evaluation of 2D Spectral Estimation Methods

6.1 Introduction

In this chapter we evaluate the proposed new algorithms introduced in Chapters 4

and 5 through an extensive series of simulations in MATLAB ® on known data sets. By

performing these simulations we can measure and quantify the performance of the new

two-dimensional spectral estimation techniques under a controlled environment. The

types of input signals used [76] and the corresponding SNRs will parallel those typically

found in MRS data; however the signals used[77] and the techniques used to evaluate the

results are general purpose in nature and not unique to MRS applications.

6.2 Definitions

Several definitions are relevant to interpreting the results of the simulations done

in this chapter. Two-dimensional spectral estimation techniques are used to estimate

both frequency and damping. As such, it serves as a convenience to consider a three-

dimensional coordinate system such as the one shown in Fig. 31 where one axis is

defined as the frequency axis, ω , another axis represents damping, σ , and the third axis

represents the magnitude of the spectral estimate, (,)S σ ω .

For a simple input signal, []x n , consisting of a single damped sinusoid, one

would expect the two-dimensional surface representing the magnitude of the spectral

 104

estimate, (,)S σ ω , to contain a single “peak” corresponding to the frequency (ω) and

damping factor (σ) of the input signal.

6.2.1 Peak Spectrum

When performing two-dimensional spectral estimates in the presence of noise, the

surface representing the magnitude of the spectral estimate, (,)S σ ω , in the (,)σ ω plane

may contain widened peaks making it difficult to distinguish with great accuracy where

the peak occurs. Therefore, for convenience, we may greatly simplify the process of

determining where a peak occurs by developing a peak-enhancement utility to find peaks

and represent them as Dirac delta functions, ignoring other data values by representing

them as zero. In this manner, a series of impulse functions similar to the ideal ones

shown in Fig. 31 can be visualized to represent peak occurrences. It is noted that

potential peaks occurring at the largest value of σ analyzed are not included since it

cannot be certain that they are indeed peaks.

6.2.2 Noise Threshold for Peak Spectrum

In some cases we may wish to ignore very small peaks arising primarily from

noise. In this case we can define a noise threshold, below which all peaks are ignored.

This threshold may be based on a percentage of the maximum peak found in a given

surface, or it may represent a pre-defined noise floor. If a peak is detected, but falls

below this noise threshold, we simply ignore it.

 105

6.2.3 Projected Peak Spectrum

From the peak spectrum defined in Sec. 6.2.1 we may wish to project the

maximum peak found along the σ axis onto the ω axis creating a projected peak

spectrum. This is analogous to the spectrum obtained from a one-dimensional Fourier

transform in that it contains only frequency information about the signal.

6.2.4 Simple Example

Using the signal defined by Eqn. (4.98) and Table 2 with an 10 dBSNR= , we

now provide illustrative examples typical of the results we will examine in more detail in

the simulations carried out in this chapter. For the conventional 2D Capon method with

512N = and 128M = , we obtain the estimated spectrum (,)(,) (,) jS A eθ σ ωσ ω σ ω= . Fig.

36 is a 3-dimensional plot of (,)S σ ω vs. σ and ω while Fig. 39 shows the same

surface with peak-enhancement using a noise threshold of zero. Fig. 37 is a contour plot

of (,)S σ ω vs. σ and ω while Fig. 40 shows the same contour with peak-enhancement.

Fig. 38 is a projection of (,)S σ ω along σ onto the ω axis and Fig. 41 shows a similar

plot with peak-enhancement. Fig. 42 is also provided to illustrate how the standard

Fourier transform of this signal compares to the other techniques.

 106

Fig. 36. Raw 2D Capon spectrum surface.

 107

Fig. 37. Raw 2D Capon spectrum contour.

 108

Fig. 38. Raw 2D Capon spectrum projection.

m
ax

σ

 109

Fig. 39. Peak-enhanced 2D Capon spectrum surface.

 110

Fig. 40. Peak-enhanced 2D Capon spectrum contour.

 111

Fig. 41. Peak-enhanced 2D Capon spectrum projection.

m
ax

σ

 112

Fig. 42. Fourier transform.

6.3 Simulation Procedure

All simulations are implemented using MATLAB® version 6.5 on standard

Microsoft Windows® based personal computers (PCs). Each resulting data set is

analyzed to determine how many expected peaks were detected, and also how many false

peaks were detected. If an expected peak is detected, the root-mean-square (RMS) error

of the magnitude of this peak and the RMS error of the location of the peak in the (,)σ ω

plane are computed.

 113

6.3.1 Peak Analysis

An important aspect of the simulation strategy is to define a mechanism that can

be used systematically to analyze the results, and quantify with accuracy and precision

the performance of the particular algorithm being tested. A robust procedure is required

to determine the location of peaks in the (,)σ ω plane. Therefore, the following peak

detection method is proposed. The peak identification process determines that a peak

exists if its estimated magnitude is greater than or equal to the estimated magnitude at all

of the 3, 5, or 8 adjacent grid points.

In the simulations we will refer to those peaks known to exist in the simulated

signal as expected peaks. These have known (expected) magnitude A , phase θ ,

damping σ , and frequency ω . All peaks identified by the estimation technique and

peak picking process will be referred to as detected peaks. A detected peak is considered

as a true peak if its ω matches that of some expected peak (i.e., lies on the same ω grid

line). All remaining detected peaks are classified as false peaks.

For simplicity, we evaluate only one peak from each ω grid line. In the case of

multiple peaks on the same ω grid line, we use the peak with the maximum value, or in

the case of two or more equal peaks on the same ω grid line, we use the peak closest to

0σ = . Furthermore, “peaks” detected on the maximum σ grid line are ignored since it

cannot be assured that these are indeed peaks.

 114

6.3.2 Figures of Merit

Each simulation is evaluated to quantify the accuracy and effectiveness of the

spectral estimation technique in finding the expected peaks and estimating their

characteristics. The four figures of merit used for this evaluation are listed as follows.

6.3.2.1 Percent Missed Peaks

#
% 100%

#

of expected peaks of true peaks
Missed Peaks

of expected peaks

 −= × 
 

 (6.1)

6.3.2.2 Percent False Peaks

#

% 100%
#

of false peaks
False Peaks

of possible peaks

 
= × 
 

 (6.2)

where # # #of false peaks of detected peaks of true peaks= − and

#of possible peaks of grid linesω= .

6.3.2.3 Relative RMS Magnitude Error

()
()

2

2

1

#

magnitude
Relative RMS Magnitude Error

of true peaks expected magnitude

∆
= ∑ (6.3)

where magnitude estimated magnitude expected magnitude∆ = −

and where the sum is taken over all true peaks.

 115

6.3.2.4 Relative RMS Damping (σ) Error

()
()

2

2

1

#

damping
Relative RMS Damping Error

of true peaks maximum damping

∆
= ∑ (6.4)

where damping estimated damping expected damping∆ = − ,

maximumdamping = valueof maximum grid lineσ ,

and where the sum is taken over all true peaks.

6.3.3 Test Signals

Three signals comprised of various known frequency and damping components

will be used for the simulations in this chapter. These were chosen to provide a variety

with regard to the number of signal components, closeness of peaks, peak amplitude

ratios, etc. Parameters for these test signals are provided in Table 3-Table 5 and the test

signals are shown in Fig. 43-Fig. 45.

6.3.3.1 Test Signal I

() ()

() ()

()

63
0.0024 256

127
0.0062 256

191
0.004 256

[]

0.75

0.25

j j nn

j j nn

j nn

x n e e e

e e e

e e

π π

π π

π

−

− −

−

= +

+ (6.5)

 116

ω σ A θ

63
256

π

-0.002 1.0
4

π

127
256

π

-0.006 0.75
2

π−

191
256

π

-0.004 0.25 0

Table 3. Parameters for test signal I.

Fig. 43. Test signal I.

 117

6.3.3.2 Test Signal II

() ()

()

() ()

()

()

() ()

() ()

()

30
0.0014 256

40
0.002 256

50
0.0044 256

100
0.003 256

120
0.001 256

125
0.0022 256

195
0.0022 256

225
0.003 256

[]

25

0.75

0.25

10

0.5

j j nn

j nn

j j nn

j nn

j nn

j j nn

j j nn

j nn

x n e e e

e e

e e e

e e

e e

e e e

e e e

e e

π π

π

π π

π

π

π π

π π

π

−

−

− −

−

−

−

− −

−

= +

+

+

+

+

+

+

 (6.6)

ω σ A θ

30
256

π

-0.001 1.0
4

π

40
256

π

-0.002 25.0 0

50
256

π

-0.004 0.75
4

π−

100
256

π

-0.003 0.25 0

120
256

π

-0.001 1.0 0

125
256

π

-0.002 10.0
2

π

195
256

π

-0.002 0.5
2

π−

225
256

π

-0.003 1.0 0

Table 4. Parameters for test signal II.

 118

Fig. 44. Test signal II.

 119

6.3.3.3 Test Signal III

() ()

() ()

()

() ()

() ()

() ()

()

() ()

0.004

10
0.0022 256

31
0.0034 256

34
0.003 256

55
0.0052 256

63
0.0012 256

3 66
0.0054 256

73
0.004 256

95
2 256

[] 0.5

0.75

0.75

0.5

0.25

0.5

0.

n

j j nn

j j nn

j nn

j j nn

j j nn

j j nn

j nn

j j n

x n e

e e e

e e e

e e

e e e

e e e

e e e

e e

e e

π π

π π

π

π π

π π

π π

π

π π

−

− −

−

−

− −

−

−

−

= +

+

+

+

+

+

+

+

+
() ()104

0.0062 2565
j j nne e e

π π− −

 (6.7)

 120

ω σ A θ

0 -0.004 0.50 0

10
256

π

-0.002 0.75
2

π−

31
256

π

-0.003 1.0
4

π

34
256

π

-0.003 0.75 0

55
256

π

-0.005 0.50
2

π−

63
256

π

-0.001 1.0
2

π

66
256

π

-0.005 1.0 3
4

π

73
256

π

-0.004 0.25 0

95
256

π

0 0.50
2

π

104
256

π

-0.006 0.50
2

π−

Table 5. Parameters for test signal III.

 121

Fig. 45. Test signal III.

6.3.4 SNR Considerations

An appropriate amount of noise is added to each of the test signals to achieve the

SNR desired for the particular simulation. The additive noise is white, Gaussian, and

zero-mean. The details of how SNR is computed for these simulations are provided in

the Appendix in Sec. A.3. For multiple-channel simulations, it is possible that the

channels being simulated may contain different SNR values. For the analysis of these

 122

simulations, we will consider the maximum SNR of all channels as the parameter of

interest.

6.3.5 Comment on Grid Points

Empirical evidence suggests that simulated signal components not occurring at a

precise ω grid point may be difficult if not impossible to detect. Therefore, all

simulations being evaluated contain signal components that occur at frequencies

corresponding to grid point values. Fortunately, MRS data sets do not appear to have

similar limitations.

6.3.6 Simulations

A series of 14 different simulation sets was carried out. The results of each set

were stored to a file, and plotted for ease of interpretation. These simulations are related

to measuring the accuracy and efficiency of peak identification using the new techniques

introduced in Chapter 4 and Chapter 5. For each simulation 512N = , the number of

frequency (ω) grid points is 256Nω = , the number of damping (σ) grid points

is 40Nσ = , and the threshold below which all peaks are ignored is

0.025peak threshold= (10% of the smallest signal component in each of the signals

studied). In every case the SNR was calculated based on 768fN = , regardless of the

length M of the filter (see Appendix Sec. A.3).

 123

6.3.6.1 Single-Channel Weighted 2D Spectral Estimation

Nine simulations are related to measuring the accuracy and efficiency of peak

identification using the weighted 2D Capon method, the weighted 2D APES method, and

the combined weighted 2D APES/2D Capon method introduced in Chapter 4. Each of

these simulations used the three test signals, with 10 similar but different noise signals

added at the appropriate SNR. Each simulation pass thus consisted of 30 separate

spectrum determinations using the particular method being studied. For each of the 30

runs the figures of merit as discussed in Sec. 6.3.2 were calculated and then averaged

together to form a combined representation which is then plotted.

6.3.6.2 Multiple-Channel Weighted 2D Spectral Estimation

Five simulation sets are related to measuring the accuracy and efficiency of peak

identification using the weighted signal averaging method and the weighted spectrum

averaging method introduced in Chapter 5 . Each of these simulations used the third test

signal, defined in Eqn. (6.7), with 10 similar but different noise signals added at the

appropriate SNR. Each simulation pass thus consisted of 10 separate spectrum

determinations. In each case the figures of merit as discussed in Sec. 6.3.2 were

calculated and then averaged together to form a combined representation which is then

plotted.

6.4 Simulation Results

The results of the simulations carried out for single-channel weighted 2D spectral

estimation are shown in Fig. 46 - Fig. 55. The results of the simulations carried out for

 124

multiple-channel weighted 2D spectral estimation are shown in Fig. 56 -Fig. 60. In some

situations it may not be possible to compute RMS error terms as specified by Eqn. (6.3)

and Eqn. (6.4) since no peaks were detected. In this case, the data points are not

represented on the plots.

In all cases the four figures of merit are plotted versus SNR where SNR varies

from –18 dB to 48 dB in increments of 6 dB. For convenience, the parameters and α β

are denoted as 1 2α α σ α= + and 1 2β β σ β= + . In the figure legends and captions any of

the parameter values 1 2 1 2, , , and α α β β not shown are zero. The specifications for the

single-channel simulations and corresponding figures are given in Table 6.

Fig. Method K M α β γ

Fig. 46 weighted 2D Capon N variable 0 0

Fig. 47 weighted 2D Capon N variable
2

σ− 0

Fig. 48 weighted 2D Capon 1 variable 0
Fig. 49 weighted 2D Capon N 128 variable variable

Fig. 50 weighted 2D Capon N 128 variable variable
Fig. 51 weighted 2D Capon 1 128 variable
Fig. 52 weighted 2D APES variable 0
Fig. 53 variable variable 128 variable 0
Fig. 54 combined weighted

2D APES / 2D Capon
 128 0 variable

Fig. 55 weighted 2D APES 128 variable

Table 6. Single-channel simulation specifications.

 125

It is recalled that weighted 2D Capon with , 0, and 0K N α β= = = reduces to

conventional 2D Capon and weighted 2D APES with 0β = reduces to conventional 2D

APES.

All of the multiple-channel simulations use conventional 2D Capon with

128M = . Both signal averaging and spectrum averaging are studied for four channels

()4C = . For comparison, the corresponding single-channel case ()1C = is also shown.

The specifications for the multiple-channel simulations and the corresponding figures are

given in Table 7.

Fig. SNR
Channel 1

SNR
Channels 2-4

Channel Gains

Fig. 56 value shown value shown ideal

Fig. 57 value shown value shown – 6 dB ideal
Fig. 58 value shown value shown – 12 dB ideal
Fig. 59 value shown value shown – 18 dB ideal

Fig. 60 value shown value shown ideal and
estimated

Table 7. Multiple-channel simulation specifications.

 126

Fig. 46. Weighted 2D Capon ()K N= for various 'sM (conventional 2D

Capon).

 127

Fig. 47. Weighted 2D Capon (), 2K N σα= = − for various 'sM .

 128

Fig. 48. Weighted 2D Capon ()1K = for various 'sM .

 129

Fig. 49. Weighted 2D Capon (), 128K N M= = for various 'sα and 'sβ .

 130

Fig. 50. Weighted 2D Capon (), 128K N M= = for various 'sα and 'sβ .

 131

Fig. 51. Weighted 2D Capon ()1, 128K M= = for various 'sβ .

 132

Fig. 52. Weighted 2D APES for various 'sM (conventional 2D APES).

 133

Fig. 53. Various weighted 2D spectral estimators for 128M = .

 134

Fig. 54. Combined weighted 2D APES / 2D Capon ()128M = for

various 'sγ .

 135

Fig. 55. Weighted 2D APES ()128M = for various 'sβ .

 136

Fig. 56. Multiple-channel conventional 2D Capon (equal SNR’s).

 137

Fig. 57. Multiple-channel conventional 2D Capon (SNR’s reduced by 6 dB
for three channels).

 138

Fig. 58. Multiple-channel conventional 2D Capon (SNR’s reduced by 12 dB
for three channels).

 139

Fig. 59. Multiple-channel conventional 2D Capon (SNR’s reduced by 18 dB
for three channels).

 140

Fig. 60. Multiple-channel conventional 2D Capon (equal SNR’s – ideal gains
and estimated gains).

 141

6.5 Peak Identification Quality Measure

The simulations shown in Fig. 46-Fig. 60 demonstrate how certain parameter

choices affect the figures of merit selected for study. In some cases, it is observed that

parameter choices that yield a decrease in % missed peaks will cause an increase in %

false peaks. To better understand this influence, and to measure the quality of a

particular set of parameter choices a peak identification quality measure (PIQM) is

defined:

() ()100% % 100% %

100% 100%

missed peaks false peaks
PIQM

− −   
= ×   
   

 (6.8)

This represents the fraction of known peaks detected multiplied by the fraction of known

"non-peaks" not detected. The value of PIQM ranges from 0 to 1, with 1PIQM =

indicating perfect peak identification with no missed peaks and no false peaks.

Conversely, for the case of 100 % missed peaks and 100 % false peaks, 0PIQM = .

It is useful to plot PIQM vs. SNR to compare the performance of various

parameter choices in terms of their peak identification capabilities. It is also useful to

compare the total area under the PIQM curve to gauge the performance over the entire

range of SNRs. A plot of PIQM vs. SNR for selected simulations shown in Fig. 49-Fig.

51 is shown in Fig. 61.

 142

Fig. 61. PIQM plot vs. SNR for 2D Capon and selected weighted 2D Capon
methods with 128M = .

6.6 Computation Time Results

We will now extend our evaluation to consider the timing performance of the new

two-dimensional spectral estimation techniques, since this is also a consideration when

deciding how to best implement two-dimensional spectral estimation for MRS. The goal

of the timing simulations will be to determine the relative timing performance of the

various weighted 2D Capon and the weighted 2D APES techniques as a function of filter

size (M).

 143

For the timing simulations a Dell Inspiron® 1100 laptop computer, with an Intel

Celeron® CPU with a clock rate of 2 GHz, running Microsoft Windows XP® version

2002, configured with 384 Mbytes of RAM was used. The algorithms were implemented

in MATAB ® 6.5, release 13. We used the test signal defined by Eqn. (6.7) with

18SNR= dB and 5 noise instances for filter sizes { }32,64,128,256M = and the

algorithm parameters shown in Table 8. Results were averaged over 5 runs and then

plotted in Fig. 62 and Fig. 63.

Algorithm
1α 2α 1β 2β

Weighted 2D Capon (K N=) 0 0 0 0
Weighted 2D Capon (K N=) 0 0 0.001 0
Weighted 2D Capon (K N=) -0.5 0 0 0
Weighted 2D Capon (K N=) -0.5 0 0.001 0
Weighted 2D Capon (1K =) 0 0
Weighted 2D Capon (1K =) 0.001 0

Combined weighted
2D APES / 2D Capon (0.5γ =)

 0 0

Combined weighted
2D APES / 2D Capon (0.5γ =)

 0.001 0

Combined weighted
2D APES / 2D Capon (0.5γ =)

 -0.5 0

Table 8. Parameters for timing simulation.

It should be noted that the particular choice of parameter values does not

influence computation time (except in those cases where one of the values is –0.5).

Rather, the results depend on whether the parameters are constant or functions of σ (see

Table 1 in Chapter 4). It is also noted that in Fig. 62 the case K N= , 2α σ≠ − ,

 144

constantβ = corresponds, in terms of computation time, to conventional 2D Capon.

Fig. 62. Weighted 2D Capon timing vs. filter length, M .

 145

Fig. 63. Combined weighted 2D APES / 2D Capon timing vs. filter length, M .

In analyzing the data for the weighted 2D Capon method, it has been determined

that the two new techniques designed with computational time as a consideration (1K =

and , 2K N σα= = −) produce a reduction in computation time, relative to conventional

2D Capon, ranging from about 35% for 32M = to about 17% for 256M = . On the

other hand, the remaining three new techniques require an increase in computation time

ranging from about 0-30% for 32M = to about 86-107% for 256M = . For the

combined weighted 2D APES / 2D Capon method (including conventional 2D APES) all

techniques require roughly the same computation time.

 146

6.7 Discussion of Results

The simulations just completed provide some truly interesting findings. The

signals used for the simulations, with appropriately scaled noise provide a controlled

environment from which we can measure how well the new proposed algorithms

perform. We wish to infer from the results of the simulations how these algorithms

might perform on MRS data sets; therefore the analysis of these simulations holds great

significance. We will now briefly review the simulations represented by Fig. 46 - Fig.

63.

6.7.1 Observations from Single-Channel Simulations

Certain conclusions can be drawn from the simulations. These relate to the

various performance trade-offs with respect to the figures of merit considered (see Eqn.

(6.1) – Eqn.(6.4)): % missed peaks, % false peaks, relative RMS magnitude error,

relative RMS damping error, and execution time.

Fig. 46, Fig. 47, Fig. 48, and Fig. 52 indicate the effect of filter length, M , on

performance:

• Fig. 46. Weighted 2D Capon ()K N= for various 'sM (conventional 2D Capon).

• Fig. 47. Weighted 2D Capon (), 2K N σα= = − for various 'sM .

• Fig. 48. Weighted 2D Capon ()1K = for various 'sM .

• Fig. 52. Weighted 2D APES for various 'sM (conventional 2D APES).

 147

For all four of these methods, in general:

1. As M increases, % missed peaks and relative RMS damping error

decrease.

2. As M increases, % false peaks and relative RMS magnitude error first

decrease and then increase, suggesting an optimal mid-range value for M

with respect to these measures.

It is also observed that when using weighted 2D Capon()K N= , , 02
σα β= − = ,

false peaks are virtually completely eliminated. In addition, for conventional 2D APES,

other studies [2] have shown that relative RMS magnitude error may be significantly

reduced if better estimates for damping are available from some other method, i.e., 2D

Capon.

Fig. 53 compares these four methods for 128M = . The results here should be

considered in conjunction with the computation time results.

The three 2D Capon methods generally perform better than the 2D APES method,

and require significantly less computation time. However, in light of the previous

comment regarding the use of 2D APES along with better damping estimates, 2D APES

may be appropriate if reduced relative RMS magnitude error is critical. The two new

weighted 2D Capon methods require less computation time than conventional 2D Capon.

 148

In addition these methods produce considerably fewer false peaks. With regard to the

other measures they perform either slightly better, slightly worse, or comparable to the

2D Capon method.

Fig. 49 and Fig. 50 indicate the effect of the parameters of α and β on the

performance of the weighted 2D Capon ()K N= method for 128M = . Fig. 49 shows

that certain parameter choices can result in a significant reduction in % missed peaks, but

at the expense of increasing % false peaks and relative RMS magnitude error. Fig. 50

shows that certain parameter choices can lead to one or more of the following: reduced

% false peaks, reduced relative RMS magnitude error for low SNRs, reduced relative

RMS magnitude error for high SNRs, and reduced relative RMS damping error for low

SNRs.

Fig. 51 indicates the effect of the parameter β on the performance of the

weighted 2D Capon ()1K = method for 128M = . Here, it is shown that certain

parameter choices can result in significant reduction in % missed peaks, but at the

expense of increased % false peaks and greater relative RMS magnitude error.

Fig. 54 indicates the effect of the parameter γ on the performance of the

combined weighted 2D APES / 2D Capon method for 0 and 128B M= = . As expected,

as γ varies from 0 to 1, the performance measures generally show a gradual transition

from those of the conventional 2D Capon method to those of the conventional 2D APES

 149

method. However, with respect to relative RMS magnitude error at high SNR’s,

intermediate 'sγ outperform both 0γ = and 1γ = , suggesting an optimal mid-range

value for γ in this regard.

Fig. 55 indicates the effect of parameter β on the performance of the weighted

2D APES method for 128M = . It is noted that certain parameter choices can result in a

significant reduction in % false peaks and/or relative RMS magnitude error.

Fig. 61 shows that for the weighted 2D Capon method with K=N certain

parameter combinations lead to improved peak identification as measured by the PIQM.

In addition, weighted 2D Capon with K=1 outperforms conventional 2D Capon, again as

measured by the PIQM.

In summary, it is seen that no one method is best in all respects. The choice of

which method to use in a specific application is thus dictated by the most critical aspect

of that application, for example, the ability to find as many true peaks as possible, the

accuracy of the magnitude estimates of those peaks, or computation time.

6.7.2 Observations from Multiple-Channel Simulations

With respect to computation time, signal averaging requires essentially the same

amount of time as would be required by the same 2D estimation method for one channel.

On the other hand, spectrum averaging requires C times as much computation time as

signal averaging.

 150

Fig. 56 (equal noise variances on all channels) shows that signal averaging

outperforms single-channel processing with respect to all measures, as would be

expected. On the other hand, spectrum averaging is no better than single-channel

processing, with one exception: with respect to % false peaks, spectrum averaging

outperforms both signal averaging and single-channel processing. Thus, because of its

poor performance and greater computation time, spectrum averaging would not be

appropriate unless the elimination of false peaks was the most critical requirement of the

given application.

Fig. 57 - Fig. 59 show that for unequal channel noise variances (with one

“dominant” channel having a larger SNR than the rest) signal averaging outperforms

spectrum averaging with respect to all measures. Furthermore, as the dominant channel

becomes “more dominant,” the performance of both signal averaging and spectrum

averaging gradually converge to the performance of the single channel processing.

Fig. 60 shows that the use of estimated channel gains instead of ideal channel

gains leads to virtually no performance degradation, with one exception: for low SNR’s

(below about 10 dB) the relative RMS magnitude error is greater using estimated channel

gains.

6.7.3 Observations from Computational Time Simulations

Computational time has been examined in Fig. 62 and Fig. 63. For all proposed

methods examined, the filter size, M , is quite obviously the single most important

 151

parameter affecting execution time. Another major point to note is that the weighted 2D

Capon technique is much faster than the weighted 2D APES technique or the combined

weighted 2D APES / 2D Capon technique. For the weighted 2D Capon technique,

several computational efficiencies have been measured, and based on performance

criteria established for the particular 2D spectral estimation data set, these techniques

may provide acceptable performance with increased speed.

6.8 Summary

In this chapter we have performed a series of extensive simulations on test signals

consisting of mixtures of damped sinusoids with different SNRs. In this way we were

able to provide precisely controlled inputs, and evaluate the accuracy and efficiency of

the new 2D spectral estimation techniques that have been proposed in Chapters 4 and 5.

We have shown through these simulations that the proposed techniques provide improved

performance when compared to standard 2D Capon and 2D APES under certain

conditions. In the next chapter we will apply these new techniques to MRS signal

processing.

 152

C h a p t e r 7

7 2D Spectral Estimation Methods Applied to MRS Data

Having completed a thorough introduction in Chapter 4 of the weighted 2D

Capon, weighted 2D APES, and combined weighted 2D APES / 2D Capon methods; and

the introduction in Chapter 5 of the new multiple-channel 2D spectral estimation

techniques utilizing spectrum averaging and signal averaging; followed by an extensive

set of simulations in Chapter 6 demonstrating the effectiveness of these new methods, we

now apply these techniques to MRS signal processing. In this chapter we provide

several examples of the new processing techniques applied to MRS data acquired from

phantoms containing solutions of known concentrations of metabolites, and to a limited

set of in vivo data sets acquired from human volunteers. Through these examples, we

provide an evaluation of the performance of various 2D spectral estimation techniques

from a variety of viewpoints.

MRS provides a noninvasive means of determining chemical information from a

region of interest, often located in the human brain. It has continued to grow as a

successful clinical application[78]-[85] and has become vitally important for the

diagnosis, detection and effective management of a number of diseases. The

combination of MRI and MRS has almost eliminated the need to perform exploratory

surgery as a means of clinical diagnosis. The techniques proposed in Chapter 4 and

Chapter 5 hold great promise to further improve MRS as a clinical application.

 153

The reproducibility and accuracy of clinical MRS examinations has been the

subject of several studies[86]-[88]. One parameter of great interest to the clinician is T2
*,

the effective decay rate of transverse magnetization. Changes in T2
* provide useful

diagnostic information[89]-[92] for a number of diseases and also provide some

indication of functional activity.

7.1 Conventional 2D Capon and 2D APES Methods Applied to MRS Phantom Data

Conventional 2D Capon and conventional 2D APES provide improved spectral

estimates compared to those provided from conventional MRS absorption spectra via

Fourier transformation. Spectral peaks that are close in frequency are more easily

separated using conventional 2D Capon and conventional 2D APES. The accuracy of

these spectral estimates is improved as well since, unlike one-dimensional methods based

on the Fourier transform, true amplitudes are not masked by the effect of damping.

The damping information provided by conventional 2D Capon and conventional

2D APES may be of significant clinical utility. Hurd, et al., have studied T2
*

characteristics for a number of metabolites in the human brain[86]. The spectral

estimates provided by conventional 2D Capon and conventional 2D APES provide a

means of estimating T2
*, the effective decay rate of transverse magnetization, for several

metabolites of interest[74].

Empirical results have shown that conventional 2D Capon analysis provides a

more accurate estimate of frequency and damping since it provides fine resolution to

 154

resolve closely spaced peaks, while conventional 2D APES provides a more accurate

estimate of the amplitude for a given frequency and damping factor [58]. Stoica and

Sundin propose that using conventional 2D Capon first to find the peaks, then using

conventional 2D APES to estimate the amplitudes provides benefits compared to using

just one technique or the other[2]. In Sec. 4.7 we proposed a hybrid technique that

combines the two methods.

Conventional 2D Capon and conventional 2D APES can be used to compute two-

dimensional spectral estimates on the same raw data acquired to generate the

conventional MRS absorption plot shown in Fig. 29. Fig. 65-Fig. 68 compare various

plots of a conventional 2D Capon spectrum and a conventional 2D APES spectrum

computed using 1792, , 40, 0.02
NN N N peak thresholdω σ= = = = and 256M = from

the GE MRS phantom.

The MRS experiment for this comparison was performed using a GE 1.5T MR

scanner and a single-channel head coil with PRESS on an 8 cc volume, with a TE of

35msec and a TR of 1500msec, 2 NEX, 8 reference frames and 16 water-suppressed

(CHESS) frames. The total scan time was 1 minute and 18 seconds. The conventional

MRS absorption spectrum from the GE MRS phantom for this scan is shown in Fig. 64.

 155

Fig. 64. MRS absorption spectrum from GE MRS phantom using single-
channel head coil.

 156

Fig. 65. Conventional 2D Capon (top) and conventional 2D APES (bottom)
spectra obtained from the GE MRS phantom.

 157

Fig. 66. Conventional 2D Capon (top) and conventional 2D APES (bottom)
peak-enhanced spectra obtained from the GE MRS phantom.

 158

Fig. 67. Conventional 2D Capon (top) and conventional 2D APES (bottom)
contour plots obtained from the GE MRS phantom.

 159

Fig. 68. Conventional 2D Capon (top) and conventional 2D APES (bottom)
maximum peak projections obtained from the GE MRS phantom.

m
ax

σ
m

ax
σ

 160

It can be seen clearly from Fig. 68 that the conventional 2D Capon method finds

two peaks that are missed by the conventional 2D APES method. In addition, the 2D

Capon method requires considerably less computation time.

7.2 Weighted 2D Capon Method

7.2.1 MRS Phantom Data

Simulations from Chapter 6 showed that weighted 2D Capon analysis performs

better at finding peaks than standard 2D Capon analysis in certain cases. In this example,

we use the phase-corrected, water-suppressed MRS signal with residual water removed

obtained during an MRS experiment from the GE MRS phantom to compare weighted

2D Capon analysis with 2
σβ = − to weighted 2D Capon analysis with 0.004β = , both

methods using 1792, , 40, 0.02
NN N N peak thresholdω σ= = = = and 256M = . The

MRS experiment for this comparison was the same as that shown in Fig. 64 and

described in Sec. 7.1. Fig. 69-Fig. 72 show comparisons of how effective these two

weighted 2D Capon techniques are on the data acquired from this scan.

 161

Fig. 69. Weighted 2D Capon with 2
σβ = − (top) and weighted 2D Capon

with 0.004β = (bottom) spectra obtained from the GE MRS phantom.

 162

Fig. 70. Weighted 2D Capon with 2
σβ = − (top) and weighted 2D Capon with

0.004β = (bottom) peak-enhanced spectra obtained from the GE MRS phantom.

 163

Fig. 71. Weighted 2D Capon with 2
σβ = − (top) and weighted 2D Capon

with 0.004β = (bottom) contour plots obtained from the GE MRS phantom.

 164

Fig. 72. Weighted 2D Capon with 2
σβ = − (top) and weighted 2D Capon with

0.004β = (bottom) maximum peak projections obtained from the GE MRS phantom.

m
ax

σ
m

ax
σ

 165

It is seen that in terms of identifying peaks both of these methods perform in a

similar fashion. Using 2
σβ = − requires more than double the computation time than

using 0.004β = , which requires the same computation time as conventional 2D Capon.

Comparing the results of conventional 2D Capon and 2D APES from Fig. 68 with the

weighted 2D Capon methods shown in Fig. 72 it is seen that the two new weighted 2D

Capon methods significantly outperform conventional 2D Capon and 2D APES in terms

of identifying peaks.

7.2.2 In Vivo Data

We now compare weighted 2D Capon analysis with 2
σβ = − to conventional

2D Capon analysis for an in vivo MRS data set obtained from the brain of a healthy

human volunteer. The MRS experiment for this comparison was performed using a GE

1.5T MR scanner and a single-channel head coil with PRESS on an 8 cc volume, with a

TE of 35msec and a TR of 1500msec, 2 NEX, 8 reference frames and 64 water-

suppressed (CHESS) frames. The total scan time was 3 minutes and 42 seconds. For the

comparison, we selected 1792, ,2
NN Nω= = 40, 0.0N peak thresholdσ = = and

256M = for both the weighted 2D Capon analysis and conventional 2D Capon analysis.

The data set from which spectral estimates were created was the phase-corrected, water-

suppressed MRS signal with residual water removed. The conventional MRS absorption

spectrum from the brain of a human volunteer is shown in Fig. 73. Fig. 74-Fig. 77 show

 166

comparisons of how effective these two weighted 2D Capon techniques are on the data

acquired from this scan.

Fig. 73. MRS absorption spectrum from human volunteer using single-

channel head coil.

 167

Fig. 74. Conventional 2D Capon (top) and weighted 2D Capon

with 2
σβ = − (bottom) spectra obtained from the brain of a human volunteer.

 168

Fig. 75. Conventional 2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom)

peak-enhanced spectra obtained from the brain of a human volunteer.

 169

Fig. 76. Conventional 2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom)

contour plots obtained from the brain of a human volunteer.

 170

Fig. 77. Conventional 2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom)

maximum peak projections obtained from the brain of a human volunteer.

m
ax

σ
m

ax
σ

 171

 Using weighted 2D Capon with 2
σβ = − finds many more peaks than

conventional 2D Capon, however weighted 2D Capon with 2
σβ = − requires more than

double the computation time.

7.2.3 Weighted 2D Capon Execution Time Considerations for MRS Phantom Data

One aspect of the clinical utility of MRS is related to the time it takes to acquire

data from a patient, and then to properly analyze this data. Because the scan TR for most

spectroscopy scans is long, anything that can potentially shorten scan time to reduce the

length of the scan is of vital importance[93]. Additionally, any MRS processing time

reductions may also provide clinical benefits, especially in the case of an emergency

when the speed of obtaining an accurate diagnosis may provide a life-saving benefit.

To study the relationship between processing time and the ability to detect

spectral peaks, we acquired MRS data from a GE MRS phantom using a single-channel

head coil with PRESS on an 8 cc volume, with a TE of 35msec and a TR of 1500msec, 2

NEX, 8 reference frames and 16 water-suppressed (CHESS) frames. The total scan time

was 1 minute and 18 seconds. The MRS experiment for this comparison was the same as

that shown in Fig. 64 and described in Sec. 7.1. Using the phase-corrected water-

suppressed MRS data with residual water removed we tested three techniques for filter

length M varying from 100 to 400 in increments of 50. These were conventional 2D

Capon, weighted 2D Capon with 1, 0.008K β= = , and weighted 2D Capon with

 172

, 0.008K N β= = . In all cases we used 1024, 2048, 40N N Nω σ= = = , and a peak

threshold equal to 5% of the maximum peak detected.

For the timing measurements, we used a personal computer manufactured by

Milwaukee PC (Milwaukee, WI, USA) configured with an Intel Pentium III® CPU with a

clock rate of 1 GHz, running Microsoft Windows ME® version 4.90.3000, configured

with 128 Mbytes of RAM. The algorithms were implemented in MATAB® 5.3, release

11.1. Fig. 78 summarizes the results, showing the number of known peaks[2] detected

versus execution time. It is seen that both of the new weighted 2D Capon methods

outperform the conventional 2D Capon method. Specifically, for a fixed execution time

the new methods identify more known peaks. Alternatively, to find a fixed number of

known peaks the new methods require less execution time.

 173

Fig. 78. Effectiveness of peak detection using weighted 2D Capon analysis.

7.2.4 Performing 2D Spectral Estimation on MRS Phantom Data with no Phase

Correction

We will now examine how conventional 2D Capon analysis works on MRS data

sets that have not been phase-corrected and for which residual water has not been

removed. In this example, we acquired MRS data from the GE MRS phantom and used

conventional 2D Capon analysis with 1792, , 40,2
NN N Nω σ= = =

0.0peak threshold= and 256M = . The MRS experiment for this comparison was

 174

performed using a 1.5T GE MR scanner and a single-channel head coil with PRESS on

an 8 cc volume, with a TE of 35msec and a TR of 1500msec, 2 NEX, 8 reference frames

and 16 water-suppressed (CHESS) frames. The total scan time was 1 minute and 18

seconds. The MRS experiment for this comparison was the same as that shown in Fig. 64

and described in Sec. 7.1.

In Fig. 79 we compare the magnitude of Fourier transformed water-suppressed

MRS data with and without phase-correction and residual water removal. It can be seen

in this example that the presence of residual water interferes substantially with the ability

to resolve peaks when using the Fourier transform. In Fig. 80-Fig. 83 we use the

conventional 2D Capon techniques on the same data sets yielding the results shown in

Fig. 79 to observe how effective the conventional 2D Capon method is in resolving

metabolite peaks in the presence of residual water. These figures show that for

metabolites of interest the conventional 2D Capon method is able to resolve metabolite

peaks from the data set that has not been phase corrected and from which residual water

has not been removed. However, on closer examination of Fig. 83 we note a slight shift

in the frequency of these peaks for data without phase-correction and residual water

removal.

 175

Fig. 79. Fourier transform of water-suppressed MRS data with (top) and without
(bottom) phase-correction and residual water removal.

 176

Fig. 80. Conventional 2D Capon analysis of water-suppressed MRS data with (top) and
without (bottom) phase-correction and residual water removal.

 177

Fig. 81. Conventional 2D Capon peak-enhanced spectra of water-suppressed MRS data
with (top) and without (bottom) phase-correction and residual water removal.

 178

Fig. 82. Conventional 2D Capon contour plots with (top) and without
(bottom) phase-correction and residual water removal.

 179

Fig. 83. Conventional 2D Capon maximum peak projections of water-suppressed MRS
data with (top) and without (bottom) phase-correction and residual water removal.

m
ax

σ

m
ax

σ

 180

7.3 Multiple-Channel 2D Spectral Estimation

We have proposed two main techniques for multiple-channel 2D spectrum

estimation of MRS data: signal averaging and spectrum averaging. These techniques

have been examined in Chapter 6 through extensive simulations (see Fig. 56 - Fig. 60).

We would now like to compare and contrast how these two techniques work on data

acquired from MRS experiments. In our first set of experiments, we study the techniques

applied to data acquired from an MRS phantom. We then apply spectrum averaging and

signal averaging to in vivo MRS data acquired from the brain of a human volunteer.

It should be pointed out that the 2D spectral estimation techniques used in this

section used estimated channel gains ('sg) from observed data as described in Sec. 5.4.

Also, the noise variances ('sρ) as described in Sec. 5.5 were estimated from the last 248

samples of each observed signal where the length of the signal is: 2048fN = .

7.3.1 Conventional 2D Capon Analysis of MRS Phantom Data

Simulations from Chapter 6 showed that two-dimensional spectral estimation

techniques based on spectrum averaging and signal averaging are both effective although

signal averaging usually appeared to be the method of choice. We now compare

spectrum averaging and signal averaging techniques used on MRS data acquired using an

eight-channel domed head coil, manufactured by MRI Devices, Inc. (Waukesha, WI,

USA) from a GE MRS phantom. The scan was performed using a GE 1.5T MR scanner

and a PRESS sequence on an 8 cc volume, with a TE of 35msec and a TR of 1500msec, 2

 181

NEX, 8 reference frames and 16 water-suppressed (CHESS) frames. The total scan time

was 1 minute and 18 seconds. The conventional MRS absorption spectrum from the GE

MRS phantom for this scan is generated by the method described by Frigo, Heinen, et

al.,[3],[4] and is shown in Fig. 84. An MRS absorption spectrum is generated for each of

the 8 channels and shown in Fig. 85.

Each channel was processed independently to apply the appropriate phase-

correction and residual water removal on the water-suppressed MRS data obtained during

the MRS experiment. Conventional 2D Capon analysis with 1792, ,2
NN Nω= =

40, 0.0N peak thresholdσ = = and 256M = is then used with spectrum averaging and

signal averaging to compute the results. Fig. 85-Fig. 89 show comparisons between using

spectrum averaging and signal averaging techniques to compute 2D spectral estimates on

the data acquired from this scan.

Fig. 84. MRS absorption spectrum from GE MRS phantom using 8-channel
head coil.

 182

Fig. 85. “Stacked” MRS absorption spectra from each receive coil for GE
MRS phantom.

 183

Fig. 86. Signal averaging (top) and spectrum averaging (bottom) used with
conventional 2D Capon analysis on a GE MRS phantom.

 184

Fig. 87. Peak-enhanced spectra obtained by signal averaging (top) and spectrum
averaging (bottom) with conventional 2D Capon analysis on a GE MRS phantom.

 185

Fig. 88. Contour plots obtained by signal averaging (top) and spectrum averaging
(bottom) with conventional 2D Capon analysis on a GE MRS phantom.

 186

Fig. 89. Maximum peak projections obtained by signal averaging (top) and spectrum
averaging (bottom) with conventional 2D Capon analysis on a GE MRS phantom.

m
ax

σ
m

ax
σ

 187

It is observed from these comparisons that signal averaging and spectrum

averaging both provide suitable 2D spectral estimates for the data obtained from the GE

MRS phantom. The signal averaging technique finds more peaks and is approximately 8

times faster.

7.3.2 Conventional 2D Capon Analysis of In Vivo Data

We now compare spectrum averaging and signal averaging techniques used on in

vivo MRS data acquired from the brain of a human volunteer with an eight-channel

domed head coil, manufactured by MRI Devices, Inc. (Waukesha, WI, USA). The scan

was performed using a GE 1.5T MR scanner and a PRESS sequence on an 8 cc volume,

with a TE of 144msec and a TR of 1500msec, 8 NEX, 2 reference frames and 16 water-

suppressed (CHESS) frames. The total scan time was 3 minutes and 48 seconds. The

conventional MRS absorption spectrum for this scan is generated by the method

described by Frigo, Heinen, et al.,[3],[4] and is shown in Fig. 90. An MRS absorption

spectrum is generated for each of the 8 channels and shown in Fig. 91.

Each channel was processed independently to apply the appropriate phase-

correction and residual water removal on the water-suppressed MRS data obtained during

the MRS experiment. Conventional 2D Capon analysis with 1792, ,2
NN Nω= =

40, 0.0N peak thresholdσ = = and 256M = is then used with spectrum averaging and

signal averaging to compute the results. Fig. 92 - Fig. 95 show comparisons between

 188

using spectrum averaging and signal averaging techniques to compute 2D spectral

estimates on the data acquired from this scan.

Fig. 90. MRS absorption spectrum from human volunteer using eight-channel
head coil.

 189

Fig. 91. “Stacked” MRS absorption spectra from each receive coil from brain
of human volunteer.

 190

Fig. 92. Signal averaging (top) and spectrum averaging (bottom) used with
conventional 2D Capon analysis on the brain of a human volunteer.

 191

Fig. 93. Peak-enhanced spectra obtained by signal averaging (top) and spectrum
averaging (bottom) with conventional 2D Capon analysis on the brain of a human

volunteer.

 192

Fig. 94. Contour plots obtained by signal averaging (top) and spectrum averaging
(bottom) with conventional 2D Capon analysis on the brain of a human volunteer.

 193

Fig. 95. Maximum peak projections obtained by signal averaging (top) and spectrum
averaging (bottom) with conventional 2D Capon analysis on the brain of a human

volunteer.

m
ax

σ
m

ax
σ

 194

As was observed from our multiple-channel studies using the GE MRS phantom

in Sec. 7.3.1 we observe from these comparisons that the signal averaging technique finds

more peaks than the spectrum averaging technique and has the additional benefit that it is

approximately 8 times faster when using an 8-channel receive coil.

7.3.3 Weighted 2D Capon Analysis of MRS Phantom Data

We now compare using multiple-channel conventional 2D Capon analysis with

multiple-channel weighted 2D Capon analysis. In both cases, signal averaging will be

used on MRS data acquired using an eight-channel domed head coil, manufactured by

MRI Devices, Inc. (Waukesha, WI, USA) from a GE MRS phantom. The scan was

performed using a GE 1.5T MR scanner and a PRESS sequence on an 8 cc volume, with

a TE of 35msec and a TR of 1500msec, 2 NEX, 8 reference frames and 16 water-

suppressed (CHESS) frames. The total scan time was 1 minute and 18 seconds. The

MRS experiment for this comparison was the same as that shown in Fig. 84 and

described in Sec. 7.3.1.

Conventional 2D Capon analysis with 1792N = , , 40,2
NN Nω σ= =

0.0peak threshold= and 256M = is compared to weighted 2D Capon analysis with

1792, ,2
NN Nω= = 40, 0.0N peak thresholdσ = = , 2

σβ = − , and 256M = . Fig. 96 -

Fig. 99 show comparisons between the conventional 2D Capon technique and the

weighted 2D Capon technique for the multiple-channel data acquired from this scan.

 195

Fig. 96. 8-channel signal averaging for conventional 2D Capon (top) and

weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS phantom.

 196

Fig. 97. Peak-enhanced spectra from 8-channel signal averaging for conventional 2D

Capon (top) and weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS phantom.

 197

Fig. 98. Contour plots from 8-channel signal averaging for conventional 2D Capon (top)

and weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS phantom.

 198

Fig. 99. Maximum peak projections from 8-channel signal averaging for conventional

2D Capon (top) and weighted 2D Capon with 2
σβ = − (bottom) on the GE MRS

phantom.

m
ax

σ
m

ax
σ

 199

From Fig. 99 we observe that the 2D weighted Capon technique identifies more

peaks from this brain study than the conventional 2D Capon technique. It should be

pointed out, however, that the 2D weighted Capon technique chosen for this evaluation is

more than twice as slow in terms of execution speed.

7.4 Summary

In this chapter we have examined a number of examples of applying 2D spectral

estimation techniques to MRS data processing. First, we compared conventional 2D

Capon analysis to conventional 2D APES analysis. Then, we examined how weighted

2D Capon analysis performed on MRS data acquired using a single-channel head coil

from the GE MRS phantom and from the brain of a healthy volunteer. We further

extended our investigation to demonstrate how certain weighted 2D Capon techniques

can identify more peaks in less execution time than conventional 2D Capon analysis. We

also investigated how well conventional 2D Capon analysis performs on MRS data sets

that have not been phase-corrected and from which residual water was not removed.

For multiple-channel MRS data sets, we compared signal averaging and spectrum

averaging using conventional 2D Capon analysis on MRS data acquired using an eight-

channel head coil. Both techniques seem to work well on data from the GE MRS

phantom and from the brain of a healthy human volunteer. Signal averaging seems to

identify more peaks and requires less computational processing. We extended our

investigation to demonstrate how multiple-channel weighted 2D Capon techniques work

with signal averaging.

 200

The application of the new 2D spectral estimation techniques to data acquired

during MRS scans seems to offer the same benefits as determined from the simulations

performed in Chapter 6, namely, increased peak detection capabilities and/or reduced

execution time for certain cases. We have shown through the examples in this chapter

that these new 2D spectral estimation techniques can be used effectively for MRS

applications and show great promise for future integration into common clinical practice.

 201

C h a p t e r 8

8 Summary and Conclusions

 The motivation for the research discussed in this dissertation was initially to find

improved signal processing techniques for MRS to enable the non-invasive measurement

of blood glucose in vivo for improved diabetes disease management and control. The

2D spectral estimation techniques that evolved out of this research, however, apply to

typical clinical MRS applications as well, so the results of this research have a much

broader impact than was originally intended. At this time, we provide a brief summary

and offer conclusions related to the new signal processing techniques introduced for 2D

spectral estimation and for their application to MRS data.

8.1 Summary

We began our discussion with a brief review of the principles of nuclear magnetic

resonance in Chapter 2. The remarkable scientific discoveries that were made long ago

have provided a foundation upon which MR scanners have been created, and the impact

of these medical imaging machines to the practice of modern medicine has been

extraordinary.

 In Chapter 3 we examined SVQ proton MRS which is typically used in a clinical

setting to quantify metabolites in the human brain. We provided a comprehensive review

of the signal processing algorithms that are typical for MRS SVQ scans and carefully

 202

documented each processing step. A significant contribution of our work has been to

implement efficient algorithms in MATLAB to create a conventional MRS absorption

spectrum from data acquired during an SVQ study for both single-channel and multiple-

channel SVQ. These algorithms are included in the Appendix, Sec.A.4.

In Chapter 4 we introduced several new nonparametric two-dimensional spectral

estimation techniques: the weighted 2D Capon method, the weighted 2D APES method,

and the combined weighted 2D APES / 2D Capon method. Each of these techniques

provides spectral estimates of damping as well as frequency, making them useful for

MRS data analysis. We show through extensive simulations carried out in Chapter 6 that

these new techniques offer improved performance in terms of peak identification ,

estimation accuracy and/or computation time over conventional 2D Capon and 2D APES

in certain cases. MATLAB implementations of these algorithms are included in the

Appendix, Sec. A.5.

In Chapter 5 we introduced two new algorithms for multiple-channel 2D spectral

estimation: signal averaging and spectrum averaging. Each of these techniques provide a

means of creating a 2D spectral estimate from multiple-channel MRS data. We also

introduced a method to optimally estimate the relative channel gains from observed data,

which provides great benefit when the ideal gains for each channel are not known. This

technique is potentially applicable to a variety of other problems as well. We show

through extensive simulations carried out in Chapter 6 the merits of these new

techniques. MATLAB code for the simulations is included in the Appendix, Sec. A.6.

 203

In Chapter 6, we evaluated the proposed new techniques introduced in Chapter 4

and Chapter 5 by performing an extensive set of simulations. The motivation for

performing these simulations was to provide a controlled set of conditions, and then to

compare and contrast the performance of these new algorithms for several different

scenarios. In this chapter we also introduced the concepts of peak spectrum and

projected peak spectrum. While these are rather simple ideas, they greatly enhance the

user's ability to interpret the data.

In Chapter 7 we applied the new techniques proposed in Chapters 4 and 5, and

simulated in Chapter 6, to data collected during MRS experiments. Examples were

provided demonstrating how these techniques work in MRS studies involving phantoms

with known concentrations of metabolites, as well as in a limited number of in vivo MRS

studies involving human volunteers.

8.2 Conclusions

In the case of single-channel 2D spectral estimation, extensive simulations have

led to the following conclusions for the situations studied:

1.) For the weighted 2D Capon and weighted 2D APES methods, and their

conventional counterparts, the filter length M should generally be made

as large as possible to reduce missed peaks and false peaks. On the other

hand, intermediate values of M lead to reduced magnitude and damping

estimation errors.

 204

2.) The weighted 2D Capon method for 1K = and for , 2K N σα= = −

provides computation time savings of 17-35% as compared to the

conventional 2D Capon method for the cases studied.

3.) The parameter choices in the weighted 2D Capon and weighted 2D APES

methods offer various trade-offs in the four performance measures studied.

By proper choice of these parameters, one may obtain improvement in any

one of the performance measures, as compared to the conventional

methods. However, this is usually accompanied by degradation in one or

more of the remaining measures. In some of the cases studied the new

methods required no additional computation time as compared to the

corresponding conventional methods, while in other cases the computation

time is more than doubled.

4.) As the parameter γ varies from 0 to 1, the performance of the combined

2D APES / 2D Capon method gradually transitions from that of the

weighted 2D Capon method to that of the weighted 2D APES method. In

every case the computation time equals that of the conventional 2D APES

method.

5.) It is clear that no one method is best for all situations. In a given

application it is necessary to decide what performance measures are most

critical and how much computation time is acceptable and then to choose

 205

the method and associated parameters accordingly. Additional

simulations may be needed if the nature of the data is significantly

different from that studied here.

In the case of multiple-channel 2D spectral estimation, the simulations have led to

the following conclusions:

1.) In general, signal averaging is preferred over spectrum averaging because of

its significantly better performance and reduced execution time (its execution

time is roughly equal to that of the single-channel case).

2.) For the case of equal channel noise variances, the multiple-channel signal

averaging techniques significantly outperform the single-channel techniques

applied to any of the channels. On the other hand, if one of the channels has a

much smaller noise variance than any of the others, the multiple-channel

techniques produce essentially the same results as would be obtained using the

corresponding single-channel technique on the least noisy channel.

3.) Using estimated channel gains leads to virtually no performance degradation

as compared to using ideal (known) gains.

The primary goal of this research was to enhance the clinical efficiency and utility

of MRS through improved 2D spectral estimation techniques. We have examined these

new techniques in great detail, and have shown how they may be applied to MRS signal

 206

processing. Two potential clinical benefits stemming from this research are: increased

accuracy for MRS diagnosis and increased patient throughput through reduced scan time

and/or faster analysis techniques.

As a result of this research, a related algorithm for generating a single MRS

absorption spectrum for multiple-channel SVQ has been implemented [3],[4] and has

been received favorably by a number of clinical sites around the world. 2D spectral

estimation for MRS has yet to gain widespread clinical acceptance. In part, this is due to

the lack of simple clinical tools allowing clinicians and spectroscopists to analyze the

results of these techniques, but also it is due to the fact that 2D spectral estimation for

MRS has only recently been introduced [2],[74], and the clinical benefits of this approach

are still being evaluated.

Based on the results of extensive simulations and a limited number of MRS

experiments, we are confident that the new techniques introduced in this dissertation have

the potential to add clinical value and improve the overall quality of spectral analysis for

MRS studies.

8.3 Suggestions for Future Research

The new 2D spectral estimation techniques proposed in this dissertation warrant

further investigation on several fronts. First, the simulations carried out in this study,

while quite extensive, have not considered the myriad of possible situations. For

example, the quantities , , and N N Nω σ were held constant in the studies to make the

 207

analysis tractable. In addition, the values of the parameters and α β used in the

weighted 2D Capon and weighted 2D APES simulations were limited. Further research

considering a more thorough and systematic collection of these parameters would be of

value. Further studies should also take into account different test signals that might be

appropriate in different applications such as speech processing or synthetic aperture radar

(SAR) imaging.

Brief mention was made in Chapter 6 of the fact that “off-grid” peaks (those not

occurring on ω grid lines) can be very difficult to identify, particularly for high SNR

data. This has not been addressed, or even mentioned, in the literature. Because it was

decided that this problem was beyond the scope of this study, all peaks were located on

ω grid lines in the simulations. One simple remedy for this problem is to establish a

finer grid in the ω direction, i.e., to increase Nω . However, this increases computation

time. Further studies concerning ways to improve “off-grid” peak detection are

warranted.

Because certain 2D spectral estimation techniques perform better in some respects

than others, it may be possible to improve performance by using a combination of

techniques. One might consider taking the results from one technique and providing

them to a second or even third technique for additional processing. For example, a

method that performs well in terms of minimizing missed peaks or false peaks might be

used to identify the values of ω associated with peaks. A second method, which

 208

performs well in estimating damping values, could be used at these 'sω to estimate the

'sσ . Finally, a third method, which performs well on magnitude estimation, could be

applied at the (),σ ω locations identified by the earlier methods to estimate the

magnitudes. Stoica and Sundin[2] have, in fact, employed such a procedure with some

success, which they refer to as the 2D CAPES method. In 2D CAPES, the peak locations

are determined using the 2D Capon method, and then the 2D APES method is applied

only at these peak locations to estimate the magnitudes. Further studies in this area could

lead to overall performance improvements.

The method introduced in Chapter 5 for optimally estimating relative channel

gains from observed data would seem to be of significant interest in its own merits.

Other possible applications might be in estimating gains for microphone arrays used in

speech processing and for antenna arrays used for communications or SAR imaging. In

fact, the estimated gains could also be used to establish weights for signal averaging

using conventional FFT processing of multiple-channel MRS data and to implement

multiple-channel CSI . These applications would seem to be worthy of further

consideration.

In this work the application of 2D spectral estimation to MRS phantom and in

vivo data was quite limited. There is a need to perform substantive clinical evaluations of

the new 2D spectral estimation techniques for MRS applications proposed in this

dissertation. The application of these techniques to a limited number of MRS data sets

 209

in Chapter 7 offers proof of concept that these techniques may have clinical merit.

However, the efficacy of using these and other 2D spectral estimation techniques in a

clinical setting must be determined.

 210

References

[1] M. W. Weiner, “MRI/MRS of Neurodegenerative Diseases and Epilepsy,” Proc. of
ISMRM, vol. 11, p. 2, July 2003.

[2] P. Stoica and T. Sundin, “Nonparametric NMR Spectroscopy,” Journal of Magnetic
Resonance, vol. 152, pp. 57-69, 2001.

[3] F. J. Frigo, J. A. Heinen, T. E. Raidy, J. A. Hopkins and S. G. Tan, “Magnetic
Resonance Spectroscopy Using Multiple Receive Coils,” Proc. of ISMRM, vol. 12, p.
2260, 2004.

[4] F. J. Frigo, J. A. Heinen, T. E. Raidy and J. A. Hopkins, “Method and System of
Generating MRS Spectra from Multiple Receiver Data,” US Patent Application
10/615,714, July 9, 2003.

[5] W. Pauli, “Theory of Relativity,” Enzyklopaedie der Mathematischen Wissenschaften,
vol. 5, part 2, 1920.

[6] I. I. Rabi, J. R. Zacharias, S. Millman and P. Kusch., “A New Method of Measuring
Nuclear Magnetic Moments,” Physics Review, vol. 53, p. 318, 1938.

[7] N. F. Ramsey, “The Legacy of I. I. Rabi”, Proc. of ISMRM – 7th Annual Lauterbur
Lecture, 2003.

[8] F. Bloch, W. W. Hensen and M. E. Packard, “The Nuclear Induction Experiment,”
Physical Review, vol. 70, pp. 474-485, 1946.

[9] E. M. Purcell, H. Torrey and R. Pound, “Resonance Absorption by Nuclear Magnetic
Moments in a Solid,” Physical Review, vol. 69, pp. 37-38, 1946.

[10] R. V. Damadian, “Tumor Detection by Nuclear Magnetic Resonance,” Science, vol.
171, p. 1151, 1971.

[11] P. C. Lauterbur, “Image Formation by Induced Local Interactions: Examples of
Employing Nuclear Magnetic Resonance,” Nature, vol. 242, pp.190-191, 1973.

[12] P. Mansfield and P. K. Grannell, “’Diffraction’ and Microscopy in Solids and
Liquids by NMR,” Physical Review B, vol. 12, no. 9, pp. 3618-3634, Nov. 1975.

[13] D. G. Nishimura, Principles of Magnetic Resonance Imaging, Stanford University,
Palo Alto, CA, 1996.

[14] E. M. Haacke, R. W. Brown, M. R. Thompson and R. Venkatesan, Magnetic
Resonance Imaging – Physical Principles and Sequence Design, Wiley-Liss, New
York, NY, 1999.

[15] M. T. Vlaardingerbroek and J. A. Den Boer, Magnetic Resonance Imaging-Theory
and Practice, Springer, New York, NY, 1999.

[16] M. A. Brown and R. C. Semelka, MRI: Basic Principles and Applications, Wiley-
Liss, New York, NY, 1995.

[17] A. D. Elster, Questions and Answers in Magnetic Resonance Imaging, Mosby, St.
Louis, MO, 1994.

[18] M. A. Bernstein, K. F. King and Z. J. Zhou, Handbook of MRI Pulse Sequences,
Academic Press, New York, NY, 2004.

 211

[19] A. Abragam, The Principles of Nuclear Magnetism, Oxford Press, New York, NY,
1985.

[20] C. P. Slichter, Principles of Magnetic Resonance, Springer-Verlag, New York, NY,
1992.

[21] R. T. Morrison and R. N. Boyd, Organic Chemistry - Third Edition, Allyn and
Bacon, Inc., Boston, MA, 1978.

[22] N. Salibi and M. A. Brown, Clinical MR Spectroscopy, Wiley-Liss, New York, NY,
1998.

[23] H. Friebolin, Basic One- and Two-Dimensional NMR Spectroscopy - Third Edition,
Wiley-VCH, New York, NY,1998.

[24] M. Rudin, R. de Beer, et al., In-Vivo Magnetic Resonance Spectroscopy I;
Probeheads and Radio frequency Pulses, Spectrum Analysis, Springer-Verlag, New
York, NY, 1992.

[25] D. M. Spielman, E. Adalsteinsson and K. O. Lim, “Quantitative Assessment of
Improved Homogeneity Using Higher-order Shims for Spectroscopic Imaging of the
Brain,” Magnetic Resonance in Medicine, vol. 40, pp. 376-382, 1998.

[26] F. A. Bovey, L. Jelinski and P. A. Mirau, Nuclear Magnetic Resonance
Spectroscopy, Academic Press, Inc., New York, NY, 1988.

[27] A. Rahman, One and Two Dimensional NMR Spectroscopy, Elsevier, New York,
NY, 1989.

[28] A. Rahman and M. I. Choudhary, Solving Problems with NMR Spectroscopy,
Academic Press, Inc., San Diego, CA, 1996.

[29] P. B. Roemer, W. A. Edelstein, C. E. Hayes, S. P. Souza and O. M. Mueller, “The
NMR Phased Array,” Magnetic Resonance in Medicine, vol.16, p. 192, 1990.

[30] S. E. Moyher, D. B. Vigeron and S. J. Nelson, “Surface Coil MR Imaging of the
Human Brain with an Analytic Reception Profile Correction,” Journal of Magnetic
Resonance, vol. 5, pp. 139-144, 1995.

[31] P. R. P. Hoole, Smart Antennas and Signal Processing for Communications,
Biomedical and Radar Systems, WIT Press, Boston, MA, 2001.

[32] R. F. Lee, R. O. Giaquinto and C. J. Hardy, “Coupling and Decoupling Theory and
Its Application to the MRI Phased Array,” Magnetic Resonance in Medicine, vol. 48,
pp. 203-213, 2002.

[33] R. Yan, D. Erdogmus, E. G. Larsson, J. C. Principe and J. R. Fitzsimmons, “Image
Combination for High-Field Phased-Array MRI,” IEEE International Conf. on
Acoustics, Speech, and Signal Processing, vol. 5, pp. 1-4, April 2003.

[34] R. C. Hansen, Phased Array Antennas, John Wiley & Sons, Inc., New York, NY,
1998.

[35] S. Stergiopoulos, Advanced Signal Processing Handbook: Theory and
Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems, CRC
Press, Inc., New York, NY, 2001.

[36] J. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging, CRC
Press, Inc., New York, NY, 1999.

 212

[37] J. Chen, S. Jeng, F. Lin and W. Kuan, “Quantitative Analysis of Magnetic
Resonance Radio-Frequency Coils Based on Method of Moment,” IEEE Trans. on
Magnetics, vol. 35, no. 3, pp. 2118-2127, May 1999.

[38] F. Lin, W. Kuan, S. Jeng and J. Chen, “Quantitative Spectral/Spatial Analysis of
Phased Array Coil in Magnetic Resonance Imaging Based on Method of Moment,”
IEEE Trans. on Medical Imaging, vol. 18, no. 12, pp.1129-1137, Dec. 1999.

[39] L. L. Wald, S. E. Moyner, M. R. Day, S. J. Nelson and D. B. Vigneron, “Proton
Spectroscopic Imaging of the Human Brain Using Phased Array Detectors,”
Magnetic Resonance in Medicine , vol. 34, pp. 440-445, 1995.

[40] S. G. Tan, W. Song, A. Jesmanowicz, J. S. Hyde, T. E. Raidy and S. J. Li, “Multi-
Channel Magnetic Resonance Spectroscopy,” Proc. SMRM 12th Annual Meeting,
p. 370, 1993.

[41] T. Shirmer, S. Kohler, D. Gultekin and T. E. Raidy, “A Simple Absolute Scaling for
Spectroscopic Data Acquired with Phased-Array Coils at 1.5T,” Proc. of ISMRM,
vol. 12, 2004.

[42] P. B. Baker, J. Gillen, P. C. van Zihl, and X. Golay, “Phased-array Multi-Slice
Proton MR Spectroscopic Imaging at 3 Tesla,” Proc. of ISMRM, vol. 11, p. 1133,
2003.

[43] S. W. Provencher, “Estimation of Metabolite Concentrations from Localized in Vivo
Proton NMR Spectra,” Magnetic Resonance in Medicine, vol. 30, pp. 672-679, 1993.

[44] R. E. Hurd and M. G. Boucher, “Gradient Enhanced NMR Correlation
Spectroscopy,” US Patent 5,077,524, Dec. 31, 1991.

[45] B. J. Soher, R. E. Hurd, N. Sailasuta and P. B. Barker, “Quantitation of Automated
Single-Voxel Proton MRS using Cerebral Water as Internal Reference,” Magnetic
Resonance in Medicine, vol. 36, pp. 335-339, 1996.

[46] E. O. Brigham, The Fast Fourier Transform and its Applications, Prentice Hall,
Englewood Cliffs, NJ, 1988.

[47] C. B. Ahn and Z. H. Cho, “A New Phase Correction Method in NMR Imaging Based
on Autocorrelation and Histogram Analysis,” IEEE Trans. on Medical Imaging, vol.
MI-6, no. 1, pp. 32-36, March 1987.

[48] C. B. Ahn, S. Y. Lee, O. Nalcioglu and Z. H. Cho, “Spectroscopic Imaging by
Quadrature Modulated Echo Time Shifting,” Magnetic Resonance Imaging, vol. 4,
pp. 110-111, 1986.

[49] C. B. Ahn, et al., “Linear Phase Correction,” IEEE Trans. Med Imaging, vol. MI-5,
no. 1, 1986.

[50] A. E. Derome, Modern NMR Techniques for Chemistry Research, Pergamon Press,
New York, NY, 1987.

[51] F. Abildgaard, H. Gesmar and J. J. Led, “Quantitative Analysis of Complicated
Nonideal Fourier Transform NMR Spectra,” Journal of Magnetic Resonance, vol.
79, pp. 78-99, 1988.

[52] C. de Boor, A Practical Guide to Splines, Springer-Verlag, Berlin, Germany, 1978.

[53] D. S. G. Pollock, A Handbook of Time-Series Analysis, Signal Processing and
Dynamics, Academic Press, New York, NY, 1999.

[54] R. E. Hurd, “Magnetic Resonance Spectroscopic Imaging Having Reduced Parasitic
Sidebands,” US Patent 6,069,478, May 30, 2000.

 213

[55] G. A. Morris, “Compensation of Instrumental Imperfections by Deconvolution
Using and Internal Reference Signal,” Journal of Magnetic Resonance, vol. 80, pp.
547-552, 1988.

[56] D. B. Clayton, E. Adalsteinsson and D. M. Spielman, “Quantitation of 3D Chemical
Shift Data: Nonlinear Least-Squares Spectral Estimation Using a Water Reference
and A Priori Knowledge,” Proc. of ISMRM, vol. 11, p. 1158, 2003.

[57] J. Capon, “High Resolution Frequency Wave Number Spectrum Analysis,” Proc.
IEEE, vol. 57, no. 8, pp. 1408-1418, 1969.

[58] T. Sundin, Spectral Analysis and Magnetic Resonance Spectroscopy, Uppsala
University, Uppsala, Sweden, 2001.

[59] J. Li and P. Stoica, “Adaptive Filtering Approach to Spectral Estimation and SAR
Imaging,” IEEE Trans. Signal Processing, vol. 44, no. 6, pp. 1469-1484, 1996.

[60] P. Stoica and R. L. Moses, Introduction to Spectral Analysis, Prentice-Hall, Upper
Saddle River, NJ, 1997.

[61] M. H. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley and
Sons, Inc., New York, NY, 1996.

[62] S. J. Orfanidis, Optimum Signal Processing: An Introduction, McGraw-Hill, Inc.,
New York, NY, 1988.

[63] Z. Liu, H. Li and J. Li, “Efficient Implementation of Capon and APES for Spectral
Estimation,” IEEE Trans. Aerospace and Electronic Systems, vol. 34, no. 4, pp.
1314-1319, Oct. 1998.

[64] P. Stoica, H. Li, and J. Li, “A New Derivation of the APES Filter,” IEEE Trans. on
Signal Processing, vol. 6, no. 8, pp. 205-206, Aug. 1999.

[65] A. Jakobsson, Model-Based and Matched-Filterbank Signal Analysis, Uppsala
University, Uppsala, Sweden, 2000.

[66] F. Gini and F. Lombardini, “Multilook APES for Multibaseline SAR
Interferometry,” IEEE Trans. on Signal Processing, vol. 50, no. 7, pp. 1800-1803,
July 2002.

[67] E. G. Larsson, P. Stoica and J. Li, “Amplitude Spectrum Estimation for Two-
Dimensional Gapped Data,” IEEE Trans. on Signal Processing, vol. 50, no. 5, pp.
1314-1319, June 2002.

[68] A. Jakobsson, S. L. Marple, Jr. and P. Stoica, “Computationally Efficient Two-
Dimensional Capon Spectrum Analysis,” IEEE Trans. on Signal Processing, vol. 48,
no. 9, pp. 2651-2661, Sept. 2000.

[69] F. Lombardini, M. Montanari and F. Gini, “Reflectivity Estimation for Multibaseline
Interferometric Radar Imaging of Layover Extended Sources,” IEEE Trans. on
Signal Processing, vol. 51, no. 6, pp. 1508-1519, June 2003.

[70] E. G. Larsson and J. Li, “Spectral Analysis of Periodically Gapped Data,” IEEE
Trans. on Aerospace and Electronic Systems, vol. 39, no. 3, pp 1089-1097, July
2003.

[71] H. Li, J. Li and P. Stoica, “Performance Analysis of Forward-Backward Matched-
Filterbank Spectral Estimators,” IEEE Trans. on Signal Processing, vol. 46, no. 7,
pp. 1954-1966, July 1998.

[72] M. R. Palsetia and J. Li, “Using APES for Interferometric SAR Imaging,” IEEE
Trans. on Image Processing, vol. 7, no. 9, pp. 1340-1353, Sept. 1998.

 214

[73] E. G. Larsson and P. Stoica, “Fast Implementation of Two-Dimensional APES and
Capon Spectral Estimators,” IEEE Conf. on Acoustics, Speech and Signal
Processing, vol. 5, pp. 3069-3072, May 2001.

[74] F. J. Frigo, J. A. Heinen, J. A. Hopkins, T. Niendorf and B. J. Mock, “Using Peak-
Enhanced 2D-Capon Analysis with Single Voxel Proton Magnetic Resonance
Spectroscopy to Estimate T2* for Metabolites,” Proc. of ISMRM, vol. 12, p. 2437,
2004.

[75] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, New
York, NY, 1989.

[76] D. Spielman, P. Webb and A. Macovski, “A Statistical Framework for in Vivo
Spectroscopic Imaging,” Journal of Magnetic Resonance, vol. 79, pp. 66-77, 1988.

[77] T. V. Sreenivas and R. J. Niederjohn, “Zero-Crossing Based Spectral Analysis and
SVD Spectral Analysis for Formant Frequency Estimation in Noise,” IEEE Trans.
on Signal Processing, vol. 40, no. 2, pp. 282-293, Feb. 1992.

[78] D. D. Stark, W. G. Bradley, G. B. Matson, M. W. Weiner, et al., Magnetic
Resonance Imaging, Volume I – third edition, Mosby, Chicago, IL, pp. 181-214,
1999.

[79] M. W. Weiner, “Clinical Assessment of Ischemia and Malignancy with Magnetic
Resonance Spectroscopy,” IEEE Conf. on Engineering in Medicine and Biology,
p. 315, 1988.

[80] I. Mader, J. Karitsky, et al., “Proton MRS in Kennedy Disease: Absolute Metabolite
and Macromolecular Concentrations,” Journal of Magnetic Resonance Imaging, vol.
16, pp. 160-167, 2002.

[81] K. Ugurbil, et al., “Magnetic Resonance Imaging of Brain Function and
Neurochemistry,” Proc. of IEEE, vol. 89, no. 7, pp. 1093-1106, July 2001.

[82] N. Binesh, K. Yue, L. Fairbanks and M. A. Thomas, “Reproducibility of Localized
2D Correlated MR Spectroscopy,” Magnetic Resonance in Medicine, vol. 48,
pp. 942-948, 2002.

[83] M. A. McLean, A. L. Busza, L. L. Wald, R. J. Simister, G. J. Barker and S. R.
Williams, “In Vivo GABA+ Measurement at 1.5T Using a PRESS-Localized Double
Quantum Filter,” Magnetic Resonance in Medicine, vol. 48, pp. 233-241, 2002.

[84] I. Asllani, E. Shankland, T. Pratum and M. Kushmerick, “Double Quantum Filtered
1H NMR Spectroscopy Enables Quantification of Lactate in Muscle,” Journal of
Magnetic Resonance, vol. 152, pp. 195-202, 2001.

[85] N. Weiskopf, U. Klose, N. Birbaurmer and K. Mathiak, “Single Line Imaging
Spectroscopy (SLIMS): Exploring the fMRI Signal,” Proc. of ISMRM, vol. 11,
p. 1760, 2003.

[86] R. E. Hurd, N. Sailasuta, R. Srinivansan, D. B. Vigneron and S. Nelson, “3T Brain
Spectroscopy: Repeatability and Inter-subject Variability,” Proc. of ISMRM, vol. 11,
p. 1145, 2003.

[87] P. G. Mullins, L. Rowland, J. Bustillo, E. J. Bedrick, J. Lauriello and W. M. Brooks,
“Reproducibility of 1H-MRS Measurements in Schizophrenic Patients,” Magnetic
Resonance in Medicine, vol. 50, pp. 704-707, 2003.

[88] B. S. Y. Li, J. S. Babb, B. J. Soher, A. A. Maudsley and O. Gonen, “Reproducibility
of 3D Proton Spectroscopy in the Human Brain,” Magnetic Resonance in Medicine,
vol. 47, pp. 437-446, 2002.

 215

[89] B. G. Goodyear, A. M. Demchuk and R. Frayne,”T2
* Heterogeneity in Cerebral

Ischemia: Implications for fMRI Interpretation,” Proc. of ISMRM, vol. 11, p. 1807,
2003.

[90] S. Michaeli, et al., “Proton T2 Relaxation Study of Water, N-acetylaspartate, and
Creatine in Human Brain using Hahn and Carr-Purcell Spin Echoes at 4T and 7T,”
Magnetic Resonance in Medicine, vol. 47, pp. 629-633, 2002.

[91] K. S. Opstad, J. R. Griffiths, B. A. Bell and F. A. Howe, “In Vivo Lipid T2
Relaxation Time Measurements in High-Grade Tumors: Differentiation of
Glioblastomas and Metastases,” Proc. of ISMRM, vol. 11, p. 754, 2003.

[92] M. Singh, P. Patel and D. Khosla, “Estimation of T2* in Functional Spectroscopy
during Visual Stimulation,” IEEE Trans. on Nuclear Science, vol. 43, no. 3, June
1996.

[93] X. Golay, J. Gillen, P. C. M van Zilj and P. B. Barker, “Scan Time Reduction in
Proton Magnetic Resonance Spectroscopic Imaging of the Human Brain,” Magnetic
Resonance in Medicine, vol. 47, pp. 384-387, 2002.

[94] M. H. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley &
Sons, Inc., New York, NY, 1996.

[95] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice
Hall, Englewood Cliffs, NJ, 1989.

[96] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1975.

[97] S. L. Marple, Jr., Digital Spectral Analysis, Prentice-Hall, Englewood Cliffs, NJ,
1987.

[98] S. S. Haykin, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs, NJ, 1991.

[99] J. J. K. Ó Ruanaidh, and W. J. Fitzgerald, Numerical Bayesian Methods Applied to
Signal Processing, Springer, New York, NY, 1996.

[100] E. R. Davies, Electronics, Noise and Signal Recovery, Academics Press, New
York, NY, 1993

[101] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer
Academic Publishers, Boston, MA, 1992.

[102] M. Bellanger, Digital Processing of Signals, John Wiley & Sons, New York, NY,
1989.

 216

Appendix

A.1 Quadratic Minimization

The following result is adapted from a development in Stoica and Moses[60] (see

also [94]-[102]).

A.1.1 Theorem

Assume that R is a complex Hermitian (i.e., HR R=) positive definite M M×

matrix and and h s are complex 1M × vectors. Then the unique vector 0h that

minimizes

 () HJ h h Rh= (A.1)

over h , subject to the condition

 1Hh s = (A.2)

is given by

1

0 1H

R s
h

s R s

−

−= (A.3)

A.1.2 Proof

We first note that

 217

1

0 1
1

H
H

H

s R s
h s

s R s

−

−= = (A.4)

verifying that 0h satisfies Eqn. (A.2). Now, for an arbitrary vector, h , we may write

 0h h δ= + (A.5)

For our purposes we only need to consider vectors h that satisfy Eqn. (A.2). Thus, since

 0 1H H Hh s h s sδ= + = (A.6)

it follows from Eqn. (A.4) that

 0H sδ = (A.7)

Now, from Eqn. (A.1) and Eqn. (A.5),

() () ()

()
()

()

0 0

0 0 0 0

0 0

1

0 1

0 1

2

2

2

H H

H H H H

H H

H H
H

H
H

H

J h h R h

h Rh Rh h R R

J h Rh R

R s
J h R R

s R s

s
J h R

s R s

δ δ

δ δ δ δ

δ δ δ

δ δ δ

δ δ δ

−

−

−

= + +

= + + +

= + +

= + +

= + +

 (A.8)

From Eqn. (A.7), the center term in Eqn. (A.8) is zero, resulting in

 () ()0
HJ h J h Rδ δ= + (A.9)

 218

Since R is positive definite, the second term in Eqn. (A.9) is always greater than or equal

to 0, and equal to 0 if and only if 0δ = . That is, using Eqn. (A.5), we have that Eqn.

(A.9) is a minimum if and only if 0h h= , thus completing the proof.

A.2 Matrix Inversion Lemma

The following result is adapted from a development in Stoica and Moses[60] (see

also [94]-[102]).

A.2.1 Theorem

Assume R is a non-singular complex M M× matrix, X is a complex 1M ×

vector, and a is a non-zero complex scalar. Then, if

1 HQ R XX
a

= − (A.10)

the inverse of Q may be computed as

1 1

1 1
1

H

H

R XX R
Q R

a X R X

− −
− −

−= +
−

 (A.11)

 219

A.2.2 Proof

From Eqn. (A.10) and Eqn. (A.11) we have

()

1 1
1 1

1

1 1 1 1
1 1

1 1

1 1 1
1

1 1

1 1 1

1
1

1

1 1

1 1 1

1 1

1

H
H

H

H H H
H

H H

H H H
H

H H

H H H

H
H

R XX R
QQ R XX R

a a X R X

RR XX R XX R XX R
RR XX R

a a X R X a a X R X

aXX R XX R XX R
I XX R

a a a X R X a a X R X

XaX R X X R X X R
I XX R

a a a X R X

I
a

− −
− −

−

− − − −
− −

− −

− − −
−

− −

− − −
−

−

  = − +   −  

= − + −
− −

= − + −
− −

−
= − +

−

= −
()

()
1 1

1

1

1 1

1

1 1

H H

H

H

H H

X a X R X X R
XX R

a a X R X

I XX R XX R
a a

I

− −
−

−

− −

−
+

−

= − +

=

(A.12)

Thus 1Q− as given by Eqn. (A.11) is indeed the inverse of Q given in Eqn. (A.10),

completing the proof. Note that if 1R− is known then the computational task of

determining the inverse of Q is replaced by several matrix multiplications and one scalar

division.

 220

A.3 Calculation of SNR

An important consideration when evaluating the fidelity of a sampled signal is its

signal-to-noise ratio (SNR)[60], [94]- [102]. For clarity, we provide the details of how

we define and compute SNR in our simulations.

Given a clean signal, []s n , where 0,1, , 1fn N= −⋯ , and a corresponding base

noise signal, 0[]n n , where 0,1, , 1fn N= −⋯ we find it convenient to multiply 0[]n n by a

scalar weighting factor, w , to adjust 0[]n n in a manner that provides the desired SNR.

 0[] [] for 0,1, , 1a fn n w n n n N= ⋅ = −⋯ (A.13)

The signal energy may be defined as

1

2

0

[]
fN

s
n

E s n
−

=

= ∑ (A.14)

and the base noise energy may be defined as

0

1
2

0
0

[]
fN

n
n

E n n
−

=

= ∑ (A.15)

Also, the actual noise energy may be defined as

1

2

0

[]
f

a

N

n a
n

E n n
−

=

= ∑ (A.16)

 221

The SNR (in dB) is defined as

 1010log
a

s

n

E
SNR

E

 
=   

 
 (A.17)

Combining Eqn. (A.13) and Eqn. (A.16) we have

0

1 1 1
2 22 2 2 2

0 0
0 0 0

[] [] []
f f f

a

N N N

n a n
n n n

E n n w n n w n n w E
− − −

= = =

= = = =∑ ∑ ∑ (A.18)

Then using Eqn. (A.18) and Eqn. (A.17) we find w as follows:

0

10 2
10log s

n

E
SNR

w E

 
=   

 
 (A.19)

0

10 2
log

10
s

n

ESNR

w E

 
=   

 
 (A.20)

 ()
0

10
2

10
SNR

s

n

E

w E
= (A.21)

 ()
0

2

1010

s
SNR

n

E
w

E
= (A.22)

 ()
0

1010

s
SNR

n

E
w

E
= (A.23)

Eqn. (A.23) thus provides the value of w needed to produce the desired SNR.

 222

A.4 MATLAB Code for Computing MRS Absorption Spectra

A.4.1 phascor.m

% Spectroscopy - Generate Phase correction coeffici ents
% Marquette University, Milwaukee, WI USA
% Copyright 2001, 2002, 2003, 2004 - All rights res erved.
% Fred J. Frigo
%
% Feb 15, 2001 - Original
% June 26, 2001 - Accept Pfile name as argument
% Sept 3, 2001 - Use Equiripple FIR filter for lin ear phase correction
% Oct 15, 2001 - Open Pfile directly instead of in termediate file.
% add ability to return an array of vectors.
% Dec 8, 2001 - Added DeBoor spline smoothing.
% Feb 11, 2002 - Added multi-channel support
% Jul 30, 2002 - Return Max reference value for mu lti-channel scaling
% Jun 16, 2003 - Added support for Pfile format fo r MGD2 / 11.0
% Mar 5, 2004 - Plot enhancements
%
%

function [pcor_vector, ref_vector, ref_scale] = ph ascor(pfilename, channel_num)
i = sqrt(-1);

% set flag to 1 to plot intermediate results
save_plot = 0;

% Open Pfile to read reference scan data.
fid = fopen(pfilename,'r', 'ieee-be');
if fid == -1
 err_msg = sprintf('Unable to locate Pfile %s', pfile)
 return;
end

% Determine size of Pfile header based on Rev numbe r
status = fseek(fid, 0, 'bof');
[f_hdr_value, count] = fread(fid, 1, 'real*4');
rdbm_rev_num = f_hdr_value(1);
if(rdbm_rev_num == 7.0)
 pfile_header_size = 39984; % LX
 bandwidth_index = 9839;
elseif (rdbm_rev_num == 8.0)
 pfile_header_size = 60464; % Cardiac / MGD
 bandwidth_index = 14959;
elseif (rdbm_rev_num == 5.0)
 pfile_header_size = 39940; % Signa 5.5
 bandwidth_index = 9839; % ??
else
 % In 11.0 (ME2) the header and data are stored as little-endian
 fclose(fid);
 fid = fopen(pfilename,'r', 'ieee-le');
 status = fseek(fid, 0, 'bof');
 [f_hdr_value, count] = fread(fid, 1, 'real*4');
 if (f_hdr_value == 9.0)
 pfile_header_size= 61464;
 bandwidth_index = 14959;
 else
 err_msg = sprintf('Invalid Pfile header rev ision: %f', f_hdr_value)
 return;
 end
end

 223

status = fseek(fid, 0, 'bof');
[hdr_value, count] = fread(fid, 52, 'integer*2');
nex = hdr_value(37);
nframes = hdr_value(38);
da_xres = hdr_value(52);

% Read 'user19' CV - number of reference frames
status = fseek(fid, 0, 'bof');
[f_hdr_value, count] = fread(fid, 74, 'real*4');
num_ref_frames = f_hdr_value(74);

% Read the reference frames of data
frame_size = 2*da_xres*4;
baseline_size = frame_size;
channel_size = (nframes + 1)*frame_size;
data_offset = pfile_header_size + (channel_size*(ch annel_num - 1)) + baseline_size;
status = fseek(fid, data_offset, 'bof');

ref_data_elements = 2*da_xres*num_ref_frames;
[raw_data, count] = fread(fid, ref_data_elements, ' integer*4');
fclose(fid);

% Store the reference frames in the ref_frames arra y
vector_size = da_xres;
ref_frames=[];
vtmp = [1:vector_size];

for j = 1:num_ref_frames
 vector_offset = vector_size*2*(j-1);
 for k = 1:vector_size
 vtmp(k) = raw_data((vector_offset + k*2)-1) + (raw_data(vector_offset + k*2)*i);
 end
 ref_frames(j,:)=vtmp;
end

ref_size = da_xres;
vtmp = 0.0;
% Average the reference data frames
for j = 1:num_ref_frames
 vtmp = vtmp + ref_frames(j,:);
end
ref = vtmp / num_ref_frames;

% return the averaged reference vector
ref_vector = ref;

% Plot Input Reference data
if (save_plot == 1)
 plot_complex('Averaged reference data', ref); % fig 8
end

%%%
% normalize ref data
%%%
ref_scale = max(abs(ref));
ref_norm = ref / ref_scale;

%%%
% DC mixing
% Find the largest frequency component
% Create a sinusoid of same frequency and opposit e phase?
% Multiply by the sinusoid to cancel out this LAR GE freq?
%%%

% Take FFT of Average Ref Scan data

 224

ref_ft=fft(ref_norm);

% Find Max of FFT'd data
% We dont really want to get the last half of poi nts though.
% Perhaps we can multiply by an alteration vector to look at
% just the center points?
%
[refmax, index] = max(ref_ft(1:ref_size-8));
max_index = sprintf('Max freq weight in ref scan fr ames is %d', index);

% Generate ramp vector, muliply by index of max val ue
dc = linspace(0.0, (-2.0*pi) , ref_size);
dc = dc.*index;

% Create sinusoid with pure frequency
cos_dc = cos(dc);
sin_dc = sin(dc);

% DC mixing
corr = cos_dc + sin_dc*i;
ref_raw = ref_norm.*corr;

% Plot corrected Reference data, and phase correct ion vector
if (save_plot == 1)
 plot_complex('Phase correction vector after DC mixing', corr); % fig 9
 plot_complex('Reference data after DC mixing', ref_raw); % fig 10
end

%%
% Zero phasing
%%
zeroterm = ref_raw(1);
% Complex conjugate of the first point in the DC co rrected ref frame
zeroterm = real(zeroterm) - imag(zeroterm)*i;

% The phase angle is now zero for the first point i n the ref frame
ref_raw = ref_raw * zeroterm;
corr = corr * zeroterm;

% Plot corrected Reference data, and phase correct ion vector
if (save_plot == 1)
 plot_complex('Phase correction vector after zer o phase adjustment', corr); % fig 12
 plot_complex('Reference data after zero phase a djustment', ref_raw); % fig 11
end

%%%
% Linear phase correction factor
%%%

% Calculate phase of ref vector
ref_ang = angle(ref_raw);

% Unwrap Phase of reference frame
unwr_ref = unwrap(ref_ang);

% Plot phase of reference data, and unwrapped phase
if (save_plot == 1)
 plot_2_real('Phase \phi_z_p[n] (radians)', ref_ ang, 'Unwrapped phase \phi_z_p[n]
(radians)', unwr_ref); % fig 13
end

% Add up how many periods are present in the ref fr ame
pscale = unwr_ref(ref_size);

 225

% Generate linear phase vector, muliply by unwrappe d phase
ramp = linspace(0.0, -1 , ref_size);
lin_phas = pscale.*ramp;

cos_linp = cos(lin_phas);
sin_linp = sin(lin_phas);

lp_corr = cos_linp + (i*sin_linp);

% Apply linear phase vector to reference frame and to phase corr vector
ref_raw = lp_corr.*ref_raw;
corr = lp_corr.*corr;

% Plot corrected Reference data, and phase correct ion vector
if (save_plot == 1)
 plot_complex('Linear phase correction vector', lp_corr); % fig 14
 plot_complex('Phase correction vector after lin ear phase correction', corr); % fig 16
 plot_complex('Reference data after linear phase correction', ref_raw); % fig 15
end

%%
% Smooth the phase of the Ref Frame
%%
ref_phas = angle(ref_raw);
uref_phas = unwrap(ref_phas);

% compute e**(-0.25*ln(abs(ref_raw))
mag_raw = abs(ref_raw);
ln_raw = -0.25*log(mag_raw);
dy = exp(ln_raw);

smooth_factor = 0.9999;

% Spline smoothing (DeBoor)
filt_phas = smooth_spline(uref_phas, dy, ref_size, smooth_factor);

% Plot unwrapped phase of phase corrected reference data, and smoothed phase
if (save_plot == 1)
 plot_2_real('Unwrapped phase \phi_lp[n] (radian s)', uref_phas, 'Unwrapped phase
\phi_s[n] (radians)', filt_phas); % fig 17
end

% Generate sinusoidal waveform based on smoothed ph ase
filt_phas = -1.0*filt_phas;
cos_fphs = cos(filt_phas);
sin_fphs = sin(filt_phas);
fphs = cos_fphs + i.*sin_fphs;

% Final step.. Multiply by corr vector and by ref v ector
ref_raw = ref_raw.*fphs;
corr = corr.*fphs;

% Plot corrected Reference data, and phase correct ion vector
if (save_plot == 1)
 plot_complex('Phase correction vector', corr); % fig 19
 plot_complex('Reference data after phase correc tion', ref_raw); % fig 18
end

% return the phase correction vector
pcor_vector = corr;

 226

A.4.2 plot_2_real.m

% plot_2_real - Plots 2 real valued vectors
% Marquette University, Milwaukee, WI USA
% Copyright 2004 - All rights reserved.
% Fred J. Frigo
%
% Mar 5, 2004 - Original
%

function plot_2_real(plot1_label, input_data1, pl ot2_label, input_data2)

 % get size of vector
 vector_size = max(size(input_data1));
 x = [1:vector_size];

 figure;
 subplot(2,1,1);
 plot(x,input_data1,'k');
 ylabel(plot1_label);
 xlabel('time');

 if (nargin > 2)
 subplot(2,1,2);
 plot(x, input_data2, 'k');
 ylabel(plot2_label);
 xlabel('time');
 end

A.4.3 plot_complex.m

% plot_complex - Plots real, imag and magnitude va lues of complex vector
% Marquette University, Milwaukee, WI USA
% Copyright 2004 - All rights reserved.
% Fred J. Frigo
%
% Mar 5, 2004 - Original
%
%

function plot_complex(plot_title, input_data)

 % get size of vector
 vector_size = max(size(input_data));
 x = [1:vector_size];

 figure;
 subplot(3,1,1);
 plot(x,real(input_data),'k');
 title(plot_title);
 ylabel('Real');
 xlabel('time');

 subplot(3,1,2);
 plot(x, imag(input_data), 'k');
 ylabel('Imaginary');
 xlabel('time');

 subplot(3,1,3);
 plot(x, abs(input_data), 'k');
 ylabel('Magnitude');
 xlabel('time');

 227

 % Entire phase correction vector has magnitude o f 1.0
 % Check for entire vector with magnitude = 1.0
 if((max(abs(input_data) < 1.0000001)) && ...
 (min(abs(input_data) > 0.999999)))
 my_axis=axis;
 my_axis(3)=0.0; % ymin
 my_axis(4)=1.5; % ymax
 axis(my_axis);
 end

A.4.4 plotp.m

% plotp.m - plot raw data from Pfile
%
% Marquette University, Milwaukee, WI USA
% Copyright 2002, 2003 - All rights reserved.
% Fred Frigo
%
% Date: Jan 21, 2002
%
% - this is based on MATLAB code from David Zhu - checkRaw.m
% - updated May 14, 2003 to support 11.0 (little endian format)
%

function plotp(pfile)

i = sqrt(-1);

if(nargin == 0)
 [fname, pname] = uigetfile('*.*', 'Select Pfile ');

 pfile = strcat(pname, fname);
end

% Open Pfile to read reference scan data.
fid = fopen(pfile,'r', 'ieee-be');
if fid == -1
 err_msg = sprintf('Unable to locate Pfile %s', pfile)
 return;
end

% Determine size of Pfile header based on Rev numbe r
status = fseek(fid, 0, 'bof');
[f_hdr_value, count] = fread(fid, 1, 'real*4');
rdbm_rev_num = f_hdr_value(1);
if(rdbm_rev_num == 7.0)
 pfile_header_size = 39984; % LX
elseif (rdbm_rev_num == 8.0)
 pfile_header_size = 60464; % Cardiac / MGD
elseif ((rdbm_rev_num > 5.0) && (rdbm_rev_num < 6 .0))
 pfile_header_size = 39940; % Signa 5.5
else
 % In 11.0 (ME2) the header and data are stored as little-endian
 fclose(fid);
 fid = fopen(pfile,'r', 'ieee-le');
 status = fseek(fid, 0, 'bof');
 [f_hdr_value, count] = fread(fid, 1, 'real*4');
 if (f_hdr_value == 9.0)
 pfile_header_size= 61464;
 else

 228

 err_msg = sprintf('Invalid Pfile header rev ision: %f', f_hdr_value)
 return;
 end
end

% Read header information
status = fseek(fid, 0, 'bof');
[hdr_value, count] = fread(fid, 102, 'integer*2');
npasses = hdr_value(33);
nslices = hdr_value(35);
nechoes = hdr_value(36);
nframes = hdr_value(38);
point_size = hdr_value(42);
da_xres = hdr_value(52);
da_yres = hdr_value(53);
rc_xres = hdr_value(54);
rc_yres = hdr_value(55);
start_recv = hdr_value(101);
stop_recv = hdr_value(102);
nreceivers = (stop_recv - start_recv) + 1;

% Determine number of slices in this Pfile: this d oes not work for all cases.
slices_in_pass = nslices/npasses;

% Compute size (in bytes) of each frame, echo and s lice
data_elements = da_xres*2;
frame_size = data_elements*point_size;
echo_size = frame_size*da_yres;
slice_size = echo_size*nechoes;
mslice_size = slice_size*slices_in_pass;

for k = 500:1000 % give a large number 1000 to loo p forever
 % Enter slice number to plot
 if (slices_in_pass > 1)
 slice_msg = sprintf('Enter the slice number: [1..%d]',slices_in_pass);
 my_slice = input(slice_msg);
 if (my_slice > slices_in_pass)
 err_msg = sprintf('Invalid number of slic es. Slice number set to 1.')
 my_slice = 1;
 end
 else
 my_slice = 1;
 end

 % Enter echo number to plot
 if (nechoes > 1)
 echo_msg = sprintf('Enter the echo number: [1 ..%d]',nechoes);
 my_echo = input(echo_msg);
 if (my_echo > nechoes)
 err_msg = sprintf('Invalid echo number. E cho number set to 1.')
 my_echo = 1;
 end
 else
 my_echo = 1;
 end

 % Enter receiver number to plot
 if (nreceivers > 1)
 recv_msg = sprintf('Enter the receiver number : [1..%d]',nreceivers);
 my_receiver = input(recv_msg);
 if (my_receiver > nreceivers)
 err_msg = sprintf('Invalid receiver numbe r. Receiver number set to 1.')
 my_receiver = 1;
 end
 else
 my_receiver = 1;

 229

 end

 % Enter the view number
 view_msg = sprintf('Enter the frame number (1 is baseline): [1..%d]',da_yres);
 my_frame = input(view_msg);
 if (my_frame > da_yres)
 err_msg = sprintf('Invalid frame number. Fram e number set to 1.')
 my_frame = 1;
 end

 % Compute offset in bytes to start of frame.
 file_offset = pfile_header_size + ((my_slice - 1) *slice_size) + ...
 + ((my_receiver -1)*mslice_si ze) + ...
 + ((my_echo-1)*echo_size) + . ..
 + ((my_frame-1)*frame_size);

 status = fseek(fid, file_offset, 'bof');

 % read data: point_size = 2 means 16 bit data, po int_size = 4 means EDR)
 if (point_size == 2)
 [raw_data, count] = fread(fid, data_elements, 'integer*2');
 else
 [raw_data, count] = fread(fid, data_elements, 'integer*4');
 end

 for m = 1:da_xres
 frame_data(m) = raw_data((2*m)-1) + i*raw_data (2*m);
 end

 figure(k);
 subplot(3,1,1);
 plot(real(frame_data));
 title(sprintf('%s, slice %d, recv %d, echo %d, fr ame %d', fname, my_slice, my_receiver,
my_echo, my_frame));
 %title('Reference data');
 xlabel('time');
 ylabel('Real');
 subplot(3,1,2);
 plot(imag(frame_data));
 %title(sprintf('Imaginary Data'));
 xlabel('time');
 ylabel('Imaginary');
 subplot(3,1,3);
 plot(abs(frame_data));
 %title(sprintf('Magnitude Data'));
 xlabel('time');
 ylabel('Magnitude');

 % check to see if we should quit
 quit_answer = input('Press Enter to continue, "q" to quit:', 's');
 if (size(quit_answer) > 0)
 if (quit_answer == 'q')
 break;
 end
 end

end
fclose(fid);

 230

A.4.5 smooth_spline.m

% Spline smoothing (DeBoor's algorithm)
% Marquette University, Milwaukee, WI USA
% Copyright 2001 - All rights reserved.
% Fred Frigo
%
% Dec 8, 2001
%
% Adapted to MATLAB from the following Fortran sour ce file
% found at http://www.psc.edu/~burkardt/src/splp ak/splpak.f90

function spline_sig = smooth_spline(y, dx, npoint, smooth_factor)

p=smooth_factor;
a=[npoint:4];
v=[npoint:7];
a= 0.0;
v= 0.0;

%qty=[npoint:1];
%qu=[npoint:1];
%u=[npoint:1];

x = linspace(0.0, (npoint-1.0)/npoint , npoint);

% setupq
 v(1,4) = x(2)-x(1);

 for i = 2:npoint-1
 v(i,4) = x(i+1)-x(i);
 v(i,1) = dx(i-1)/v(i-1,4);
 v(i,2) = ((-1.0.*dx(i))/v(i,4)) - (dx(i)/v(i-1, 4));
 v(i,3) = dx(i+1)/v(i,4);
 end

 v(npoint,1) = 0.0;
 for i = 2:npoint-1
 v(i,5) = (v(i,1)*v(i,1)) + (v(i,2)*v(i,2)) + (v (i,3)*v(i,3));
 end

 for i = 3:npoint-1
 v(i-1,6) = (v(i-1,2)*v(i,1)) + (v(i-1,3)*v(i,2));
 end

 v(npoint-1,6) = 0.0;

 for i = 4: npoint-1
 v(i-2,7) = v(i-2,3)*v(i,1);
 end

 v(npoint-2,7) = 0.0;
 v(npoint-1,7) = 0.0;
%!
%! Construct q-transp. * y in qty.
%!
 prev = (y(2)-y(1))/v(1,4);
 for i= 2:npoint-1
 diff = (y(i+1)-y(i))/v(i,4);
 %qty(i) = diff-prev;
 a(i,4) = diff - prev;
 prev = diff;

 231

 end

% end setupq

%chol1d

%!
%! Construct 6*(1-p)*q-transp.*(d**2)*q + p*r
%!
 six1mp = 6.0.*(1.0-p);
 twop = 2.0.*p;

 for i = 2: npoint-1
 v(i,1) = (six1mp.*v(i,5)) + (twop.*(v(i-1,4)) + v(i,4));
 v(i,2) = (six1mp.*v(i,6)) +(p.*v(i,4));
 v(i,3) = six1mp.*v(i,7);
 end

 if (npoint < 4)
 u(1) = 0.0;
 u(2) = a(2,4)/v(2,1);
 u(3) = 0.0;
%!
%! Factorization
%!
 else
 for i = 2: npoint-2;
 ratio = v(i,2)/v(i,1);
 v(i+1,1) = v(i+1,1)-(ratio.*v(i,2));
 v(i+1,2) = v(i+1,2)-(ratio.*v(i,3));
 v(i,2) = ratio;
 ratio = v(i,3)./v(i,1);
 v(i+2,1) = v(i+2,1)-(ratio.*v(i,3));
 v(i,3) = ratio;
 end
%!
%! Forward substitution
%!
 a(1,3) = 0.0;
 v(1,3) = 0.0;
 a(2,3) = a(2,4);
 for i = 2: npoint-2
 a(i+1,3) = a(i+1,4) - (v(i,2)*a(i,3)) - (v(i- 1,3)*a(i-1,3));
 end
%!
%! Back substitution.
%!
 a(npoint,3) = 0.0;
 a(npoint-1,3) = a(npoint-1,3) / v(npoint-1,1);

 for i = npoint-2:-1:2
 a(i,3) = (a(i,3)/v(i,1)) - (a(i+1,3)*v(i,2)) - (a(i+2,3)*v(i,3));
 end

 end
%!
%! Construct Q*U.
%!
 prev = 0.0;
 for i = 2: npoint
 a(i,1) = (a(i,3)-a(i-1,3))/v(i-1,4);
 a(i-1,1) = a(i,1)-prev;
 prev = a(i,1);
 end

 a(npoint,1) = -1.0.*a(npoint,1);

 232

%end chol1d

 for i = 1: npoint
 spline_sig(i) = y(i)-(6.0.*(1.0-p).*dx(i).*dx(i).*a(i,1));
 end

% for i = 1: npoint
% a(i,3) = 6.0*a(i,3)*p;
% end

% for i = 1: npoint-1
% a(i,4) = (a(i+1,3)-a(i,3))/v(i,4);
% a(i,2) = (a(i+1,1)-a(i,1))/v(i,4)-(a(i,3)+a(i, 4)/3.*v(i,4))/2.*v(i,4);
% end

A.4.6 spectro.m

% Spectroscopy Mainline
% Marquette University, Milwaukee, WI USA
% Copyright 2001, 2002, 2003 - All rights reserved.
% Fred J. Frigo
%
%
% This function calls other MR spectroscopy related functions
% to compute results from the given raw data file (Pfile).
%
% Oct 15, 2001 - Original
% Feb 11, 2002 - Multi-channel spectro
% July 30, 2002 - Combine multi-channel results usi ng reference weighting
% Jan 1, 2003 - Label PPM axis
% June 16, 2003 - Pfile updates for MGD2 / 11.0

function spectro(pfilename)

% Check to see if pfile name was passed in
if (nargin == 0)
 % Enter name of Pfile
 [fname, pname] = uigetfile('*.*', 'Select Pfile');
 pfilename = strcat(pname, fname);
end

% Open Pfile to read reference scan data.
fid = fopen(pfilename,'r', 'ieee-be');
if fid == -1
 err_msg = sprintf('Unable to locate Pfile %s', pfile)
 return;
end

% Determine size of Pfile header based on Rev numbe r
status = fseek(fid, 0, 'bof');
[f_hdr_value, count] = fread(fid, 1, 'real*4');
rdbm_rev_num = f_hdr_value(1);
if(rdbm_rev_num == 7.0)
 pfile_header_size = 39984; % LX
elseif (rdbm_rev_num == 8.0)
 pfile_header_size = 60464; % Cardiac / MGD
elseif ((rdbm_rev_num > 5.0) && (rdbm_rev_num < 6 .0))
 pfile_header_size = 39940; % Signa 5.5
else
 % In 11.0 (ME2) the header and data are stored as little-endian

 233

 fclose(fid);
 fid = fopen(pfilename,'r', 'ieee-le');
 status = fseek(fid, 0, 'bof');
 [f_hdr_value, count] = fread(fid, 1, 'real*4');
 if (f_hdr_value == 9.0)
 pfile_header_size= 61464;
 else
 err_msg = sprintf('Invalid Pfile header rev ision: %f', f_hdr_value)
 return;
 end
end

% Read header to determine number of channels
status = fseek(fid, 0, 'bof');
[hdr_value, count] = fread(fid, 102, 'integer*2');
da_xres = hdr_value(52);
start_recv = hdr_value(101);
stop_recv = hdr_value(102);
nreceivers = (stop_recv - start_recv) + 1;

% some other useful scan parameters.
nex = hdr_value(37);

% Read 'user07' CV - temperature in degree C
status = fseek(fid, 0, 'bof');
[f_hdr_value, count] = fread(fid, 62, 'real*4');
tempC = f_hdr_value(62)
fclose(fid);

% Index for results (Right Hand Side of water peak)
start = round(da_xres*0.025);
stop = round(da_xres*0.25);

% Create PPM axis: Must shift spectrum for temper ature
ppm_start_37C = -4.25;
ppm_stop_37C = 0.30;
ppm_per_degree_C=0.01;
ppm_offset = (tempC-37)*ppm_per_degree_C;
ppm_start = ppm_start_37C + ppm_offset;
ppm_stop = ppm_stop_37C + ppm_offset;
combine_x = linspace(ppm_start,ppm_stop,(stop-start +1));

% Loop to compute phase correction vector for each receiver
for loop = 1:nreceivers
 % Compute phase correction results
 [pcor_vector, ref_vector, receiver_weight(loop)] = phascor(pfilename , loop);

 % Compute spectroscopy results
 results(loop,:) = spectro_proc(pcor_vector, ref _vector, pfilename, loop);

 % Plot results for each channel
 figure(100);
 subplot(nreceivers,1,loop);
 plot(combine_x, real(results(loop,start:stop)) , 'k');
 mesh_results(loop,:)=real(results(loop,start:sto p));

 if(loop == 1)
 my_string= sprintf('Spectro results for: %s ',fname);
 %title(my_string);
 xlabel('ppm');
 if (nreceivers == 1)
 ylabel('Absorption');
 end
 set(gca,'XTick',-4.0:0.5:0.0);
 set(gca,'XTickLabel',{'4.0','3.5','3.0','2.5 ','2.0','1.5','1.0','0.5','0.0'});

 234

 end

end

% Calculate combined results if more than one recei ver
if nreceivers > 1
 % Find receiver with strongest signal (using Max reference value)
 [max_weight, strongest_receiver] = max(receiver_w eight);

 % Dont use channels whose Max is lower than the t hreshold
 receiver_threshold = 0.05*max_weight; % 0.45 de fault
 combined_weight = 0.0;
 receivers_to_use = 0;
 for loop = 1:nreceivers
 if receiver_weight(loop) >receiver_threshold
 receiver_to_use = receivers_to_use + 1;
 combined_weight = combined_weight + receiver _weight(loop);
 end
 end

 % Linear weighted combination
 accum_results = zeros(size(results(1,:)));
 for loop = 1:nreceivers
 if receiver_weight(loop) >receiver_threshold
 weight = receiver_weight(loop) / combined_we ight;
 accum_results = accum_results + (weight.*rea l(results(loop,:)));
 else
 weight = 0.0;
 end
 weight
 end
 combined_results = accum_results;

 % Plot combined results
 figure;
 plot(combine_x, real(combined_results(start:sto p)), 'k');
 my_string= sprintf('Combined spectro results for: %s ',fname);
 title(my_string);
 xlabel('ppm');
 ylabel('Absorption');
 set(gca,'XTick',-4.0:0.5:0.0);
 set(gca,'XTickLabel',{'4.0','3.5','3.0','2.5','2. 0','1.5','1.0','0.5','0.0'});

 % Plot multiple channel results
 figure;
 surf(combine_x, 1:1:8, mesh_results);
 set(gca,'XTick',-4.0:1.0:0.0);
 set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0. 0'});
 xlabel('ppm');
 zlabel('Absorption');
 ylabel('receive coil');

end

A.4.7 spectro_proc.m

% Spectroscopy - Phase correct, water subtract and Fourier Transform
% Marquette University, Milwaukee, WI USA
% Copyright 2000, 2001, 2002, 2003, 2004 - All righ ts reserved.
% Fred Frigo
%

 235

% This function generates MR spectroscopy results f rom:
% the phase correction vector, pc, (computed by the phascor function)
% the averaged reference data, ref, (computed by th e phascor funtion)
% the name (Pfile) of the raw data file containing water suppressed data.
% and the receiver number, channel_num.
%
%
% Dec 28, 2000 - Original
% May 2, 2001 - updates to plot intermediate resul ts
% June 26, 2001 - updates to accept Pfile name as a rg
% Oct 15, 2001 - updates to read from Pfile directl y, plus new args
% Feb 11, 2002 - modified for multi-channel spectro
% Nov 2, 2003 - Updates to read 5.X and 11.0 forma t files
% Mar 8, 2004 - Plot enhancements
%

function results = spectro_proc (pc, ref, pfilenam e, channel_num)

i = sqrt(-1);

% flag set to 1 for plots of intermediate results
save_plot = 0;

% Open Pfile to read reference scan data.
fid = fopen(pfilename,'r', 'ieee-be');
if fid == -1
 err_msg = sprintf('Unable to locate Pfile %s', pfilename)
 return;
end

% Determine size of Pfile header based on Rev numbe r
status = fseek(fid, 0, 'bof');
[f_hdr_value, count] = fread(fid, 1, 'real*4');
rdbm_rev_num = f_hdr_value(1);
if(rdbm_rev_num == 7.0)
 pfile_header_size = 39984; % LX
elseif (rdbm_rev_num == 8.0)
 pfile_header_size = 60464; % Cardiac / MGD
elseif (rdbm_rev_num == 5.0)
 pfile_header_size = 39940; % Signa 5.5
else
 % In 11.0 (ME2) the header and data are stored as little-endian
 fclose(fid);
 fid = fopen(pfilename,'r', 'ieee-le');
 status = fseek(fid, 0, 'bof');
 [f_hdr_value, count] = fread(fid, 1, 'real*4');
 if (f_hdr_value == 9.0)
 pfile_header_size= 61464;
 else
 err_msg = sprintf('Invalid Pfile header rev ision: %f', f_hdr_value)
 return;
 end
end

status = fseek(fid, 0, 'bof');
[hdr_value, count] = fread(fid, 52, 'integer*2');
nex = hdr_value(37);
nframes = hdr_value(38);
da_xres = hdr_value(52);

% Read 'user19' CV - number of reference frames
status = fseek(fid, 0, 'bof');
[f_hdr_value, count] = fread(fid, 74, 'real*4');
num_ref_frames = f_hdr_value(74);

 236

% Read Pfile to get water supressed signal
ref_offset = 2*da_xres*(num_ref_frames+1)*4;
frame_size = 2*da_xres*4;
channel_size = (nframes + 1)*frame_size;
data_offset = pfile_header_size + (channel_size*(ch annel_num - 1)) + ref_offset;

status = fseek(fid, data_offset, 'bof');
num_sig_frames = nframes - num_ref_frames;
data_elements = 2*da_xres*num_sig_frames;
[raw_data, count] = fread(fid, data_elements, 'inte ger*4');
fclose(fid);

% Store the reference frames in the ref_frames arra y
vector_size = da_xres;
sig_frames=[];
vtmp = [1:vector_size];

for j = 1:num_sig_frames
 vector_offset = vector_size*2*(j-1);
 for k = 1:vector_size
 vtmp(k) = raw_data((vector_offset + k*2)-1) + (raw_data(vector_offset + k*2)*i);
 end
 sig_frames(j,:)=vtmp;
end

vtmp = 0.0;
% Average the reference data frames
for j = 1:num_sig_frames
 vtmp = vtmp + sig_frames(j,:);
end

% Create averaged water suppressed signal vector.
sig = vtmp / num_sig_frames;

% For debug: store water-suppressed signal to file
recv_string = sprintf('%d', channel_num);
signal_file = strcat(pfilename, '.recv', recv_stri ng,'.raw.dat');
fidref = fopen(signal_file, 'w+b');
for findex=1:da_xres
 fwrite(fidref, real(sig(findex)), 'real*4');
 fwrite(fidref, imag(sig(findex)), 'real*4');
end
fclose(fidref);

x=[1:da_xres];
% Plot input signal
if (save_plot == 1)
 plot_complex('Band-limited MR spectroscopy signa l', sig); % fig20
end

% Phase Correct Water supressed signal (sig) and Wa ter signal (ref)
sig = pc.*sig;
ref = pc.*ref;

% Plot phase corrected signal and ref
if (save_plot == 1)
 plot_complex('Phase-corrected water-supressed da ta', sig); %fig 21
 plot_complex('Phase corrected non-water-suppress ed reference data', ref); %fig 22
end

% Subtract to 'signal' from 'water' obtain 'pure wa ter'
pure_water = ref - sig;

% Plot pure water signal

 237

if (save_plot == 1)
 plot_complex('Pure water', pure_water); %fig23
end

% Negate every other element (this shifts the water peak to the center)
a_pure_wat = pure_water;
a_sig = sig;
for n = 1:(da_xres/2)
 a_pure_wat(2*n)= -1.0*a_pure_wat(2*n);
 a_sig(2*n) = -1.0*a_sig(2*n);
end

% Apodization Window
hanning_size = da_xres/1.6;
half_han_size = hanning_size/2;
win=hanning(hanning_size);
apod = linspace(0.0, 0.0, da_xres);
apod(1:half_han_size) = win((half_han_size+1):hanni ng_size);

% Plot apodization window
if (save_plot == 1)
 plot_2_real('w_1[n]',apod); % fig24
end

% Apply apodization window to water and signal vect ors
w_pure_wat = apod.*a_pure_wat;
w_sig = apod.*a_sig;

% Fourier Transform the apodized, alternated water and signal vectors
ft_wat = fft(w_pure_wat);
ft_sig = fft(w_sig);

% Plot Fourier Transform of Pure water and Signal
if (save_plot == 1)
 plot_2_real('Fourier transform of pure water, S_ w[k]', abs(ft_wat), ...
 'Fourier transform of signal, S_s[k] ', abs(ft_sig)); %fig 25
end

% Scale the pure water.
% Assume water in signal and reference is the sa me.
% Use 'real' coefficients in 16 element band nea r center
min_xres=(da_xres/2)-(da_xres/128);
max_xres=(da_xres/2)+(da_xres/128);
mag_wat = ft_wat(min_xres:max_xres);
mag_sig = ft_sig(min_xres:max_xres);
mag_wat = abs(real(mag_wat));
mag_sig = abs(real(mag_sig));
water_max = max(mag_wat);
sig_max = max(mag_sig);

% Scale the pure water so it can be subtracted off
scale = sig_max / water_max;
pure_water = scale.*pure_water;

% Subtract "scaled" pure water from signal.
pure_sig = sig - pure_water;

% Plot Pure Signal
if (save_plot == 1)
 plot_complex('Water-subtracted pure signal', pur e_sig); %fig 26
end

%%%
% For debug: save phase-corrected, water-subtracted signal
%%%
recv_string = sprintf('%d', channel_num);

 238

signal_file = strcat(pfilename, '.recv', recv_stri ng,'.signal.dat');
fidsig = fopen(signal_file, 'w+b');
for findex=1:da_xres
 fwrite(fidsig, real(pure_sig(findex)), 'real*4');
 fwrite(fidsig, imag(pure_sig(findex)), 'real*4');
end
fclose(fidsig);

%%%
% For debug: save reference signal
%%%
recv_string = sprintf('%d', channel_num);
signal_file = strcat(pfilename, '.recv', recv_stri ng,'.ref.dat');
fidref = fopen(signal_file, 'w+b');
for findex=1:da_xres
 fwrite(fidref, real(ref(findex)), 'real*4');
 fwrite(fidref, imag(ref(findex)), 'real*4');
end
fclose(fidref);

% Window for the "pure signal"
% win=hanning(1024);
win=hanning((da_xres*2));
awin = linspace(0.0, 0.0, da_xres);
% awin(1:512) = win(513:1024);
awin(1:da_xres) = win((da_xres+1):(da_xres*2));

if (save_plot == 1)
 plot_2_real('w_2[n]', awin); % fig 27
end

% Apodize and zero pad the "pure signal" prior to t he Fourier transform
zero_pad = 1;
a_pure_sig = linspace(0.0, 0.0, (da_xres*2)*zero_p ad);
a_pure_sig(1:da_xres) = awin.*pure_sig;
nmr_spect = fft(a_pure_sig);

if (save_plot == 1) %fig 28
 plot_complex('Phase-corrected, apodized, water-s uppressed signal with residual water
removed',a_pure_sig);
end

results = nmr_spect;

A.4.8 sraw_image.m

% sraw_image.m - plot raw data for a single echo from a Pfile
%
% Marquette University, Milwaukee, WI USA
% Copyright 2002, 2003 - All rights reserved.
% Fred Frigo
%
% Date: Jan 21, 2002 - based raw_image.m
%
% - create 2 images, one for reference data, one f or water supressed data
%

function sraw_image(pfile)

% Check to see if pfile name was passed in
if (nargin == 0)
 % Enter name of Pfile

 239

 [fname, pname] = uigetfile('*.*', 'Select Pfile');
 pfile = strcat(pname, fname);
end

i = sqrt(-1);

% Open Pfile to read reference scan data.
fid = fopen(pfile,'r', 'ieee-be');
if fid == -1
 err_msg = sprintf('Unable to locate Pfile %s', pfile)
 return;
end

% Determine size of Pfile header based on Rev numbe r
status = fseek(fid, 0, 'bof');
[f_hdr_value, count] = fread(fid, 1, 'real*4');
rdbm_rev_num = f_hdr_value(1);
if(rdbm_rev_num == 7.0)
 pfile_header_size = 39984; % LX
elseif (rdbm_rev_num == 8.0)
 pfile_header_size = 60464; % Cardiac / MGD
elseif ((rdbm_rev_num > 5.0) && (rdbm_rev_num < 6 .0))
 pfile_header_size = 39940; % Signa 5.5
else
 % In 11.0 (ME2) the header and data are stored as little-endian
 fclose(fid);
 fid = fopen(pfile,'r', 'ieee-le');
 status = fseek(fid, 0, 'bof');
 [f_hdr_value, count] = fread(fid, 1, 'real*4');
 if (f_hdr_value == 9.0)
 pfile_header_size= 61464;
 else
 err_msg = sprintf('Invalid Pfile header rev ision: %f', f_hdr_value)
 return;
 end
end

status = fseek(fid, 0, 'bof');

% Read header information
[hdr_value, count] = fread(fid, 5122, 'integer*2');
nechoes = hdr_value(36);
nframes = hdr_value(38);
point_size = hdr_value(42);
da_xres = hdr_value(52);
da_yres = hdr_value(53);
rc_xres = hdr_value(54);
rc_yres = hdr_value(55);
start_recv = hdr_value(101);
stop_recv = hdr_value(102);
nreceivers = (stop_recv - start_recv) + 1;
slices_in_pass = hdr_value(5122);

% Read 'user19' CV - number of reference frames
status = fseek(fid, 0, 'bof');
[f_hdr_value, count] = fread(fid, 74, 'real*4');
rdbm_rev_num = f_hdr_value(1);
num_ref_frames = f_hdr_value(74);

% Compute size (in bytes) of each frame, echo and s lice
data_elements = da_xres*2*(da_yres-1);
frame_size = da_xres*2*point_size;
echo_size = frame_size*da_yres;
slice_size = echo_size*nechoes;
mslice_size = slice_size*nreceivers;

 240

for k = 1:1000 % give a large number 1000 to loop forever

 % Enter slice number to plot
 my_slice = 1;
 if (slices_in_pass > 1)
 slice_msg = sprintf('Enter the slice number: [1..%d]',slices_in_pass);
 my_slice = input(slice_msg);
 if (my_slice > slices_in_pass)
 err_msg = sprintf('Invalid number of slic es. Slice number set to 1.')
 my_slice = 1;
 end
 end

 % Enter echo number to plot
 my_echo = 1;
 if (nechoes > 1)
 echo_msg = sprintf('Enter the echo number: [1 ..%d]',nechoes);
 my_echo = input(echo_msg);
 if (my_echo > nechoes)
 err_msg = sprintf('Invalid echo number. E cho number set to 1.')
 my_echo = 1;
 end
 end

 % Enter receiver number to plot
 my_receiver = 1;
 if (nreceivers > 1)
 recv_msg = sprintf('Enter the receiver number : [1..%d]',nreceivers);
 my_receiver = input(recv_msg);
 if (my_receiver > nreceivers)
 err_msg = sprintf('Invalid receiver numbe r. Receiver number set to 1.')
 my_receiver = 1;
 end
 end

 % Compute offset in bytes to start of frame. (sk ip baseline view)
 file_offset = pfile_header_size + ((my_slice - 1) *mslice_size) + ...
 + ((my_receiver -1)*slice_siz e) + ...
 + ((my_echo-1)*echo_size) + . ..
 + (frame_size);

 status = fseek(fid, file_offset, 'bof');

 % read data: point_size = 2 means 16 bit data, po int_size = 4 means EDR)
 if (point_size == 2)
 [raw_data, count] = fread(fid, data_elements, 'integer*2');
 else
 [raw_data, count] = fread(fid, data_elements, 'integer*4');
 end

 %frame_data = zeros(da_xres);
 for j = 1:(da_yres -1)
 row_offset = (j-1)*da_xres*2;
 for m = 1:da_xres
 frame_data(j,m) = raw_data(((2*m)-1) + row _offset) + i*raw_data((2*m) +
row_offset);
 end
 end

 figure(k);
 subplot(2,1,1);
 imagesc(abs(frame_data([1:num_ref_frames],:)));

 241

 %title(sprintf('Magnitude of Raw Reference Spectr o Data, slice %d, recv %d, echo %d',
my_slice, my_receiver, my_echo));
 title('Magnitude of Raw Reference Data');
 xlabel('time');
 ylabel('frame number');
 subplot(2,1,2);
 imagesc(abs(frame_data([num_ref_frames+1:nframes -1],:)));
 title('Magnitude of Raw Water Suppressed Data');
 xlabel('time');
 ylabel('frame number');

 % check to see if we should quit
 quit_answer = input('Press Enter to continue, "q" to quit:', 's');
 if (size(quit_answer) > 0)
 if (quit_answer == 'q')
 break;
 end
 end

end
fclose(fid);

 242

A.5 MATLAB Code for 2D Spectral Estimation

A.5.1 APESCapon2D.m

% APESCapon2D.m - weighted 2D APES / weighted 2D C apon
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo, James A. Heinen
%
% Nw must be greater than or equal to N/2.
% k1 and k2 must satisfy 0<=k1<k2<=Nw-1.
% If bet1=0, only one matrix inversion is used.
% If bet1=-0.5 and bet2=0, only one fft is used.
% 0<gam<=1. gam=1 reduces to 2D APES. gam=0 would reduce to 2D Capon.
%

function S=APESCapon2D(x,N,M,Nsig,Nw,k1,k2,delsig,b et1,bet2,gam,C,g)

delw=pi/Nw;
x1=x(1,:);
xbb=x1(ones(M,1)*[1:N]+[0:M-1]'*ones(1,N));
if C>1
 for i=2:C
 xi=x(i,:);
 xbb=[xbb
 xi(ones(M,1)*[1:N]+[0:M-1]'*ones(1,N))];
 end
end
if bet1==0
 bet=bet2;
 Rinv=fRinv(xbb,N,M,bet,C);
end
if bet1==-0.5&bet2==0
 Xbb=fXbb(xbb,N,M,Nw,0,C);
end
for m=0:Nsig-1
 sig=m*delsig;
 if bet1~=0
 bet=bet1*sig+bet2;
 Rinv=fRinv(xbb,N,M,bet,C);
 end
 if bet1==-0.5&bet2==0
 L=fL(N,0.5*sig);
 else
 bet=bet1*sig+bet2;
 Xbb=fXbb(xbb,N,M,Nw,sig+2*bet,C);
 L=fL(N,sig+bet);
 end
 sbb0=exp(-sig*[0:M-1]'*ones(1,k2-k1+1)+j*delw*[0 :M-1]'*[k1:k2]);
 sbb=g(1)*sbb0;
 if C>1
 for i=2:C
 sbb=[sbb
 g(i)*sbb0];
 end
 end
 for k=k1:k2
 Qinv=Rinv+gam*Rinv*Xbb(:,k+1)*Xbb(:,k+1)'*Rin v/...
 (L-gam*Xbb(:,k+1)'*Rinv*Xbb(:,k+1));

 243

 S(m+1,k-k1+1)=sbb(:,k-k1+1)'*Qinv*Xbb(:,k+1)/ ...
 (L*sbb(:,k-k1+1)'*Qinv*sbb(:,k-k1+1));
 end
end
return

function Rinv=fRinv(xbb,N,M,bet,C)
e=repmat(exp(-bet*[0:N-1]),M*C,1);
xbbe=xbb.*e;
R=xbbe*xbbe';
Rinv=inv(R);
return

function Xbb=fXbb(xbb,N,M,Nw,sig,C)
e=repmat(exp(-sig*[0:N-1]),M*C,1);
xbbe=xbb.*e;
Xbb=fft(xbbe.',2*Nw).';
return

function L=fL(N,sig)
if sig==0
 L=N;
else
 L=(1-exp(-2*sig*N))/(1-exp(-2*sig));
end
return

A.5.2 Capon2D.m

% Capon2D.m - weighted 2D Capon
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo, James A. Heinen
%
% K must be 1 or N. alp1 and alp2 are irrelevant i f K=1.
% Nw must be greater than or equal to N/2.
% k1 and k2 must satisfy 0<=k1<k2<=Nw-1.
% If bet1=0, only one matrix inversion is used.
% If alp1=-0.5 and alp2=0, only one fft is used.
% If K=1, no fft's are used.
%
function S=Capon2D(x,N,M,K,Nsig,Nw,k1,k2,delsig,alp 1,alp2,bet1,bet2,C,g)

delw=pi/Nw;
x1=x(1,:);
xbb=x1(ones(M,1)*[1:N]+[0:M-1]'*ones(1,N));
if C>1
 for i=2:C
 xi=x(i,:);
 xbb=[xbb
 xi(ones(M,1)*[1:N]+[0:M-1]'*ones(1,N))];
 end
end
if bet1==0
 bet=bet2;
 Rinv=fRinv(xbb,N,M,bet,C);
end
if K==1
 Xbb=repmat(x(1,1:M).',1,Nw);
 if C>1
 for i=2:C

 244

 Xbb=[Xbb
 repmat(x(i,1:M).',1,Nw)];
 end
 end
elseif (K~=1)&(alp1==-0.5&alp2==0)
 Xbb=fXbb(xbb,N,M,Nw,0,C);
end
for m=0:Nsig-1
 sig=m*delsig;
 if bet1~=0
 bet=bet1*sig+bet2;
 Rinv=fRinv(xbb,N,M,bet,C);
 end
 if K==1
 L=1;
 elseif (K~=1)&(alp1==-0.5&alp2==0)
 L=fL(N,0.5*sig);
 else
 alp=alp1*sig+alp2;
 Xbb=fXbb(xbb,N,M,Nw,sig+2*alp,C);
 L=fL(N,sig+alp);
 end
 sbb0=exp(-sig*[0:M-1]'*ones(1,k2-k1+1)+j*delw*[0 :M-1]'*[k1:k2]);
 sbb=g(1)*sbb0;
 if C>1
 for i=2:C
 sbb=[sbb
 g(i)*sbb0];
 end
 end
 S(m+1,:)=(ones(1,M*C)*(conj(sbb).*(Rinv*Xbb(:,k1 +1:k2+1))))./...
 (L*ones(1,M*C)*(conj(sbb).*(Rinv*sbb)));
end
return

function Rinv=fRinv(xbb,N,M,bet,C)
e=repmat(exp(-bet*[0:N-1]),M*C,1);
xbbe=xbb.*e;
R=xbbe*xbbe';
Rinv=inv(R);
return

function Xbb=fXbb(xbb,N,M,Nw,sig,C)
e=repmat(exp(-sig*[0:N-1]),M*C,1);
xbbe=xbb.*e;
Xbb=fft(xbbe.',2*Nw).';
return

function L=fL(N,sig)
if sig==0
 L=N;
else
 L=(1-exp(-2*sig*N))/(1-exp(-2*sig));
end
return

A.5.3 fgest.m

% fgest.m - gain estimation for multiple-channel si gnals for FID signal
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo, James A. Heinen

 245

%
% xlong is the matrix containing signals from C cha nnels
%
function gest=fgest(xlong,C)
one=ones(C,1);
R=xlong*xlong';
Rg=R-trace(R)*eye(C);
RgRginv=inv(Rg'*Rg);
gest=RgRginv*one/(one'*RgRginv*one);
return

A.5.4 frhsqest.m

% frhosqest.m - multiple-channel rho-sqaured (nois e variance) estimation for FID signal
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo, James A. Heinen
%
% xlong is the matrix containing signals from C cha nnels
%
% Ns = length of signal (high SRN region of FID sig nal)
% Nf = total length of FID signal.
%
% note: rho^2 is estimated from "noisy" end of FID signal
%

function rhosqest=frhosqest(xlong,Ns,Nf,C)
xrho=xlong(:,Ns+1:Nf);
for i=1:C
 rhosqest(i)=xrho(i,:)*xrho(i,:)';
end
rhosqest=rhosqest.'/(Nf-Ns);
return

A.5.5 getx.m

% getx.m - get simulated test signal (5 different d amped sinusoid components)
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo, James A. Heinen
%
% note: if C > 1, a set of test signals is created, each with a different
% SNR and gain as specified by gideal, dbSNRi deal
%
function [xlong,xclean,rhosqideal]=getx(Nf,delw,C,g ideal,dbSNRideal)
n=[0:Nf-1];
t=n;
xclean=2*exp(j*pi/3)*exp((-0.003+j*20*delw)*t);
xclean=xclean+4*exp(-j*pi/6)*exp((-0.008+j*25*delw) *t);
xclean=xclean+2*exp(j*pi)*exp((-0.001+j*50*delw)*t) ;
xclean=xclean+4*exp(j*pi/6)*exp((-0.008+j*210*delw) *t);
xclean=xclean+2*exp(-j*pi/3)*exp((-0.003+j*220*delw)*t);
xeng=xclean*xclean';
for i=1:C
 noise=(randn(size(xclean)))+j*(randn(size(xclean)));
 neng=noise*noise';
 noisegain(i)=sqrt((abs(gideal(i))^2*xeng)/(neng* 10^(dbSNRideal(i)/10)));

 246

 noisei=noisegain(i)*noise;
 rhosqideal(i)=noisei*noisei'/Nf;
 xi=gideal(i)*xclean+noisei;
 if i==1
 xlong=xi;
 else
 xlong=[xlong
 xi];
 end
end
rhosqideal=rhosqideal.';
return

A.5.6 getxmrs.m

% getxmrs.m - read phase-corrected, water-suppresse d MRS signal
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo, James A. Heinen
%
% Note: If C > 1, a file for each receive channel w ill be obtained.
%
function [xlong,dbSNRideal,fname]=getxmrs(Nf,C);
for i=1:C
 [fname, pname] = uigetfile('*.*', 'Select spectr oscopy raw data file');
 afile = strcat(pname, fname);
 fid = fopen(afile,'r', 'ieee-le');
 [raw_data, count] = fread(fid, inf, 'real*4');
 fclose(fid);
 for m = 1:(count/2)
 frame_data(m) = raw_data((2*m)-1) + j*raw_d ata(2*m);
 end
 xi=frame_data(1:Nf)*0.0001;
 xeng(i)=xi*xi';
 if i==1
 xlong=xi;
 else
 xlong=[xlong
 xi];
 end
end
dbSNRideal=NaN;
return

A.5.7 peak.m

% peak.m - peak-enhancement, plot peaks as Dirac de lta functions
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo, James A. Heinen
%
% S - Input is 2D (real or complex) surface.
% thresh - threshold; peaks must have magnitude gre ater than this
% suppreslastrow - if set to 1, ignore peaks from l ast row (recommended)
% Sp - Output representing 2D peak-enhanced surface
%
function Sp=peak(S,thresh,suppresslastrow)
S=abs(S);
[Nsig,Nw]=size(S);

 247

Sb=zeros(Nsig+2,Nw+2);
Sbp=zeros(Nsig+2,Nw+2);
for m=1:Nsig
 for k=1:Nw
 Sb(m+1,k+1)=S(m,k);
 end
end
for m=2:Nsig+1
 for k=2:Nw+1
 if Sb(m,k)>=max([Sb(m+1,k-1) Sb(m+1,k) Sb(m+1 ,k+1) Sb(m,k-1) ...
 Sb(m,k+1) Sb(m-1,k-1) Sb(m-1,k) Sb(m-1, k+1)])&Sb(m,k)>=thresh
 Sbp(m,k)=Sb(m,k);
 end
 end
end
for m=1:Nsig
 for k=1:Nw
 Sp(m,k)=Sbp(m+1,k+1);
 end
end
if suppresslastrow==1
 for k=1:Nw
 Sp(Nsig,k)=0;
 end
end
return

A.5.8 peakproj.m

% peakproj.m - Create peak projection plot of a 2D surface
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo, James A. Heinen
%
function Spp=peakproj(S,thresh)
S=abs(S);
[Nsig,Nw]=size(S);
for k=1:Nw
 Spp(k)=max(S(:,k));
 if Spp(k)<=thresh
 Spp(k)=0;
 end
end
return

A.5.9 spectrum2D.m

% spectrum2D.m - mainline function to evaluate 2D C apon / 2D APES
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo, James A. Heinen
%
% This is the main MATLAB code used to analyze:
% weighted 2D Capon
% weighted 2D APES
% combined weighted 2D APES / 2D APES
% 2D multiple-channel spectral estimation using s ignal averaging
% 2D multiple-channel spectral estimation using s pectrum averaging
%

 248

% Use datatype=1 to use simulated test signal or
% datatype=2 to use phase-corrected, water-supp ressed MRS data
%
% Note:
% Standard 2D Capon: alp1=alp2=bet1=bet2=gam=0; spectrumtype=1
% Standard 2D APES: alp1=alp2=bet1=bet2=0; gam=1; spectrumtype=2
%
clear all
close all
N=1792; %512 % Note: for MRS data N+M should = 2 048 for optimum results!
M=256; %128
Ns=1800; %1800
Nf=2048;%0<Ns<Nf. Nf>=N+M-1.
K=N;%K must be 1 or N. alp1 and alp2 are irrelevan t if K=1.
Nsig=40;
Nw=N/2;%Nw must be greater than or equal to N/2.
k1=0;
k2=Nw-1;%0<=k1<k2<=Nw-1.
delsig=0.0005;
alp1=0;
alp2=0;
bet1=0; % 0 = default - set this to 0.5 to increas e peak picking sensitivity
bet2=0;
gam=0;%0<gam<=1. gam=1 reduces to 2D APES. gam=0 would reduce to 2D Capon.
C=1;

datatype=2;%=1 for simulated data, 2 for mrs data.
spectrumtype=1;%=1 for 2D Capon, 2 for 2D APES/Capo n.

if C>1
 combotype=1;%=1 for signal averaging, 2 for spec trum averaging, 3 for composite
spectrum.
 gtype=2;%=1 for ideal g's, 2 for estimated g's.
 %ideal can be used only for simulated da ta.
 rhosqtype=2;%=1 for ideal rhosq's, 2 for estimat ed rhosq's.
 %ideal can be used only for simulate d data.
end

delw=pi/Nw;
mrs_name='x(t)';
if datatype==1
 gideal=[1];%[0.5*j+0.4 0.2 0.15+j*3 0.15-j*3].'; %length(gideal)=C. If C=1, then
gideal=1.
 dbSNRideal=[10];%[40 40 40 40].';%length(dbSNRid eal)=C.
 [xlong,xclean,rhosqideal]=getx(Nf,delw,C,gideal, dbSNRideal);
elseif datatype==2
 [xlong,dbSNRideal,mrs_name]=getxmrs(Nf,C);
 tempC=37 %37
 %[xlong,dbSNRideal,mrs_name]=getxmrs_sphere(Nf,C);
 k1=floor(0.02*Nw/pi);
 k2=floor(0.8*Nw/pi);
end

x=xlong(:,1:N+M-1);

if C>1

 if gtype==1&datatype==1
 g=gideal;
 elseif gtype==2
 g=fgest(xlong,C);
 %g=fgest(x,C);
 end

 if rhosqtype==1&datatype==1
 rhosq=rhosqideal;

 249

 elseif rhosqtype==2
 rhosq=frhosqest(xlong,Ns,Nf,C);
 end

 Rw=diag(rhosq);
 Rwinv=inv(Rw);
 w=Rwinv*g/(g'*Rwinv*g);
 xest=w'*x;

else % if C == 1, then g = 1
 g=1;
end

tic

if (C==1)|(C>1&combotype==3)
 if spectrumtype==1
 S=Capon2D(x,N,M,K,Nsig,Nw,k1,k2,delsig,alp1,a lp2,bet1,bet2,C,g);
 elseif spectrumtype==2
 S=APESCapon2D(x,N,M,Nsig,Nw,k1,k2,delsig,bet1 ,bet2,gam,C,g);
 end
end

if C>1&combotype==1
 if spectrumtype==1
 S=Capon2D(xest,N,M,K,Nsig,Nw,k1,k2,delsig,alp 1,alp2,bet1,bet2,1,1);
 elseif spectrumtype==2
 S=APESCapon2D(xest,N,M,Nsig,Nw,k1,k2,delsig,b et1,bet2,gam,1,1);
 end
end

if C>1&combotype==2
 S=zeros(Nsig,k2-k1+1);
 for i=1:C
 if spectrumtype==1
 Si=Capon2D(x(i,:),N,M,K,Nsig,Nw,k1,k2,dels ig,alp1,alp2,bet1,bet2,1,1);
 elseif spectrumtype==2
 Si=APESCapon2D(x(i,:),N,M,Nsig,Nw,k1,k2,de lsig,bet1,bet2,gam,1,1);
 end
 S=S+conj(w(i))*Si;
 end
end

toc

if spectrumtype==1
 paras=['N = ',num2str(N),', M = ',num2str(M),', K = ',num2str(K),...
 ', alp1 = ',num2str(alp1),', alp2 = ',num2 str(alp2),...
 ', bet1 = ',num2str(bet1),', bet2 = ',num2 str(bet2),...
 ', SNR = ',num2str(dbSNRideal'),' db'];
elseif spectrumtype==2
 paras=['N = ',num2str(N),', M = ',num2str(M),...
 ', bet1 = ',num2str(bet1),', bet2 = ',num2 str(bet2),...
 ', gam = ',num2str(gam),', SNR = ',num2str (dbSNRideal'),' db'];
end

sigset=delsig*[0:Nsig-1];
wset=delw*[k1:k2];
n=[0:N+M-2];

Sp=peak(S,0,1);
Spp=peakproj(Sp,0);

% create projection of the non-peak enhanced spectr um (fig38 phD)
rawSpp=peakproj(abs(S), 0);

 250

% Plots
if(spectrumtype == 1)
 analysis_string = '2D Capon ';
else
 analysis_string = '2D Capon/APES ';
end

figure
title_string = strcat([analysis_string, 'surface pl ot of |S(\sigma,\omega)| for ',
mrs_name]);
surf(wset,sigset,abs(S)),title(title_string), xlabe l('\omega'),
ylabel('\sigma'),zlabel('|S(\sigma,\omega)|');

figure
title_string = strcat([analysis_string, 'contour pl ot of |S(\sigma,\omega)| for ',
mrs_name]);
contour(wset,sigset,abs(S)),title(title_string),xla bel('\omega'),ylabel('\sigma');

figure
title_string = strcat([analysis_string, 'peak-enhan ced surface plot of |S(\sigma,\omega)|
for ', mrs_name]);
surf(wset,sigset,Sp),title(title_string),xlabel('\o mega'),ylabel('\sigma'),zlabel('|S(\si
gma,\omega)|');

figure
title_string = strcat([analysis_string, 'peak-enhan ced contour plot of |S(\sigma,\omega)|
for ', mrs_name]);
contour(wset,sigset,Sp),title(title_string),xlabel('\omega'),ylabel('\sigma');
% using sign(Sp) causes all peaks to be shown, no m atter how small
% contour(wset,sigset,sign(Sp)),title(title_string) ,xlabel('\omega'),ylabel('\sigma');

figure
title_string = strcat([analysis_string, 'projected peaks of |S(\sigma,\omega)| for ',
mrs_name]);
plot(wset,Spp),title(title_string),xlabel('\omega') ,ylabel('|S(\sigma,\omega)|');

figure
title_string = strcat([analysis_string, 'projection of |S(\sigma,\omega)| for ',
mrs_name]);
plot(wset,rawSpp),title(title_string),xlabel('\omeg a'),ylabel('|S(\sigma,\omega)|');

X=fft(x.').';
[Cft,Nft]=size(abs(X));
k1ft=floor(Nft*k1/(2*Nw));
k2ft=floor(Nft*k2/(2*Nw));
wfset=[k1ft:k2ft]*2*pi/Nft;
figure
plot(wfset,abs(X(:,k1ft+1:k2ft+1))/Nft),title(strca t(['Fourier transform of
',mrs_name])),xlabel('\omega'),ylabel('|S(\omega)|');
%plot(wfset,abs(X(:,k1ft+1:k2ft+1))/Nft),title('abs (FFT)s of observed
signal(s)'),xlabel(paras)
if C>1
 Xest=fft(xest.').';
 figure
 plot(wfset,abs(Xest(:,k1ft+1:k2ft+1))/Nft),title ('average abs(FFT)'),xlabel(paras)
end
figure
plot(n,abs(x).'),title(strcat(['Input signal ',mrs_ name])), xlabel('t'),ylabel('x(t)');
%plot(n,abs(x).'),title('observed signal(s)'),xlabe l(paras)

% Plots identical to above, but scaled to ppm axis.
% PPM axis (calibrated for 37C)
% tempC must be set for proper ppm axis scaling. (t empC=37) for in vivo
ppm_start_37C = -4.55;
ppm_stop_37C = 0.30;
ppm_per_degree_C=0.01;

 251

ppm_offset = (tempC-37)*ppm_per_degree_C;
ppm_start = ppm_start_37C + ppm_offset;
ppm_stop = ppm_stop_37C + ppm_offset;
ppm_x = linspace(ppm_start,ppm_stop,(k2-k1+1));

figure
title_string = strcat([analysis_string, 'surface pl ot of |S(\sigma,\omega)| for ',
mrs_name]);
surf(ppm_x,sigset,abs(S)), xlabel('ppm'), ylabel('\ sigma'),zlabel('|S(\sigma,\omega)|');
set(gca,'XTick',-4.0:1.0:0.0);
set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0.0' });

figure
title_string = strcat([analysis_string, 'contour pl ot of |S(\sigma,\omega)| for ',
mrs_name]);
contour(ppm_x,sigset,abs(S)),xlabel('ppm'),ylabel(' \sigma');
set(gca,'XTick',-4.0:1.0:0.0);
set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0.0' });

figure
title_string = strcat([analysis_string, 'peak enhan ced surface plot of |S(\sigma,\omega)|
for ', mrs_name]);
surf(ppm_x,sigset,Sp),xlabel('ppm'),ylabel('\sigma'),zlabel('|S(\sigma,\omega)|');
set(gca,'XTick',-4.0:1.0:0.0);
set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0.0' });

figure
title_string = strcat([analysis_string, 'peak enhan ced contour plot of |S(\sigma,\omega)|
for ', mrs_name]);
contour(ppm_x,sigset,Sp),xlabel('ppm'),ylabel('\sig ma');
set(gca,'XTick',-4.0:1.0:0.0);
set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0.0' });

figure
title_string = strcat([analysis_string, 'projected peaks of |S(\sigma,\omega)| for ',
mrs_name]);
plot(ppm_x,Spp),xlabel('ppm'),ylabel('|S(\sigma,\om ega)|');
set(gca,'XTick',-4.0:1.0:0.0);
set(gca,'XTickLabel',{'4.0','3.0','2.0','1.0','0.0' });

 252

A.6 MATLAB Code for Simulations

A.6.1 check_for_nan.m

% check_for_nan.m - Check for NaN and set all prior points to NaN if found.
% Marquette University, Milwaukee, WI USA
% Copyright 2004 - All rights reserved.
% Fred J. Frigo
% Feb 10, 2004 - original
%
%

function out_data=check_for_nan(in_data)

array_size = max(size(in_data));

% Check for NaN and set all prior points to NaN if found.
for m=array_size:-1:1
 if(isnan(in_data(m)) == 1)
 for k=m:-1:1
 out_data(k)=NaN;
 end
 break;
 else
 out_data(m)=in_data(m);
 end
end
return;

A.6.2 count_peaks.m

% count_peaks.m - Count the number of peaks that ex ceed a threshold
% Marquette University, Milwaukee, WI USA
% Copyright 2003 - All rights reserved.
% Fred J. Frigo
% Dec 23, 2003
%
%

function peaks_found=count_peaks(S,thresh)
peaks_found = 0;
S=abs(S);
[Nsig,Nw]=size(S);
for k=1:Nw
 Spp(k)=max(S(:,k));
 if Spp(k)>thresh
 peaks_found = peaks_found + 1;
 end
end
return

A.6.3 create_noise.m

% create_noise.m - create 10 noise instances and save to files
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred Frigo
% Dec 10, 2003

 253

% Feb 20, 2004 - added extra noise files for multi -channel testing

clear all
close all

% size of desired noise frame
N=1024;

% number of noise frames to create
num_noise_frames = 40;
filename=[
 'noise_0.dat';
 'noise_1.dat';
 'noise_2.dat';
 'noise_3.dat';
 'noise_4.dat';
 'noise_5.dat';
 'noise_6.dat';
 'noise_7.dat';
 'noise_8.dat';
 'noise_9.dat';
 'noise10.dat';
 'noise11.dat';
 'noise12.dat';
 'noise13.dat';
 'noise14.dat';
 'noise15.dat';
 'noise16.dat';
 'noise17.dat';
 'noise18.dat';
 'noise19.dat';
 'noise20.dat';
 'noise21.dat';
 'noise22.dat';
 'noise23.dat';
 'noise24.dat';
 'noise25.dat';
 'noise26.dat';
 'noise27.dat';
 'noise28.dat';
 'noise29.dat';
 'noise30.dat';
 'noise31.dat';
 'noise32.dat';
 'noise33.dat';
 'noise34.dat';
 'noise35.dat';
 'noise36.dat';
 'noise37.dat';
 'noise38.dat';
 'noise39.dat'];

% debug flag for plotting
do_plot=0;

% Loop to create complex noise frames and plot them
for index=1:num_noise_frames

 % Create complex noise
 noise=(randn(N) + j*(randn(N)))./sqrt(2.0);

 if (index ==1)
 figure;
 subplot(2,1,1);
 plot(1:N, abs(noise), 'k');
 if (index == num_noise_frames)

 254

 xlabel('Magnitude of noise');
 end

 subplot(2,1,2);
 plot(1:N, angle(noise), 'k');
 if (index == num_noise_frames)
 xlabel('Phase of noise');
 end
 end

 % Save to file
 fidsig = fopen(filename(index,:), 'w+b');
 for findex=1:N
 fwrite(fidsig, real(noise(findex)), 'real*4') ;
 fwrite(fidsig, imag(noise(findex)), 'real*4') ;
 end
 fclose(fidsig);

end

A.6.4 create_signals.m

% create_signals.m - create 3 simulation signals and save to files
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred Frigo
% Dec 10, 2003
% Mar 14, 2004 - plot enhancements

clear all
close all

% size of desired signals
Nf=1024;
N=512;
Nw=N/2;
delw=pi/Nw;
t=[0:Nf-1];

% signal I
signal_1=1.0*exp(j*pi/4.0)*exp((-0.002+j*(63.0)*del w)*t);
signal_1=signal_1+(0.75)*exp(j*(-pi/2.0))*exp((-0.0 06+j*(127.0)*delw)*t);
signal_1=signal_1+(0.25)*exp(j*0.0)*exp((-0.004+j*(191.0)*delw)*t);

%------------------------------
% plot of signal I
%------------------------------
plot_complex('Signal I', signal_1);

% Save to file
fidsig = fopen('signal_1.dat', 'w+b');
for findex=1:Nf
 fwrite(fidsig, real(signal_1(findex)), 'real*4') ;
 fwrite(fidsig, imag(signal_1(findex)), 'real*4') ;
end
fclose(fidsig);

%------------------------------
% signal II
%------------------------------
signal_2=1.0*exp(j*pi/4.0)*exp((-0.001+j*(30.0)*del w)*t);
signal_2=signal_2+(25.0)*exp(j*0.0)*exp((-0.002+j*(40.0)*delw)*t);
signal_2=signal_2+(0.75)*exp(j*(-pi/4.0))*exp((-0.0 04+j*(50.0)*delw)*t);

 255

signal_2=signal_2+(0.25)*exp(j*0.0)*exp((-0.003+j*(100.0)*delw)*t);
signal_2=signal_2+(1.0)*exp(j*0.0)*exp((-0.001+j*(1 20.0)*delw)*t);
signal_2=signal_2+(10.0)*exp(j*(pi/2.0))*exp((-0.00 2+j*(125.0)*delw)*t);
signal_2=signal_2+(0.5)*exp(j*(-pi/2.0))*exp((-0.00 2+j*(195.0)*delw)*t);
signal_2=signal_2+(1.0)*exp(j*0.0)*exp((-0.003+j*(2 25.0)*delw)*t);

% plot of signal II
plot_complex('Signal II', signal_2);

% Save to file
fidsig = fopen('signal_2.dat', 'w+b');
for findex=1:Nf
 fwrite(fidsig, real(signal_2(findex)), 'real*4') ;
 fwrite(fidsig, imag(signal_2(findex)), 'real*4') ;
end
fclose(fidsig);

%------------------------------
% signal III
%------------------------------
signal_3=0.5*exp(j*0.0)*exp((-0.004+j*(0.0)*delw)*t);
signal_3=signal_3+(0.75)*exp(j*(-pi/2.0))*exp((-0.0 02+j*(10.0)*delw)*t);
signal_3=signal_3+(1.0)*exp(j*(pi/4.0))*exp((-0.003 +j*(31.0)*delw)*t);
signal_3=signal_3+(0.75)*exp(j*(0.0))*exp((-0.003+j *(34.0)*delw)*t);
signal_3=signal_3+(0.5)*exp(j*(-pi/2.0))*exp((-0.00 5+j*(55.0)*delw)*t);
signal_3=signal_3+(1.0)*exp(j*(pi/2.0))*exp((-0.001 +j*(63.0)*delw)*t);
signal_3=signal_3+(1.0)*exp(j*(-3.0*pi/4.0))*exp((- 0.005+j*(66.0)*delw)*t);
signal_3=signal_3+(0.25)*exp(j*(0.0))*exp((-0.004+j *(73.0)*delw)*t);
signal_3=signal_3+(0.5)*exp(j*(pi/2.0))*exp((-0.000 +j*(95.0)*delw)*t);
signal_3=signal_3+(0.5)*exp(j*(-pi/2.0))*exp((-0.00 6+j*(104.0)*delw)*t);

% plot of signal III
plot_complex('Signal III', signal_3);

% Save to file
fidsig = fopen('signal_3.dat', 'w+b');
for findex=1:Nf
 fwrite(fidsig, real(signal_3(findex)), 'real*4') ;
 fwrite(fidsig, imag(signal_3(findex)), 'real*4') ;
end
fclose(fidsig);

A.6.5 find_peak.m

% find_peak.m - Find peak and compute squared error for amplitude, phase
% and damping
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo
% Dec 23, 2003 - original
% Jan 20, 2004 - Added bias error computation
%
%
% Inputs:
% S = input data signal
% component_info = contains info about ea ch peak in the signal
% [A, theta, sigma, omega_in dex, next_omega_flag]
% A = expected magnitude
% theta = expected phase
% sigma = expected sigma (dam ping)
% omega_index = omega index f or expected peak
% next_omega_flag = 1 if OK t o use next omega index

 256

% delw = step size for omega (freq)
% delsig = step size for sigma (damping)
% threshold = magnitude required to be cl assified as a peak
%
% Outputs:
% rms_mag_err = rms error for magnitude
% rms_phase_err = rms error for phase
% rms_sigma_err = rms error for sigma (da mping)
% pct_mag_err = percent error for magnitu de
% pct_phase_err = percent error for phase
% pct_sigma_err = percent error for sigma (damping)
% bias_mag_err = bias error for magnitude
% bias_phase_err = bias error for phase
% bias_sigma_err = bias error for sigma (damping)

function [found_peak_flag, rms_mag_err, rms_phase_e rr, rms_sigma_err, ...
 pct_mag_err, pct_phase _err, pct_sigma_err, ...
 bias_mag_err, bias_pha se_err, bias_sigma_err] = find_peak(
S, component_info, delw, delsig, threshold)

rms_mag_err = 0.0;
rms_phase_err = 0.0;
rms_sigma_err = 0.0;
pct_mag_err = 0.0;
pct_phase_err = 0.0;
pct_sigma_err = 0.0;
bias_mag_err = 0.0;
bias_phase_err = 0.0;
bias_sigma_err = 0.0;

expected_magnitude = component_info(1);
expected_theta = component_info(2);
expected_sigma = component_info(3);
omega_start = component_info(4)+1;
next_omega_flag = component_info(5);

% Obtain num of sigma values
num_sigma = min(size(S(:,:))); % Nsig

% Check to see if we need to include two values of omega for search (boundary condition)
if (next_omega_flag == 1)
 omega_end = omega_start + 1;
else
 omega_end = omega_start;
end

found_peak_flag = 0;
found_mag = 0.0;
found_phase = 0.0;
found_sigma = 0.0;

for omega = omega_start:omega_end
 [max_amp sigma_index] = max(abs(S(:,omega)));
 if (max_amp > threshold)
 found_mag = abs(S(sigma_index, omega));
 S(sigma_index, omega);
 found_phase = angle(S(sigma_index, omega));
 found_sigma = delsig*(sigma_index-1);
 threshold = max_amp;
 found_peak_flag = 1;
 end
end

% Compute error terms if peak was found

 257

if (found_peak_flag==1)
 mag_diff = found_mag - expected_magnitude;
 rms_mag_err = (mag_diff*mag_diff)/(expected_mag nitude*expected_magnitude);
 pct_mag_err = abs(mag_diff)/abs(expected_magnit ude);
 bias_mag_err = mag_diff/expected_magnitude;

 phase_diff = found_phase - expected_theta;
 % -pi < phase_diff < pi
 if (phase_diff > pi)
 phase_diff = phase_diff - (2.0*pi);
 elseif (-pi > phase_diff)
 phase_diff = phase_diff + (2.0*pi);
 end
 rms_phase_err = (phase_diff*phase_diff)/((2.0*p i)*(2.0*pi));
 pct_phase_err = abs(phase_diff)/(2.0*pi);
 bias_phase_err = phase_diff/(2.0*pi);

 sigma_diff = found_sigma - expected_sigma;
 max_sigma = (num_sigma-1)*delsig;
 rms_sigma_err = (sigma_diff*sigma_diff)/(max_si gma*max_sigma);
 pct_sigma_err = abs(sigma_diff)/abs(max_sigma);
 bias_sigma_err = sigma_diff/max_sigma;
end

return

A.6.6 mplot_1.m

% mplot_1.m - Mainline script to generate multichan nel plot #1
% Marquette University, Milwaukee, WI USA
% Copyright 2004 - All rights reserved.
% Fred J. Frigo
% Feb 29, 2004 - original
%
% Plots are obtained from msim_1_results.txt create d by
% the msim_1.m MATLAB file.
%
% Standard Capon with number of channels, C = 1
% Standard Capon with signal averaging, C = 4
% Standard Capon with spectrum averaging, C=4
% 3 curves

clear all
close all

% File to read
results_file = 'msim_1_results.txt';

% SNR values
num_snr_values = 12;
snr_value=[-18.0, -12.0, -6.0, 0.0, 6.0, 12.0, 18. 0, 24.0, 30.0, 36.0, 42.0, 48.0];

% Open results file
fid=fopen(results_file, 'rt');

% First three lines contain labels to discard
line1=fgets(fid);
line2=fgets(fid);
line3=fgets(fid);

% Loop through report
num_sigs =1; % only one signal for this report

 258

num_C_values=3; % 3 different tests
for sig_id=1:num_sigs
 for cloop = 1: num_C_values % num_C_values
 % SNR loop
 for snrloop = 1: num_snr_values % num_snr_v alues
 % read the block of data
 for field = 1: 12

 text_line=fgets(fid);
 % The 'mean' field occurs in the sub -string starting at 60
 % this depends on the results f ile being used
 result_mean = sscanf(text_line(60:71),'%f');
 results(sig_id, cloop, snrloop, fiel d)=result_mean;

 end % field loop
 end % SNR loop
 end % C loop
end % signal loop
fclose(fid);

% Average results for all signals
for cloop = 1: num_C_values % num_m_values

 % SNR loop
 for snrloop = 1: num_snr_values % num_snr_v alues

 avg_missed_peaks(cloop, snrloop)= me an(
results(1:num_sigs,cloop,snrloop,1));
 avg_false_peaks(cloop, snrloop)= mea n(
results(1:num_sigs,cloop,snrloop,2));
 avg_mag_rms_error(cloop, snrloop)= m ean(
results(1:num_sigs,cloop,snrloop,3));
 avg_sigma_rms_error(cloop, snrloop)= mean(
results(1:num_sigs,cloop,snrloop,5));

 end
 % Check for NaN and set all prior points to NaN if found.
 avg_mag_rms_error(cloop,:) = check_for_nan(avg_mag_rms_error(cloop,:));
 avg_sigma_rms_error(cloop,:) = check_for_na n(avg_sigma_rms_error(cloop,:));

end % C loop

% Missed peaks plot
figure;
plot(snr_value, squeeze(avg_missed_peaks(1,:)), 'k o-', ...
 snr_value, squeeze(avg_missed_peaks(2,:)), 'b x-', ...
 snr_value, squeeze(avg_missed_peaks(3,:)), 'g +-');
legend('C=1','C=4; signal averaging','C=4; spectrum averaging');
xlabel('SNR (dB)');
ylabel('% Missed Peaks');
title('Capon, K=N');

% False peaks
figure;
plot(snr_value, squeeze(avg_false_peaks(1,:)), 'ko -', ...
 snr_value, squeeze(avg_false_peaks(2,:)), 'bx -', ...
 snr_value, squeeze(avg_false_peaks(3,:)), 'g+ -');
legend('C=1','C=4; signal averaging','C=4; spectrum averaging');
xlabel('SNR (dB)');
ylabel('% False Peaks');
title('Capon, K=N');

% Magnitude RMS errors
figure;
plot(snr_value, squeeze(avg_mag_rms_error(1,:)), ' ko-', ...
 snr_value, squeeze(avg_mag_rms_error(2,:)), ' bx-', ...

 259

 snr_value, squeeze(avg_mag_rms_error(3,:)), ' g+-');
legend('C=1','C=4; signal averaging','C=4; spectrum averaging');
xlabel('SNR (dB)');
ylabel('Relative RMS Magnitude Error');
title('Capon, K=N');

% Sigma RMS errors
figure;
plot(snr_value, squeeze(avg_sigma_rms_error(1,:)), 'ko-', ...
 snr_value, squeeze(avg_sigma_rms_error(2,:)), 'bx-', ...
 snr_value, squeeze(avg_sigma_rms_error(3,:)), 'g+-');
legend('C=1','C=4; signal averaging','C=4; spectrum averaging');
xlabel('SNR (dB)');
ylabel('Relative RMS Damping Error');
title('Capon, K=N');

% --- ------
% Combined plot
% --- ------

figure;

% Missed peaks plot
subplot(2,2,1);
plot(snr_value, squeeze(avg_missed_peaks(1,:)), 'k o-', ...
 snr_value, squeeze(avg_missed_peaks(2,:)), 'b x-', ...
 snr_value, squeeze(avg_missed_peaks(3,:)), 'g +-');
legend('C=1','C=4; signal averaging','C=4; spectrum averaging');
xlabel('SNR (dB)');
ylabel('% Missed Peaks');

% False peaks
subplot(2,2,2);
plot(snr_value, squeeze(avg_false_peaks(1,:)), 'ko -', ...
 snr_value, squeeze(avg_false_peaks(2,:)), 'bx -', ...
 snr_value, squeeze(avg_false_peaks(3,:)), 'g+ -');
legend('C=1','C=4; signal averaging','C=4; spectrum averaging');
xlabel('SNR (dB)');
ylabel('% False Peaks');

% Magnitude RMS errors
subplot(2,2,3);
plot(snr_value, squeeze(avg_mag_rms_error(1,:)), ' ko-', ...
 snr_value, squeeze(avg_mag_rms_error(2,:)), ' bx-', ...
 snr_value, squeeze(avg_mag_rms_error(3,:)), ' g+-');
legend('C=1','C=4; signal averaging','C=4; spectrum averaging');
xlabel('SNR (dB)');
ylabel('Relative RMS Magnitude Error');

% Sigma RMS errors
subplot(2,2,4);
plot(snr_value, squeeze(avg_sigma_rms_error(1,:)), 'ko-', ...
 snr_value, squeeze(avg_sigma_rms_error(2,:)), 'bx-', ...
 snr_value, squeeze(avg_sigma_rms_error(3,:)), 'g+-');
legend('C=1','C=4; signal averaging','C=4; spectrum averaging');
xlabel('SNR (dB)');
ylabel('Relative RMS Damping Error');

A.6.7 msim_1.m

% msim_1.m - Mainline script to run multiple channe l simulation #1
% Marquette University, Milwaukee, WI USA

 260

% Copyright 2004 - All rights reserved.
% Fred J. Frigo
% Feb 22, 2004 - original

clear all
close all

results_file = 'msim_1_results.txt';
simulation_id = 9;

% Noise files
num_noise_frames = 10;
noise_files=[
 'noise_0.dat';
 'noise_1.dat';
 'noise_2.dat';
 'noise_3.dat';
 'noise_4.dat';
 'noise_5.dat';
 'noise_6.dat';
 'noise_7.dat';
 'noise_8.dat';
 'noise_9.dat';
 'noise10.dat';
 'noise11.dat';
 'noise12.dat';
 'noise13.dat';
 'noise14.dat';
 'noise15.dat';
 'noise16.dat';
 'noise17.dat';
 'noise18.dat';
 'noise19.dat';
 'noise20.dat';
 'noise21.dat';
 'noise22.dat';
 'noise23.dat';
 'noise24.dat';
 'noise25.dat';
 'noise26.dat';
 'noise27.dat';
 'noise28.dat';
 'noise29.dat';
 'noise30.dat';
 'noise31.dat';
 'noise32.dat';
 'noise33.dat';
 'noise34.dat';
 'noise35.dat';
 'noise36.dat';
 'noise37.dat';
 'noise38.dat';
 'noise39.dat'];

% Signal files
num_signals = 3;
signal_file=[
 'signal_1.dat';
 'signal_2.dat';
 'signal_3.dat'];

% SNR per channel
num_snr_values = 12;

 261

snr_values=[-18.0 , -18.0, -18.0, -18.0 ;
 -12.0 , -12.0, -12.0, -12.0 ;
 -6.0, -6.0, -6.0, -6.0 ;
 0.0, 0.0, 0.0, 0.0 ;
 6.0, 6.0, 6.0, 6.0 ;
 12.0, 12.0, 12.0, 12.0 ;
 18.0, 18.0, 18.0, 18.0 ;
 24.0, 24.0, 24.0, 24.0 ;
 30.0, 30.0, 30.0, 30.0 ;
 36.0, 36.0, 36.0, 36.0 ;
 42.0, 42.0, 42.0, 42.0 ;
 48.0, 48.0, 48.0, 48.0];

% Ideal gain per channel
gideal = [1.0 1.0 1.0 1.0].';

% Signal Components: (these match signal definition in create_signals.m)
% [A, theta, sigma, omega_index, next_omega_fla g]
% A = magnitude
% theta = phase
% sigma = sigma (damping)
% omega_index = frequency index for peak
% next_omega_flag = 1 if OK to use next omega in dex (for peaks the are
% on boundaries)
%
signal_components_1 = [
 1.0, pi/4.0, 0.002, 63, 0;
 0.75, -pi/2.0, 0.006, 127, 0;
 0.25, 0.0, 0.004, 191, 0];

signal_components_2 = [
 1.00, pi/4.0, 0.001, 30, 0;
 25.00, 0.0, 0.002, 40, 0;
 0.75, -pi/4.0, 0.004, 50, 0;
 0.25, 0.0, 0.003, 100, 0;
 1.00, 0.0, 0.001, 120, 0;
 10.00, pi/2.0, 0.002, 125, 0;
 0.50, -pi/2.0, 0.002, 195, 0;
 1.00, 0.0, 0.003, 225, 0];

signal_components_3 = [
 0.50, 0.0, 0.004, 0, 0;
 0.75, -pi/2.0, 0.002, 10, 0;
 1.00, pi/4.0, 0.003, 31, 0;
 0.75, 0.0, 0.003, 34, 0;
 0.50, -pi/2.0, 0.005, 55, 0;
 1.00, pi/2.0, 0.001, 63, 0;
 1.00, 0.75*pi, 0.005, 66, 0;
 0.25, 0.0, 0.004, 73, 0;
 0.50, pi/2.0, 0.000, 95, 0;
 0.50, -pi/2.0, 0.006, 104, 0];

num_C_values = 3; % number of simulation loops
C_values = [1, 4, 4]; % number of channels for each loop
combotype_values = [1, 1, 2]; % 1= signal averagi ng, 2= spectrum averaging
gtype_values = [1, 1, 1]; % 1= ideal (known) gains per chan, =2 estimate from data

N=512;

% Frame size (max is 1024)
frame_size = N + 256;

% Get time and date
ctime = clock;

 262

% Open results file
fid=fopen(results_file, 'wt+');
fprintf(fid,'Simulation: %2d\n', simulation_id);
fprintf(fid,'started: %2.2d/%2.2d/%4.4d %2.2d:%2.2 d:%2.2d -
\n',...
 ctime(2), ctime(3), ctime(1),ctime(4),
ctime(5),round(ctime(6)));
fprintf(fid,' Parameter signal SNR C combo gtype N mean
max min std variance \n');
fclose(fid);

% Signal loop
for sig_id = 3:3 % num_signals

 % Get data
 fidsig = fopen(signal_file(sig_id,:), 'r+b');
 [raw_data, count] = fread(fidsig, frame_size*2, 'real*4');
 fclose(fidsig);
 for m = 1:(count/2)
 sig_data(m) = raw_data((2*m)-1) + j*raw_data(2*m);
 end

 % Compute signal energy for mixing SNR
 sig_energy=sum(abs(sig_data.*sig_data));

 % Select structure with signal component info
 if (sig_id == 1)
 peak_info = signal_components_1;
 elseif (sig_id == 2)
 peak_info = signal_components_2;
 elseif (sig_id == 3)
 peak_info = signal_components_3;
 end

 % C loop
 for cloop = 1: num_C_values % num_C_values
 C = C_values(cloop);
 combotype = combotype_values(cloop);
 gtype = gtype_values(cloop);

 % SNR loop
 for snrloop = 1: num_snr_values % num_snr_v alues
 % Compute desired weight for noise to y ield desired SNR ratio in dB
 dbSNRideal = snr_values(snrloop,:);

 % Noise loop
 for noise_id = 1: num_noise_frames % num_noise_frames
 % signal energy
 xeng=sig_data*sig_data';

 for chan_id = 1:C % channel loop

 % Get noise for this channel
 noise_file_index = noise_id + nu m_noise_frames*(chan_id-1);
 fidn = fopen(noise_files(noise_f ile_index,:), 'r+b');
 [raw_data, count] = fread(fidn, frame_size*2, 'real*4');
 fclose(fidn);
 for m = 1:(count/2)
 noise(m) = raw_data((2*m)-1) + j*raw_data(2*m);
 noise(m)=0.1*noise(m);
 end

 % compute noise energy
 neng=noise*noise';

 % combine signal and noise with desired SNR

 263

noisegain(chan_id)=sqrt((abs(gideal(chan_id))^2*xen g)/(neng*10^(dbSNRideal(chan_id)/10)))
;
 noise_scaled=noisegain(chan_id)* noise;
 rhosqideal(chan_id)=noise_scaled *noise_scaled'/frame_size; %
Nf=frame_size
 sig_and_noise=gideal(chan_id)*si g_data+noise_scaled;

 % Create input signal matrix
 if (chan_id == 1)
 x=sig_and_noise;
 else
 x=[x
 sig_and_noise];
 end
 end % channel loop
 rhosqideal=rhosqideal.';

 % Call function to do processing on a lgorithm to test
 [missed_peaks(noise_id), false_peaks(noise_id), mag_err_rms(noise_id),
phase_err_rms(noise_id),...
 sigma_err_rms(noise_id), mag _err_pct(noise_id),
phase_err_pct(noise_id), ...
 sigma_err_pct(noise_id), mag _err_bias(noise_id),
phase_err_bias(noise_id), ...
 sigma_err_bias(noise_id), el apsed_time(noise_id)] = ...
 msim_proc(x, C, combotype, r hosqideal, gideal, gtype, peak_info);

 end % noise loop

 % Log results for each parameter for a set of noise instances
 for result_loop=1:12

 if result_loop == 1
 result_data = missed_peaks;
 result_string = 'Missed_Peaks';
 elseif result_loop == 2
 result_data = false_peaks;
 result_string = 'False_Peaks';
 elseif result_loop == 3
 result_data = mag_err_rms;
 result_string = 'Mag_Err_RMS';
 elseif result_loop == 4
 result_data = phase_err_rms;
 result_string = 'Phase_Err_RMS ';
 elseif result_loop == 5
 result_data = sigma_err_rms;
 result_string = 'Sigma_Err_RMS ';
 elseif result_loop == 6
 result_data = mag_err_pct;
 result_string = 'Mag_Err_perce nt';
 elseif result_loop == 7
 result_data = phase_err_pct;
 result_string = 'Phase_Err_per cent';
 elseif result_loop == 8
 result_data = sigma_err_pct;
 result_string = 'Sigma_Err_per cent';
 elseif result_loop == 9
 result_data = mag_err_bias;
 result_string = 'Mag_Err_Bias' ;
 elseif result_loop == 10
 result_data = phase_err_bias;
 result_string = 'Phase_Err_Bia s';
 elseif result_loop == 11
 result_data = sigma_err_bias;
 result_string = 'Sigma_Err_Bia s';

 264

 elseif result_loop == 12
 result_data = elapsed_time;
 result_string = 'Elapsed_time' ;
 end

 % Discard invalid results
 num_results=0;
 for (rindex = 1:num_noise_frames)
 % If result is valid number, st ore it for computation
 if (isnan(result_data(rindex)) == 0)
 num_results = num_results+1 ;
 valid_results(num_results) = result_data(rindex);
 end
 end
 % Compute mean, std and variance on valid results.
 if (num_results > 0)
 result_mean = mean(valid_result s(1:num_results));
 result_std = std(valid_results(1:num_results));
 result_var = var(valid_results(1:num_results));
 result_max = max(valid_results(1:num_results));
 result_min = min(valid_results(1:num_results));
 else
 result_mean = NaN;
 result_std = NaN;
 result_var = NaN;
 result_max = NaN;
 result_min = NaN;
 end

 % Log results to output file:
 % 'Parameter signal SNR C co mbo N mean max min std
variance'
 fid=fopen(results_file, 'at');
 fprintf(fid,'%20.20s %2.2d %5. 1f %2.2d %2.2d %2.2d %2.2d
%9.5f %9.5f %9.5f %9.5f %9.5f\n', ...
 result_string, sig_id, dbSNR ideal(1), C, combotype, gtype,
num_results, result_mean, result_max, ...
 result_min, result_std, resu lt_var);
 fclose(fid);

 end % results loop
 end % SNR loop
 end %combo loop
end % signal loop

% Get time and date to add for "completed timestamp "
ctime = clock;
fid=fopen(results_file, 'rt+');
fseek(fid,47,0); % insert timestamp at beginning of file after "started"
fprintf(fid,' completed: %2.2d/%2.2d/%4.4d %2.2d:% 2.2d:%2.2d',...
 ctime(2), ctime(3), ctime(1),ctime(4), ctime(5),round(ctime(6)));
fclose(fid);

A.6.8 msim_proc.m

% msim_proc.m - Processing associated with multiple channel simulations
% Marquette University, Milwaukee, WI USA
% Copyright 2004 - All rights reserved.
% Fred J. Frigo
% Feb 22, 2004 - original
%
% Inputs:

 265

% xlong = signal+noise
% C = number of channels
% combotype = 1 for signal averaging, 2 f or spectrucm averaging
% rhosqideal = rho ^2
% gideal = ideal gains for each channel
% gytpe = 1 ideal (known) gains per chann el, = 2 estimate gains
% peak_info = contains info about each pe ak in the signal
% [A, theta, sigma, omega_in dex, next_omega_flag]
% A = expected magnitude
% theta = expected phase
% sigma = expected sigma (dam ping)
% omega_index = omega index f or expected peak
% next_omega_flag = 1 if OK t o use next omega index
%
% Outputs:
% missed_peaks = percentage of missed pea ks
% false_peaks = percentage of false peaks
% rms_mag_err = RMS error for magnitude
% rms_phase_err = RMS error for phase
% rms_sigma_err = RMS error for sigma (da mping)
% pct_mag_err = RMS error for magnitude
% pct_phase_err = RMS error for phase
% pct_sigma_err = RMS error for sigma (da mping)
% elapsed_time = elaspsed time in seconds

function [missed_peaks, false_peaks, rms_mag_err, r ms_phase_err, rms_sigma_err, ...
 pct_mag_err, pct_phase_err, pct_sigma_ err, ...
 bias_mag_err, bias_phase_err, bias_sig ma_err,elapsed_time] = ...
 msim_proc(xlong, C, combotype, rhosqid eal, gideal, gtype, peak_info);

matched_peaks = 0;
total_peaks = 0;
missed_peaks = 0.0;
false_peaks = 0.0;
rms_mag_err = NaN; % If no peaks are found, RMS er ror = NaN
rms_phase_err = NaN;
rms_sigma_err = NaN;
pct_mag_err = NaN; % If no peaks are found, Percent error = NaN
pct_phase_err = NaN;
pct_sigma_err = NaN;
bias_mag_err = NaN; % If no peaks are found, Bias e rror = NaN
bias_phase_err = NaN;
bias_sigma_err = NaN;

% Find out how many signal components there are
num_expected_peaks = max(size(peak_info(:,5)));

% set flag = 1 to display all plots
show_plots=0;

N=512;
M=128;
Ns=640; %1800 ?Try N+M
Nf=768;%0<Ns<Nf. Nf>=N+M-1. % Frame_size
K=N;%K must be 1 or N. alp1 and alp2 are irrelevan t if K=1.
Nsig=40;
Nw=N/2;%Nw must be greater than or equal to N/2.
k1=0;
k2=Nw-1;%0<=k1<k2<=Nw-1.
delsig=0.0002;
alp1=0;
alp2=0;
bet1=0; % 0 = default - set this to 0.5 to increas e peak picking sensitivity
bet2=0;
gam=0;%0<gam<=1. gam=1 reduces to 2D APES. gam=0 would reduce to 2D Capon.
%C=1;

 266

spectrumtype=1;%=1 for 2D Capon, 2 for 2D APES/Capo n.

if C>1
 % combotype=1;%=1 for signal averaging, 2 for sp ectrum averaging, 3 for composite
spectrum.
 % gtype=1;%=1 for ideal g's, 2 for estimated g's .
 %ideal can be used only for simulated da ta.
 rhosqtype=1;%=1 for ideal rhosq's, 2 for estimat ed rhosq's.
 %ideal can be used only for simulate d data.
end

delw=pi/Nw;

% signal plus noise
x=xlong(:,1:N+M-1);

if C>1

 if gtype==1
 g=gideal;
 elseif gtype==2
 g=fgest(xlong,C);
 end

 if rhosqtype==1
 rhosq=rhosqideal;
 elseif rhosqtype==2
 rhosq=frhosqest(xlong,Ns,Nf,C);
 end

 Rw=diag(rhosq);
 Rwinv=inv(Rw);
 w=Rwinv*g/(g'*Rwinv*g);

 xest=w'*x;

else % if C == 1, then g = a single value
 g=gideal(1);
end

tic;

if (C==1)|(C>1&combotype==3)
 if spectrumtype==1
 S=Capon2D(x,N,M,K,Nsig,Nw,k1,k2,delsig,alp1,a lp2,bet1,bet2,C,g);
 elseif spectrumtype==2
 S=APESCapon2D(x,N,M,Nsig,Nw,k1,k2,delsig,bet1 ,bet2,gam,C,g);
 end
end

if C>1&combotype==1
 if spectrumtype==1
 S=Capon2D(xest,N,M,K,Nsig,Nw,k1,k2,delsig,alp 1,alp2,bet1,bet2,1,1);
 elseif spectrumtype==2
 S=APESCapon2D(xest,N,M,Nsig,Nw,k1,k2,delsig,b et1,bet2,gam,1,1);
 end
end

if C>1&combotype==2
 S=zeros(Nsig,k2-k1+1);
 for i=1:C
 if spectrumtype==1
 Si=Capon2D(x(i,:),N,M,K,Nsig,Nw,k1,k2,dels ig,alp1,alp2,bet1,bet2,1,1);
 elseif spectrumtype==2
 Si=APESCapon2D(x(i,:),N,M,Nsig,Nw,k1,k2,de lsig,bet1,bet2,gam,1,1);

 267

 end
 S=S+conj(w(i))*Si;
 end
end

elapsed_time = toc;

sigset=delsig*[0:Nsig-1];
wset=delw*[k1:k2];
n=[0:N+M-2];

% Create peak enhanced 2D surface where each peak i s a dirac delta function
Sp=peak_complex(S,0,1);

% Compute peak projections
Spp=peakproj(Sp,0);

% Set threshold for valid peaks: (Max component am plitude = 1.0)
% - Use max projection (for determination of thres hold)
% max_peak_value = max(abs(Spp));
% peak_threshold = max_peak_value*0.1;
peak_threshold = 0.025;

% Count number of peaks that exceed threshold
total_peaks = count_peaks(Spp, peak_threshold);

% Search for expected signal components, computing error terms if found
rms_mag_sum = 0.0;
rms_phase_sum = 0.0;
rms_sigma_sum = 0.0;
pct_mag_sum = 0.0;
pct_phase_sum = 0.0;
pct_sigma_sum = 0.0;
bias_mag_sum = 0.0;
bias_phase_sum = 0.0;
bias_sigma_sum = 0.0;
peaks_found = 0;
for peak_component = 1: num_expected_peaks
 component_info = squeeze(peak_info(peak_compone nt, :));
 % Search for expected peak calculating magnitud e, phase and damping errors
 [found_peak_flag, sq_mag_err, sq_phase_err, sq_ sigma_err, abs_mag_err, abs_phase_err,
...
 abs_sigma_err, diff_mag_err, diff_phase_ err, diff_sigma_err] = find_peak(Sp,
component_info, delw, delsig, peak_threshold);
 rms_mag_sum = rms_mag_sum + sq_mag_err;
 rms_phase_sum = rms_phase_sum + sq_phase_err;
 rms_sigma_sum = rms_sigma_sum + sq_sigma_err;
 pct_mag_sum = pct_mag_sum + abs_mag_err;
 pct_phase_sum = pct_phase_sum + abs_phase_err;
 pct_sigma_sum = pct_sigma_sum + abs_sigma_err;
 bias_mag_sum = bias_mag_sum + diff_mag_err;
 bias_phase_sum = bias_phase_sum + diff_phase_er r;
 bias_sigma_sum = bias_sigma_sum + diff_sigma_er r;

 if (found_peak_flag == 1)
 peaks_found = peaks_found + 1;
 end
end

% Compute error values if we found any peaks
if peaks_found > 0
 rms_mag_err = sqrt((rms_mag_sum/peaks_found)) ;
 rms_phase_err = sqrt((rms_phase_sum/peaks_foun d));
 rms_sigma_err = sqrt((rms_sigma_sum/peaks_foun d));
 pct_mag_err = (pct_mag_sum/peaks_found)*100.0;

 268

 pct_phase_err = (pct_phase_sum/peaks_found)*100 .0;
 pct_sigma_err = (rms_sigma_sum/peaks_found)*100 .0;
 bias_mag_err = bias_mag_sum/peaks_found;
 bias_phase_err = bias_phase_sum/peaks_found;
 bias_sigma_err = bias_sigma_sum/peaks_found;
end

% False positives (as a percentage)
false_peaks = ((total_peaks - peaks_found)/Nw)*100. 0;

% Missed peaks (as a percentage)
missed_peaks = ((num_expected_peaks - peaks_found)/ num_expected_peaks)*100.0;

% Create plots if selected.
if (show_plots == 1)

 mrs_name='x(t)';

 % Plots
 if(spectrumtype == 1)
 analysis_string = '2D-Capon ';
 else
 analysis_string = '2D-APES ';
 end

 figure
 title_string = strcat([analysis_string, 'surface plot of |S(\sigma,\omega)| for ',
mrs_name]);
 surf(wset,sigset,abs(S)),title(title_string), xl abel('\omega'),
ylabel('\sigma'),zlabel('|S(\sigma,\omega)|');

 figure
 title_string = strcat([analysis_string, 'contour plot of |S(\sigma,\omega)| for ',
mrs_name]);
 contour(wset,sigset,abs(S)),title(title_string), xlabel('\omega'),ylabel('\sigma');

 figure
 title_string = strcat([analysis_string, 'peak en hanced surface plot of
|S(\sigma,\omega)| for ', mrs_name]);

surf(wset,sigset,abs(Sp)),title(title_string),xlabe l('\omega'),ylabel('\sigma'),zlabel('|
S(\sigma,\omega)|');

 figure
 title_string = strcat([analysis_string, 'peak en hanced contour plot of
|S(\sigma,\omega)| for ', mrs_name]);
 contour(wset,sigset,abs(Sp)),title(title_string) ,xlabel('\omega'),ylabel('\sigma');

 figure
 title_string = strcat([analysis_string, 'project ed peaks of |S(\sigma,\omega)| for ',
mrs_name]);
 plot(wset,Spp),title(title_string),xlabel('\omeg a'),ylabel('|S(\sigma,\omega)|');

 X=fft(x.').';
 [Cft,Nft]=size(abs(X));
 k1ft=floor(Nft*k1/(2*Nw));
 k2ft=floor(Nft*k2/(2*Nw));
 wfset=[k1ft:k2ft]*2*pi/Nft;
 figure
 plot(wfset,abs(X(:,k1ft+1:k2ft+1))/Nft),title(st rcat(['Fourier Transform of
',mrs_name])),xlabel('\omega'),ylabel('|S(\omega)|');
 if C>1
 Xest=fft(xest.').';
 figure
 plot(wfset,abs(Xest(:,k1ft+1:k2ft+1))/Nft),ti tle('average abs(FFT)'),xlabel(paras)
 end

 269

 figure
 plot(n,abs(x).'),title(strcat(['Input signal ',m rs_name])),
xlabel('t'),ylabel('x(t)');

end % (show_plots == 1)

return

A.6.9 peak_complex.m

% peak_complex.m - Peak Enhancement
% Marquette University, Milwaukee, WI USA
% Copyright 2003,2004 - All rights reserved.
%
% Fred J. Frigo, James A. Heinen
%
% This function accepts a 2D input (S) and retur ns a 2D output (Sp)
% of the same dimension with peaks plotted as Di rac delta functions.
%
% Changed to return complex valued peak-enhanced 2D output.
%
function Sp=peak_complex(S_input,thresh,suppresslas trow)
S=abs(S_input);
[Nsig,Nw]=size(S);
Sb=zeros(Nsig+2,Nw+2);
Sbp=zeros(Nsig+2,Nw+2);
for m=1:Nsig
 for k=1:Nw
 Sb(m+1,k+1)=S(m,k);
 end
end
for m=2:Nsig+1
 for k=2:Nw+1
 if Sb(m,k)>=max([Sb(m+1,k-1) Sb(m+1,k) Sb(m+1 ,k+1) Sb(m,k-1) ...
 Sb(m,k+1) Sb(m-1,k-1) Sb(m-1,k) Sb(m-1, k+1)])&Sb(m,k)>=thresh
 Sbp(m,k)=S_input(m-1,k-1);
 end
 end
end
for m=1:Nsig
 for k=1:Nw
 Sp(m,k)=Sbp(m+1,k+1);
 end
end
if suppresslastrow==1
 for k=1:Nw
 Sp(Nsig,k)=0;
 end
end
return

A.6.10 plot_3.m

% plot_3.m - Mainline script to generate plots #3
% Marquette University, Milwaukee, WI USA
% Copyright 2004 - All rights reserved.
% Fred J. Frigo

 270

% Feb 10, 2004 - original
%
% Plots are obtained from sim_1_results.txt created by
% the sim_1.m MATLAB file.
%
% Capon K=1
% 4 curves

clear all
close all

% File to read
results_file = 'sim_1_results.txt';

% SNR values
num_snr_values = 12;
snr_value=[-18.0, -12.0, -6.0, 0.0, 6.0, 12.0, 18. 0, 24.0, 30.0, 36.0, 42.0, 48.0];

% Values of M to test
num_m_values = 4;
m_values=[32, 64, 128, 256];

% Values of alpha1 to test
num_alp1_values = 1;
alp1_values=[0.0];

% Open results file
fid=fopen(results_file, 'rt');

% First three lines contain labels to discard
line1=fgets(fid);
line2=fgets(fid);
line3=fgets(fid);

% Loop through report
for sig_id=1:3
 for mloop = 1: num_m_values % num_m_values
 for aloop = 1: num_alp1_values % num_alp1_va lues
 % SNR loop
 for snrloop = 1: num_snr_values % num_snr_v alues
 % read the block of data
 for field = 1: 12

 text_line=fgets(fid);
 % The 'mean' field occurs in the sub -string starting at 57
 % this depends on the results f ile being used
 result_mean = sscanf(text_line(50:61),'%f');
 results(sig_id, mloop, aloop, snrloo p, field)=result_mean;

 end % field loop
 end % SNR loop
 end %alpha loop
 end % M loop
end % signal loop
% size(results)
fclose(fid);

% Average results for all signals
for mloop = 1: num_m_values % num_m_values
 for aloop = 1: num_alp1_values %num_alp1_value s
 % SNR loop
 for snrloop = 1: num_snr_values % num_snr_v alues

 avg_missed_peaks(mloop, aloop, snrlo op)= mean(
results(1:3,mloop,aloop,snrloop,1));

 271

 avg_false_peaks(mloop, aloop, snrloo p)= mean(
results(1:3,mloop,aloop,snrloop,2));
 avg_mag_rms_error(mloop, aloop, snrl oop)= mean(
results(1:3,mloop,aloop,snrloop,3));
 avg_sigma_rms_error(mloop, aloop, sn rloop)= mean(
results(1:3,mloop,aloop,snrloop,5));

 end
 % Check for NaN and set all prior points to NaN if found.
 avg_mag_rms_error(mloop, aloop,:) = check_f or_nan(avg_mag_rms_error(mloop,
aloop,:));
 avg_sigma_rms_error(mloop, aloop,:) = check _for_nan(avg_sigma_rms_error(mloop,
aloop,:));

 end %alpha loop
end % M loop

% Missed peaks plot
figure;
plot(snr_value, squeeze(avg_missed_peaks(1,1,:)), 'ko-', ...
 snr_value, squeeze(avg_missed_peaks(2,1,:)), 'bx-', ...
 snr_value, squeeze(avg_missed_peaks(3,1,:)), 'g+-', ...
 snr_value, squeeze(avg_missed_peaks(4,1,:)), 'm*-');
legend('M=32','M=64','M=128','M=256');
xlabel('SNR (dB)');
ylabel('% Missed Peaks');
title('Capon, K=1');

% False peaks
figure;
plot(snr_value, squeeze(avg_false_peaks(1,1,:)), ' ko-', ...
 snr_value, squeeze(avg_false_peaks(2,1,:)), ' bx-', ...
 snr_value, squeeze(avg_false_peaks(3,1,:)), ' g+-', ...
 snr_value, squeeze(avg_false_peaks(4,1,:)), ' m*-');
legend('M=32','M=64','M=128','M=256');
xlabel('SNR (dB)');
ylabel('% False Peaks');
title('Capon, K=1');

% Magnitude RMS errors
figure;
plot(snr_value, squeeze(avg_mag_rms_error(1,1,:)), 'ko-', ...
 snr_value, squeeze(avg_mag_rms_error(2,1,:)), 'bx-', ...
 snr_value, squeeze(avg_mag_rms_error(3,1,:)), 'g+-', ...
 snr_value, squeeze(avg_mag_rms_error(4,1,:)), 'm*-');
legend('M=32','M=64','M=128','M=256');
xlabel('SNR (dB)');
ylabel('Relative RMS Magnitude Error');
title('Capon, K=1');

% Sigma RMS errors
figure;
plot(snr_value, squeeze(avg_sigma_rms_error(1,1,:)), 'ko-', ...
 snr_value, squeeze(avg_sigma_rms_error(2,1,:)), 'bx-', ...
 snr_value, squeeze(avg_sigma_rms_error(3,1,:)), 'g+-', ...
 snr_value, squeeze(avg_sigma_rms_error(4,1,:)), 'm*-');
legend('M=32','M=64','M=128','M=256');
xlabel('SNR (dB)');
ylabel('Relative RMS Damping Error');
title('Capon, K=1');

% --- ------
% Combined plot
% --- ------

figure;

 272

subplot(2,2,1);
plot(snr_value, squeeze(avg_missed_peaks(1,1,:)), 'ko-', ...
 snr_value, squeeze(avg_missed_peaks(2,1,:)), 'bx-', ...
 snr_value, squeeze(avg_missed_peaks(3,1,:)), 'g+-', ...
 snr_value, squeeze(avg_missed_peaks(4,1,:)), 'm*-');
legend('M=32','M=64','M=128','M=256');
xlabel('SNR (dB)');
ylabel('% Missed Peaks');

% False peaks
subplot(2,2,2);
plot(snr_value, squeeze(avg_false_peaks(1,1,:)), ' ko-', ...
 snr_value, squeeze(avg_false_peaks(2,1,:)), ' bx-', ...
 snr_value, squeeze(avg_false_peaks(3,1,:)), ' g+-', ...
 snr_value, squeeze(avg_false_peaks(4,1,:)), ' m*-');
legend('M=32','M=64','M=128','M=256');
xlabel('SNR (dB)');
ylabel('% False Peaks');

% Magnitude RMS errors
subplot(2,2,3);
plot(snr_value, squeeze(avg_mag_rms_error(1,1,:)), 'ko-', ...
 snr_value, squeeze(avg_mag_rms_error(2,1,:)), 'bx-', ...
 snr_value, squeeze(avg_mag_rms_error(3,1,:)), 'g+-', ...
 snr_value, squeeze(avg_mag_rms_error(4,1,:)), 'm*-');
legend('M=32','M=64','M=128','M=256');
xlabel('SNR (dB)');
ylabel('Relative RMS Magnitude Error');

% Adjust scale
myaxis = axis;
myaxis(3)=0;
myaxis(4)=2.0;
axis(myaxis);

% Sigma RMS errors
subplot(2,2,4);
plot(snr_value, squeeze(avg_sigma_rms_error(1,1,:)), 'ko-', ...
 snr_value, squeeze(avg_sigma_rms_error(2,1,:)), 'bx-', ...
 snr_value, squeeze(avg_sigma_rms_error(3,1,:)), 'g+-', ...
 snr_value, squeeze(avg_sigma_rms_error(4,1,:)), 'm*-');
legend('M=32','M=64','M=128','M=256');
xlabel('SNR (dB)');
ylabel('Relative RMS Damping Error');

A.6.11 plot_timing.m

% plot_timing.m - Mainline script to generate timin g plots
% Marquette University, Milwaukee, WI USA
% Copyright 2004 - All rights reserved.
% Fred J. Frigo
% Feb 29, 2004 - original
%
% Plots are obtained from timing_sim_results.txt cr eated by
% the timing_sim_results.m MATLAB file.
%
% For M= 32, 64, 128, 256
% Capon (K=N):
% alp1=alp2=bet1=bet2=0
% alp1=alp2=0; bet1=0.001, bet2=0.0
% alp1=-0.5, alp2=0.0; bet1=bet2=0

 273

% alp1=-0.5, alp2=0.0; bet1=0.001, bet2=0.0
% Capon (K=1)
% alp1=alp2=0.0
% alp1=0.001, alp2=0.0
% APES/Capon (gamma=0.5)
% bet1=bet2=0
% bet1=0.001, bet2=0
% bet1=-0.5, bet2=0
% 9 curves

clear all
close all

% File to read
results_file = 'timing_sim_results.txt';

num_snr_values = 1; % using SNR=18 for this simula tion
num_beta_values = 9;

% M values
num_M_values=4;
M_value=[32, 64, 128, 256];

% Open results file
fid=fopen(results_file, 'rt');

% First three lines contain labels to discard
line1=fgets(fid);
line2=fgets(fid);
line3=fgets(fid);

% Loop through report
num_sigs =1; % only one signal for this report

for sig_id=1:num_sigs
 for mloop = 1: num_M_values % num_C_values

 for bloop = 1: num_beta_values % num_beta_va lues

 % read the block of data
 for field = 1: 12

 text_line=fgets(fid);
 % The 'mean' field occurs in the sub -string starting at 60
 % this depends on the results f ile being used
 result_mean = sscanf(text_line(71:84),'%f');
 results(sig_id, mloop, bloop, field) =result_mean;

 end % field loop
 end % beta loop
 end % M loop
end % signal loop
fclose(fid);

% Average results for all signals
for mloop = 1: num_M_values % num_m_values
 for bloop = 1:num_beta_values
 avg_execution_time(mloop, bloop)= mean(r esults(1:num_sigs,mloop, bloop,12));
 end
end % M loop

% Execution time: Capon
figure;
plot(M_value, squeeze(avg_execution_time(:,1)), 'k o-', ...
 M_value, squeeze(avg_execution_time(:,2)), 'b x-', ...
 M_value, squeeze(avg_execution_time(:,3)), 'g +-', ...

 274

 M_value, squeeze(avg_execution_time(:,4)), 'm d-', ...
 M_value, squeeze(avg_execution_time(:,5)), 'k s-', ...
 M_value, squeeze(avg_execution_time(:,6)), 'b ^-');
legend('K=N, \alpha\neq-\sigma/2, \beta=constant', ...
 'K=N, \alpha\neq-\sigma/2, \beta=function(\s igma)',...
 'K=N, \alpha=-\sigma/2,\beta=constant',...
 'K=N, \alpha=-\sigma/2, \beta=function(\sigm a)',...
 'K=1, \beta=constant', 'K=1, \beta=function(\sigma)');
xlabel('M');
ylabel('Execution time (seconds)');

% Execution time: Capon/APES
figure;
plot(M_value, squeeze(avg_execution_time(:,7)), 'k o-', ...
 M_value, squeeze(avg_execution_time(:,8)), 'b x-', ...
 M_value, squeeze(avg_execution_time(:,9)), 'g +-');
legend('\beta=constant', '\beta=function(\sigma), \ beta\neq-\sigma/2',...
 '\beta=-\sigma/2');
xlabel('M');,
ylabel('Execution time (seconds)');

A.6.12 sim_1.m

% sim_1.m - Mainline script to run simulation #1
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo
% Dec 21, 2003 - original
% Jan 7, 2004 - Updates to perform statistics on results
% Jan 20, 2004 - Updates to modify parameters and add bias error

clear all
close all

results_file = 'sim_1_results.txt';
simulation_id = 1;

% Noise files
num_noise_frames = 10;
noise_file=[
 'noise_0.dat';
 'noise_1.dat';
 'noise_2.dat';
 'noise_3.dat';
 'noise_4.dat';
 'noise_5.dat';
 'noise_6.dat';
 'noise_7.dat';
 'noise_8.dat';
 'noise_9.dat'];

% Signal files
num_signals = 3;
signal_file=[
 'signal_1.dat';
 'signal_2.dat';
 'signal_3.dat'];

% SNR values
num_snr_values = 12;
snr_value=[-18.0, -12.0, -6.0, 0.0, 6.0, 12.0, 18. 0, 24.0, 30.0, 36.0, 42.0, 48.0];

 275

% Signal Components: (these match signal definition in create_signals.m)
% [A, theta, sigma, omega_index, next_omega_fla g]
% A = magnitude
% theta = phase
% sigma = sigma (damping)
% omega_index = frequency index for peak
% next_omega_flag = 1 if OK to use next omega in dex (for peaks the are
% on boundaries)
%
signal_components_1 = [
 1.0, pi/4.0, 0.002, 63, 0;
 0.75, -pi/2.0, 0.006, 127, 0;
 0.25, 0.0, 0.004, 191, 0];

signal_components_2 = [
 1.00, pi/4.0, 0.001, 30, 0;
 25.00, 0.0, 0.002, 40, 0;
 0.75, -pi/4.0, 0.004, 50, 0;
 0.25, 0.0, 0.003, 100, 0;
 1.00, 0.0, 0.001, 120, 0;
 10.00, pi/2.0, 0.002, 125, 0;
 0.50, -pi/2.0, 0.002, 195, 0;
 1.00, 0.0, 0.003, 225, 0];

signal_components_3 = [
 0.50, 0.0, 0.004, 0, 0;
 0.75, -pi/2.0, 0.002, 10, 0;
 1.00, pi/4.0, 0.003, 31, 0;
 0.75, 0.0, 0.003, 34, 0;
 0.50, -pi/2.0, 0.005, 55, 0;
 1.00, pi/2.0, 0.001, 63, 0;
 1.00, 0.75*pi, 0.005, 66, 0;
 0.25, 0.0, 0.004, 73, 0;
 0.50, pi/2.0, 0.000, 95, 0;
 0.50, -pi/2.0, 0.006, 104, 0];

% Values of M to test
num_m_values = 4;
m_values=[32, 64, 128, 256];

N=512;

% Frame size (max is 1024)
frame_size = N + 256;

% Get time and date
ctime = clock;

% Open results file
fid=fopen(results_file, 'wt+');
fprintf(fid,'Simulation: %2d\n', simulation_id);
fprintf(fid,'started: %2.2d/%2.2d/%4.4d %2.2d:%2.2 d:%2.2d -
\n',...
 ctime(2), ctime(3), ctime(1),ctime(4),
ctime(5),round(ctime(6)));
fprintf(fid,' Parameter signal SNR M N mean max
min std variance \n');
fclose(fid);

% Signal loop
for sig_id = 1: num_signals % num_signals

 % Get data
 fidsig = fopen(signal_file(sig_id,:), 'r+b');

 276

 [raw_data, count] = fread(fidsig, frame_size*2, 'real*4');
 fclose(fidsig);
 for m = 1:(count/2)
 sig_data(m) = raw_data((2*m)-1) + j*raw_data(2*m);
 end

 % Compute signal energy for mixing SNR
 sig_energy=sum(abs(sig_data.*sig_data));

 % Select structure with signal component info
 if (sig_id == 1)
 peak_info = signal_components_1;
 elseif (sig_id == 2)
 peak_info = signal_components_2;
 elseif (sig_id == 3)
 peak_info = signal_components_3;
 end

 % M loop
 for mloop = 1:num_m_values % num_m_values
 M_value = m_values(mloop);

 % SNR loop
 for snrloop = 1: num_snr_values % num_snr_v alues
 % Compute desired weight for noise to y ield desired SNR ratio in dB
 SNR_in_dB = snr_value(snrloop);
 SNR_exponent = SNR_in_dB/10.0; % numer ator = desired SNR ratio in dB

 % Noise loop
 for noise_id = 1:num_noise_frames % n um_noise_frames
 % Get noise
 fidn = fopen(noise_file(noise_id,:), 'r+b');
 [raw_data, count] = fread(fidn, fram e_size*2, 'real*4');
 fclose(fidn);
 for m = 1:(count/2)
 noise(m) = raw_data((2*m)-1) + j *raw_data(2*m);
 noise(m)=0.1*noise(m);
 end

 % Compute Noise energy for creating desired mix of
 % signal + noise
 noise_energy=sum(abs(noise.*noise));
 noise_weight = sqrt((sig_energy/noi se_energy)/power(10.0,SNR_exponent));

 % build the signal plus noise
 x= sig_data + (noise_weight*noise);

 % Call function to do processing on algorithm to test
 [missed_peaks(noise_id), false_peaks (noise_id), mag_err_rms(noise_id),
phase_err_rms(noise_id),...
 sigma_err_rms(noise_id), mag _err_pct(noise_id),
phase_err_pct(noise_id), ...
 sigma_err_pct(noise_id), mag _err_bias(noise_id),
phase_err_bias(noise_id), ...
 sigma_err_bias(noise_id), el apsed_time(noise_id)] = sim_1_proc(x,
M_value, peak_info);

 end % noise loop

 % Log results for each parameter for a set of noise instances
 for result_loop=1:12

 if result_loop == 1
 result_data = missed_peaks;
 result_string = 'Missed_Peaks';
 elseif result_loop == 2

 277

 result_data = false_peaks;
 result_string = 'False_Peaks';
 elseif result_loop == 3
 result_data = mag_err_rms;
 result_string = 'Mag_Err_RMS';
 elseif result_loop == 4
 result_data = phase_err_rms;
 result_string = 'Phase_Err_RMS ';
 elseif result_loop == 5
 result_data = sigma_err_rms;
 result_string = 'Sigma_Err_RMS ';
 elseif result_loop == 6
 result_data = mag_err_pct;
 result_string = 'Mag_Err_perce nt';
 elseif result_loop == 7
 result_data = phase_err_pct;
 result_string = 'Phase_Err_per cent';
 elseif result_loop == 8
 result_data = sigma_err_pct;
 result_string = 'Sigma_Err_per cent';
 elseif result_loop == 9
 result_data = mag_err_bias;
 result_string = 'Mag_Err_Bias' ;
 elseif result_loop == 10
 result_data = phase_err_bias;
 result_string = 'Phase_Err_Bia s';
 elseif result_loop == 11
 result_data = sigma_err_bias;
 result_string = 'Sigma_Err_Bia s';
 elseif result_loop == 12
 result_data = elapsed_time;
 result_string = 'Elapsed_time' ;
 end

 % Discard invalid results
 num_results=0;
 for (rindex = 1:num_noise_frames)
 % If result is valid number, st ore it for computation
 if (isnan(result_data(rindex)) == 0)
 num_results = num_results+1 ;
 valid_results(num_results) = result_data(rindex);
 end
 end
 % Compute mean, std and variance on valid results.
 if (num_results > 0)
 result_mean = mean(valid_result s(1:num_results));
 result_std = std(valid_results(1:num_results));
 result_var = var(valid_results(1:num_results));
 result_max = max(valid_results(1:num_results));
 result_min = min(valid_results(1:num_results));
 else
 result_mean = NaN;
 result_std = NaN;
 result_var = NaN;
 result_max = NaN;
 result_min = NaN;
 end

 % Log results to output file:
 % 'parameter signal SNR M N mean max min std
variance'
 fid=fopen(results_file, 'at');
 fprintf(fid,'%20.20s %2.2d % 5.1f %3.3d %2.2d %9.5f %9.5f
%9.5f %9.5f %9.5f\n', ...
 result_string, sig_id, SNR_i n_dB, M_value, num_results,
result_mean, result_max, ...

 278

 result_min, result_std, resu lt_var);
 fclose(fid);

 end % results loop
 end % SNR loop
 end % M loop
end % signal loop

% Get time and date to add for "completed timestamp "
ctime = clock;
fid=fopen(results_file, 'rt+');
fseek(fid,47,0); % insert timestamp at beginning of file after "started"
fprintf(fid,' completed: %2.2d/%2.2d/%4.4d %2.2d:% 2.2d:%2.2d',...
 ctime(2), ctime(3), ctime(1),ctime(4), ctime(5),round(ctime(6)));
fclose(fid);

A.6.13 sim_1_proc.m

% sim_1_proc.m - Processing associated with simulat ion #1
% Marquette University, Milwaukee, WI USA
% Copyright 2003, 2004 - All rights reserved.
% Fred J. Frigo
% Dec 21, 2003 - original
% Jan 20, 2004 - updates for calculating errors
%
% Inputs:
% input_signal = signal+noise
% M = filter length
% peak_info = contains info about each pe ak in the signal
% [A, theta, sigma, omega_in dex, next_omega_flag]
% A = expected magnitude
% theta = expected phase
% sigma = expected sigma (dam ping)
% omega_index = omega index f or expected peak
% next_omega_flag = 1 if OK t o use next omega index
%
% Outputs:
% missed_peaks = percentage of missed pea ks
% false_peaks = percentage of false peaks
% rms_mag_err = RMS error for magnitude
% rms_phase_err = RMS error for phase
% rms_sigma_err = RMS error for sigma (da mping)
% pct_mag_err = RMS error for magnitude
% pct_phase_err = RMS error for phase
% pct_sigma_err = RMS error for sigma (da mping)
% elapsed_time = elaspsed time in seconds

function [missed_peaks, false_peaks, rms_mag_err, r ms_phase_err, rms_sigma_err, ...
 pct_mag_err, pct_phase_err, pct_sigma_ err, ...
 bias_mag_err, bias_phase_err, bias_sig ma_err,elapsed_time] =
sim_1_proc(input_signal, M, peak_info);

matched_peaks = 0;
total_peaks = 0;
missed_peaks = 0.0;
false_peaks = 0.0;
rms_mag_err = NaN; % If no peaks are found, RMS er ror = NaN
rms_phase_err = NaN;
rms_sigma_err = NaN;
pct_mag_err = NaN; % If no peaks are found, Percent error = NaN
pct_phase_err = NaN;

 279

pct_sigma_err = NaN;
bias_mag_err = NaN; % If no peaks are found, Bias e rror = NaN
bias_phase_err = NaN;
bias_sigma_err = NaN;

% Find out how many signal components there are
num_expected_peaks = max(size(peak_info(:,5)));

% set flag = 1 to display all plots
show_plots=0;

N=512;
%M=256;
Ns=1000; %1800
Nf=1024;%0<Ns<Nf. Nf>=N+M-1.
K=1;%K must be 1 or N. alp1 and alp2 are irrelevan t if K=1.
Nsig=40;
Nw=N/2;%Nw must be greater than or equal to N/2.
k1=0;
k2=Nw-1;%0<=k1<k2<=Nw-1.
delsig=0.0002;
alp1=0;
alp2=0;
bet1=0; % 0 = default - set this to 0.5 to increas e peak picking sensitivity
bet2=0;
gam=0;%0<gam<=1. gam=1 reduces to 2D APES. gam=0 would reduce to 2D Capon.
C=1;

spectrumtype=1;%=1 for 2D Capon, 2 for 2D APES/Capo n.

delw=pi/Nw;

% signal plus noise
x=input_signal(:,1:N+M-1);

if C>1

 if gtype==1&datatype==1
 g=gideal;
 elseif gtype==2
 g=fgest(xlong,C);
 %g=fgest(x,C);
 end

 if rhosqtype==1&datatype==1
 rhosq=rhosqideal;
 elseif rhosqtype==2
 rhosq=frhosqest(xlong,Ns,Nf,C);
 end

 Rw=diag(rhosq);
 Rwinv=inv(Rw);
 w=Rwinv*g/(g'*Rwinv*g);

 xest=w'*x;

else % if C == 1, then g = 1
 g=1;
end

tic;

if (C==1)|(C>1&combotype==3)
 if spectrumtype==1
 S=Capon2D(x,N,M,K,Nsig,Nw,k1,k2,delsig,alp1,a lp2,bet1,bet2,C,g);
 elseif spectrumtype==2

 280

 S=APESCapon2D(x,N,M,Nsig,Nw,k1,k2,delsig,bet1 ,bet2,gam,C,g);
 end
end

if C>1&combotype==1
 if spectrumtype==1
 S=Capon2D(xest,N,M,K,Nsig,Nw,k1,k2,delsig,alp 1,alp2,bet1,bet2,1,1);
 elseif spectrumtype==2
 S=APESCapon2D(xest,N,M,Nsig,Nw,k1,k2,delsig,b et1,bet2,gam,1,1);
 end
end

if C>1&combotype==2
 S=zeros(Nsig,k2-k1+1);
 for i=1:C
 if spectrumtype==1
 Si=Capon2D(x(i,:),N,M,K,Nsig,Nw,k1,k2,dels ig,alp1,alp2,bet1,bet2,1,1);
 elseif spectrumtype==2
 Si=APESCapon2D(x(i,:),N,M,Nsig,Nw,k1,k2,de lsig,bet1,bet2,gam,1,1);
 end
 S=S+conj(w(i))*Si;
 end
end

elapsed_time = toc;

sigset=delsig*[0:Nsig-1];
wset=delw*[k1:k2];
n=[0:N+M-2];

% Create peak enhanced 2D surface where each peak i s a dirac delta function
Sp=peak_complex(S,0,1);

% Compute peak projections
Spp=peakproj(Sp,0);

% Set threshold for valid peaks: (Max component am plitude = 1.0)
% - Use max projection (for determination of thres hold)
% max_peak_value = max(abs(Spp));
% peak_threshold = max_peak_value*0.1;
peak_threshold = 0.025;

% Count number of peaks that exceed threshold
total_peaks = count_peaks(Spp, peak_threshold);

% Search for expected signal components, computing error terms if found
rms_mag_sum = 0.0;
rms_phase_sum = 0.0;
rms_sigma_sum = 0.0;
pct_mag_sum = 0.0;
pct_phase_sum = 0.0;
pct_sigma_sum = 0.0;
bias_mag_sum = 0.0;
bias_phase_sum = 0.0;
bias_sigma_sum = 0.0;
peaks_found = 0;
for peak_component = 1: num_expected_peaks
 component_info = squeeze(peak_info(peak_compone nt, :));
 % Search for expected peak calculating magnitud e, phase and damping errors
 [found_peak_flag, sq_mag_err, sq_phase_err, sq_ sigma_err, abs_mag_err, abs_phase_err,
...
 abs_sigma_err, diff_mag_err, diff_phase_ err, diff_sigma_err] = find_peak(Sp,
component_info, delw, delsig, peak_threshold);
 rms_mag_sum = rms_mag_sum + sq_mag_err;
 rms_phase_sum = rms_phase_sum + sq_phase_err;
 rms_sigma_sum = rms_sigma_sum + sq_sigma_err;

 281

 pct_mag_sum = pct_mag_sum + abs_mag_err;
 pct_phase_sum = pct_phase_sum + abs_phase_err;
 pct_sigma_sum = pct_sigma_sum + abs_sigma_err;
 bias_mag_sum = bias_mag_sum + diff_mag_err;
 bias_phase_sum = bias_phase_sum + diff_phase_er r;
 bias_sigma_sum = bias_sigma_sum + diff_sigma_er r;

 if (found_peak_flag == 1)
 peaks_found = peaks_found + 1;
 end
end

% Compute error values if we found any peaks
if peaks_found > 0
 rms_mag_err = sqrt((rms_mag_sum/peaks_found)) ;
 rms_phase_err = sqrt((rms_phase_sum/peaks_foun d));
 rms_sigma_err = sqrt((rms_sigma_sum/peaks_foun d));
 pct_mag_err = (pct_mag_sum/peaks_found)*100.0;
 pct_phase_err = (pct_phase_sum/peaks_found)*100 .0;
 pct_sigma_err = (rms_sigma_sum/peaks_found)*100 .0;
 bias_mag_err = bias_mag_sum/peaks_found;
 bias_phase_err = bias_phase_sum/peaks_found;
 bias_sigma_err = bias_sigma_sum/peaks_found;
end

% False positives (as a percentage)
false_peaks = ((total_peaks - peaks_found)/Nw)*100. 0;

% Missed peaks (as a percentage)
missed_peaks = ((num_expected_peaks - peaks_found)/ num_expected_peaks)*100.0;

% Create plots if selected.
if (show_plots == 1)

 mrs_name='x(t)';

 % Plots
 if(spectrumtype == 1)
 analysis_string = '2D-Capon ';
 else
 analysis_string = '2D-APES ';
 end

 figure
 title_string = strcat([analysis_string, 'surface plot of |S(\sigma,\omega)| for ',
mrs_name]);
 surf(wset,sigset,abs(S)),title(title_string), xl abel('\omega'),
ylabel('\sigma'),zlabel('|S(\sigma,\omega)|');

 figure
 title_string = strcat([analysis_string, 'contour plot of |S(\sigma,\omega)| for ',
mrs_name]);
 contour(wset,sigset,abs(S)),title(title_string), xlabel('\omega'),ylabel('\sigma');

 figure
 title_string = strcat([analysis_string, 'peak en hanced surface plot of
|S(\sigma,\omega)| for ', mrs_name]);

surf(wset,sigset,abs(Sp)),title(title_string),xlabe l('\omega'),ylabel('\sigma'),zlabel('|
S(\sigma,\omega)|');

 figure
 title_string = strcat([analysis_string, 'peak en hanced contour plot of
|S(\sigma,\omega)| for ', mrs_name]);
 contour(wset,sigset,abs(Sp)),title(title_string) ,xlabel('\omega'),ylabel('\sigma');

 282

 figure
 title_string = strcat([analysis_string, 'project ed peaks of |S(\sigma,\omega)| for ',
mrs_name]);
 plot(wset,Spp),title(title_string),xlabel('\omeg a'),ylabel('|S(\sigma,\omega)|');

 X=fft(x.').';
 [Cft,Nft]=size(abs(X));
 k1ft=floor(Nft*k1/(2*Nw));
 k2ft=floor(Nft*k2/(2*Nw));
 wfset=[k1ft:k2ft]*2*pi/Nft;
 figure
 plot(wfset,abs(X(:,k1ft+1:k2ft+1))/Nft),title(st rcat(['Fourier Transform of
',mrs_name])),xlabel('\omega'),ylabel('|S(\omega)|');
 if C>1
 Xest=fft(xest.').';
 figure
 plot(wfset,abs(Xest(:,k1ft+1:k2ft+1))/Nft),ti tle('average abs(FFT)'),xlabel(paras)
 end
 figure
 plot(n,abs(x).'),title(strcat(['Input signal ',m rs_name])),
xlabel('t'),ylabel('x(t)');

end % (show_plots == 1)

return

A.6.14 timing_sim.m

% timing_sim.m - Mainline script to run timing simu lation
% Marquette University, Milwaukee, WI USA
% Copyright 2004 - All rights reserved.
% Fred J. Frigo
% Feb 29, 2004 - original

clear all
close all

results_file = 'timing_sim_results.txt';
simulation_id = 14;

% Noise files
num_noise_frames = 5; %10
noise_file=[
 'noise_0.dat';
 'noise_1.dat';
 'noise_2.dat';
 'noise_3.dat';
 'noise_4.dat';
 'noise_5.dat';
 'noise_6.dat';
 'noise_7.dat';
 'noise_8.dat';
 'noise_9.dat'];

% Signal files
num_signals = 3;
signal_file=[
 'signal_1.dat';
 'signal_2.dat';
 'signal_3.dat'];

 283

% SNR values
num_snr_values = 1;
snr_value=[18.0];

% Signal Components: (these match signal definition in create_signals.m)
% [A, theta, sigma, omega_index, next_omega_fla g]
% A = magnitude
% theta = phase
% sigma = sigma (damping)
% omega_index = frequency index for peak
% next_omega_flag = 1 if OK to use next omega in dex (for peaks the are
% on boundaries)
%
signal_components_1 = [
 1.0, pi/4.0, 0.002, 63, 0;
 0.75, -pi/2.0, 0.006, 127, 0;
 0.25, 0.0, 0.004, 191, 0];

signal_components_2 = [
 1.00, pi/4.0, 0.001, 30, 0;
 25.00, 0.0, 0.002, 40, 0;
 0.75, -pi/4.0, 0.004, 50, 0;
 0.25, 0.0, 0.003, 100, 0;
 1.00, 0.0, 0.001, 120, 0;
 10.00, pi/2.0, 0.002, 125, 0;
 0.50, -pi/2.0, 0.002, 195, 0;
 1.00, 0.0, 0.003, 225, 0];

signal_components_3 = [
 0.50, 0.0, 0.004, 0, 0;
 0.75, -pi/2.0, 0.002, 10, 0;
 1.00, pi/4.0, 0.003, 31, 0;
 0.75, 0.0, 0.003, 34, 0;
 0.50, -pi/2.0, 0.005, 55, 0;
 1.00, pi/2.0, 0.001, 63, 0;
 1.00, 0.75*pi, 0.005, 66, 0;
 0.25, 0.0, 0.004, 73, 0;
 0.50, pi/2.0, 0.000, 95, 0;
 0.50, -pi/2.0, 0.006, 104, 0];

% Number of M values to test
num_m_values = 4;
m_values=[32, 64, 128, 256];

N=512;

% Values of K, alpha1, beta1, spectrum_type
num_beta_values = 9;
K_values = [N, N, N, N, 1, 1, N, N, N];
alp1_values= [0.0, 0.0, -0.5, -0.5, 0.0, 0.0, 0.0, 0.0, 0.0];
bet1_values= [0.0, 0.001, 0.0, 0.001, 0.0, 0.001, 0.0, 0.001, -0.5];
spect_vals = [1, 1, 1, 1, 1, 1, 2, 2, 2];

% Frame size (max is 1024)
frame_size = N + 256;

% Get time and date
ctime = clock;

% Open results file
fid=fopen(results_file, 'wt+');
fprintf(fid,'Simulation: %2d\n', simulation_id);
fprintf(fid,'started: %2.2d/%2.2d/%4.4d %2.2d:%2.2 d:%2.2d -
\n',...

 284

 ctime(2), ctime(3), ctime(1),ctime(4),
ctime(5),round(ctime(6)));
fprintf(fid,' Parameter signal SNR K alp1 bet1 M spec N
mean max min std v ariance \n');
fclose(fid);

% Signal loop
for sig_id = 3: 3 % num_signals

 % Get data
 fidsig = fopen(signal_file(sig_id,:), 'r+b');
 [raw_data, count] = fread(fidsig, frame_size*2, 'real*4');
 fclose(fidsig);
 for m = 1:(count/2)
 sig_data(m) = raw_data((2*m)-1) + j*raw_data(2*m);
 end

 % Compute signal energy for mixing SNR
 sig_energy=sum(abs(sig_data.*sig_data));

 % Select structure with signal component info
 if (sig_id == 1)
 peak_info = signal_components_1;
 elseif (sig_id == 2)
 peak_info = signal_components_2;
 elseif (sig_id == 3)
 peak_info = signal_components_3;
 end

 % M loop
 for mloop = 1: num_m_values % num_m_values
 M_value = m_values(mloop);

 for bloop = 1: num_beta_values % num_beta_val ues
 bet1 = bet1_values(bloop);
 alp1 = alp1_values(bloop);
 spectrum_type = spect_vals(bloop);
 K_value = K_values(bloop);

 % SNR loop
 for snrloop = 1: num_snr_values % num_snr_v alues
 % Compute desired weight for noise to y ield desired SNR ratio in dB
 SNR_in_dB = snr_value(snrloop);
 SNR_exponent = SNR_in_dB/10.0; % numer ator = desired SNR ratio in dB

 % Noise loop
 for noise_id = 1:num_noise_frames % n um_noise_frames
 % Get noise
 fidn = fopen(noise_file(noise_id,:), 'r+b');
 [raw_data, count] = fread(fidn, fram e_size*2, 'real*4');
 fclose(fidn);
 for m = 1:(count/2)
 noise(m) = raw_data((2*m)-1) + j *raw_data(2*m);
 noise(m)=0.1*noise(m);
 end

 % Compute Noise energy for creating desired mix of
 % signal + noise
 noise_energy=sum(abs(noise.*noise));
 noise_weight = sqrt((sig_energy/noi se_energy)/power(10.0,SNR_exponent));

 % build the signal plus noise
 x= sig_data + (noise_weight*noise);

 % Call function to do processing on algorithm to test

 285

 [missed_peaks(noise_id), false_peaks (noise_id), mag_err_rms(noise_id),
phase_err_rms(noise_id),...
 sigma_err_rms(noise_id), mag _err_pct(noise_id),
phase_err_pct(noise_id), ...
 sigma_err_pct(noise_id), mag _err_bias(noise_id),
phase_err_bias(noise_id), ...
 sigma_err_bias(noise_id), el apsed_time(noise_id)] =
timing_sim_proc(x, K_value, alp1, bet1, M_value, sp ectrum_type, peak_info);

 end % noise loop

 % Log results for each parameter for a set of noise instances
 for result_loop=1:12

 if result_loop == 1
 result_data = missed_peaks;
 result_string = 'Missed_Peaks';
 elseif result_loop == 2
 result_data = false_peaks;
 result_string = 'False_Peaks';
 elseif result_loop == 3
 result_data = mag_err_rms;
 result_string = 'Mag_Err_RMS';
 elseif result_loop == 4
 result_data = phase_err_rms;
 result_string = 'Phase_Err_RMS ';
 elseif result_loop == 5
 result_data = sigma_err_rms;
 result_string = 'Sigma_Err_RMS ';
 elseif result_loop == 6
 result_data = mag_err_pct;
 result_string = 'Mag_Err_perce nt';
 elseif result_loop == 7
 result_data = phase_err_pct;
 result_string = 'Phase_Err_per cent';
 elseif result_loop == 8
 result_data = sigma_err_pct;
 result_string = 'Sigma_Err_per cent';
 elseif result_loop == 9
 result_data = mag_err_bias;
 result_string = 'Mag_Err_Bias' ;
 elseif result_loop == 10
 result_data = phase_err_bias;
 result_string = 'Phase_Err_Bia s';
 elseif result_loop == 11
 result_data = sigma_err_bias;
 result_string = 'Sigma_Err_Bia s';
 elseif result_loop == 12
 result_data = elapsed_time;
 result_string = 'Elapsed_time' ;
 end

 % Discard invalid results
 num_results=0;
 for (rindex = 1:num_noise_frames)
 % If result is valid number, st ore it for computation
 if (isnan(result_data(rindex)) == 0)
 num_results = num_results+1 ;
 valid_results(num_results) = result_data(rindex);
 end
 end
 % Compute mean, std and variance on valid results.
 if (num_results > 0)
 result_mean = mean(valid_result s(1:num_results));
 result_std = std(valid_results(1:num_results));
 result_var = var(valid_results(1:num_results));

 286

 result_max = max(valid_results(1:num_results));
 result_min = min(valid_results(1:num_results));
 else
 result_mean = NaN;
 result_std = NaN;
 result_var = NaN;
 result_max = NaN;
 result_min = NaN;
 end

 % Log results to output file:
 % 'Parameter signal SNR K al p1 bet1 M spect_type N mean
max min std variance'
 fid=fopen(results_file, 'at');
 fprintf(fid,'%20.20s %1.1d % 4.1f %3.3d %4.1f %6.3f %3.3d
%1.1d %2.2d %9.5f %9.5f %9.5f %9.5f %9.5f\n', ...
 result_string, sig_id, SNR_i n_dB, K_value, alp1, bet1, M_value,
spectrum_type, num_results, result_mean, result_max , ...
 result_min, result_std, resu lt_var);
 fclose(fid);

 end % results loop
 end % SNR loop
 end % beta loop
 end % M loop
end % signal loop

% Get time and date to add for "completed timestamp "
ctime = clock;
fid=fopen(results_file, 'rt+');
fseek(fid,47,0); % insert timestamp at beginning of file after "started"
fprintf(fid,' completed: %2.2d/%2.2d/%4.4d %2.2d:% 2.2d:%2.2d',...
 ctime(2), ctime(3), ctime(1),ctime(4), ctime(5),round(ctime(6)));
fclose(fid);

A.6.15 timing_sim_proc.m

% timing_sim_proc.m - Processing associated with ti ming simulation
% Marquette University, Milwaukee, WI USA
% Copyright 2004 - All rights reserved.
% Fred J. Frigo
% Feb 29, 2004 - original
%
% Inputs:
% input_signal = signal+noise
% K = estimation length
% alp1, bet1 = peak sensistivity paramete rs
% M = filter length
% spectrum_type = 1 = Capon; 2 = Capon/AP ES
% peak_info = contains info about each pe ak in the signal
% [A, theta, sigma, omega_in dex, next_omega_flag]
% A = expected magnitude
% theta = expected phase
% sigma = expected sigma (dam ping)
% omega_index = omega index f or expected peak
% next_omega_flag = 1 if OK t o use next omega index
%
% Outputs:
% missed_peaks = percentage of missed pea ks
% false_peaks = percentage of false peaks
% rms_mag_err = RMS error for magnitude
% rms_phase_err = RMS error for phase
% rms_sigma_err = RMS error for sigma (da mping)

 287

% pct_mag_err = RMS error for magnitude
% pct_phase_err = RMS error for phase
% pct_sigma_err = RMS error for sigma (da mping)
% elapsed_time = elaspsed time in seconds

function [missed_peaks, false_peaks, rms_mag_err, r ms_phase_err, rms_sigma_err, ...
 pct_mag_err, pct_phase_err, pct_sigma_ err, ...
 bias_mag_err, bias_phase_err, bias_sig ma_err,elapsed_time] = ...
 timing_sim_proc(input_signal, K, alp1, bet1, M, spectrum_type, peak_info);

matched_peaks = 0;
total_peaks = 0;
missed_peaks = 0.0;
false_peaks = 0.0;
rms_mag_err = NaN; % If no peaks are found, RMS er ror = NaN
rms_phase_err = NaN;
rms_sigma_err = NaN;
pct_mag_err = NaN; % If no peaks are found, Percent error = NaN
pct_phase_err = NaN;
pct_sigma_err = NaN;
bias_mag_err = NaN; % If no peaks are found, Bias e rror = NaN
bias_phase_err = NaN;
bias_sigma_err = NaN;

% Find out how many signal components there are
num_expected_peaks = max(size(peak_info(:,5)));

% set flag = 1 to display all plots
show_plots=0;

N=512;
%M=256;
Ns=1000; %1800
Nf=1024;%0<Ns<Nf. Nf>=N+M-1.
% K=N;%K must be 1 or N. alp1 and alp2 are irrelev ant if K=1.
Nsig=40;
Nw=N/2;%Nw must be greater than or equal to N/2.
k1=0;
k2=Nw-1;%0<=k1<k2<=Nw-1.
delsig=0.0002;
%alp1=0;
alp2=0;
%bet1=0; % 0 = default - set this to 0.5 to increa se peak picking sensitivity
bet2=0;
gam=0.5;%0<gam<=1. gam=1 reduces to 2D APES. gam= 0 would reduce to 2D Capon.
C=1;

spectrumtype=2;%=1 for 2D Capon, 2 for 2D APES/Capo n.

delw=pi/Nw;

% signal plus noise
x=input_signal(:,1:N+M-1);

if C>1

 if gtype==1&datatype==1
 g=gideal;
 elseif gtype==2
 g=fgest(xlong,C);
 %g=fgest(x,C);
 end

 if rhosqtype==1&datatype==1
 rhosq=rhosqideal;
 elseif rhosqtype==2

 288

 rhosq=frhosqest(xlong,Ns,Nf,C);
 end

 Rw=diag(rhosq);
 Rwinv=inv(Rw);
 w=Rwinv*g/(g'*Rwinv*g);

 xest=w'*x;

else % if C == 1, then g = 1
 g=1;
end

tic;

if (C==1)|(C>1&combotype==3)
 if spectrumtype==1
 S=Capon2D(x,N,M,K,Nsig,Nw,k1,k2,delsig,alp1,a lp2,bet1,bet2,C,g);
 elseif spectrumtype==2
 S=APESCapon2D(x,N,M,Nsig,Nw,k1,k2,delsig,bet1 ,bet2,gam,C,g);
 end
end

if C>1&combotype==1
 if spectrumtype==1
 S=Capon2D(xest,N,M,K,Nsig,Nw,k1,k2,delsig,alp 1,alp2,bet1,bet2,1,1);
 elseif spectrumtype==2
 S=APESCapon2D(xest,N,M,Nsig,Nw,k1,k2,delsig,b et1,bet2,gam,1,1);
 end
end

if C>1&combotype==2
 S=zeros(Nsig,k2-k1+1);
 for i=1:C
 if spectrumtype==1
 Si=Capon2D(x(i,:),N,M,K,Nsig,Nw,k1,k2,dels ig,alp1,alp2,bet1,bet2,1,1);
 elseif spectrumtype==2
 Si=APESCapon2D(x(i,:),N,M,Nsig,Nw,k1,k2,de lsig,bet1,bet2,gam,1,1);
 end
 S=S+conj(w(i))*Si;
 end
end

elapsed_time = toc;

sigset=delsig*[0:Nsig-1];
wset=delw*[k1:k2];
n=[0:N+M-2];

% Create peak enhanced 2D surface where each peak i s a dirac delta function
Sp=peak_complex(S,0,1);

% Compute peak projections
Spp=peakproj(Sp,0);

% Set threshold for valid peaks: (Max component am plitude = 1.0)
% - Use max projection (for determination of thres hold)
% max_peak_value = max(abs(Spp));
% peak_threshold = max_peak_value*0.1;
peak_threshold = 0.025;

% Count number of peaks that exceed threshold
total_peaks = count_peaks(Spp, peak_threshold);

% Search for expected signal components, computing error terms if found
rms_mag_sum = 0.0;

 289

rms_phase_sum = 0.0;
rms_sigma_sum = 0.0;
pct_mag_sum = 0.0;
pct_phase_sum = 0.0;
pct_sigma_sum = 0.0;
bias_mag_sum = 0.0;
bias_phase_sum = 0.0;
bias_sigma_sum = 0.0;
peaks_found = 0;
for peak_component = 1: num_expected_peaks
 component_info = squeeze(peak_info(peak_compone nt, :));
 % Search for expected peak calculating magnitud e, phase and damping errors
 [found_peak_flag, sq_mag_err, sq_phase_err, sq_ sigma_err, abs_mag_err, abs_phase_err,
...
 abs_sigma_err, diff_mag_err, diff_phase_ err, diff_sigma_err] = find_peak(Sp,
component_info, delw, delsig, peak_threshold);
 rms_mag_sum = rms_mag_sum + sq_mag_err;
 rms_phase_sum = rms_phase_sum + sq_phase_err;
 rms_sigma_sum = rms_sigma_sum + sq_sigma_err;
 pct_mag_sum = pct_mag_sum + abs_mag_err;
 pct_phase_sum = pct_phase_sum + abs_phase_err;
 pct_sigma_sum = pct_sigma_sum + abs_sigma_err;
 bias_mag_sum = bias_mag_sum + diff_mag_err;
 bias_phase_sum = bias_phase_sum + diff_phase_er r;
 bias_sigma_sum = bias_sigma_sum + diff_sigma_er r;

 if (found_peak_flag == 1)
 peaks_found = peaks_found + 1;
 end
end

% Compute error values if we found any peaks
if peaks_found > 0
 rms_mag_err = sqrt((rms_mag_sum/peaks_found)) ;
 rms_phase_err = sqrt((rms_phase_sum/peaks_foun d));
 rms_sigma_err = sqrt((rms_sigma_sum/peaks_foun d));
 pct_mag_err = (pct_mag_sum/peaks_found)*100.0;
 pct_phase_err = (pct_phase_sum/peaks_found)*100 .0;
 pct_sigma_err = (rms_sigma_sum/peaks_found)*100 .0;
 bias_mag_err = bias_mag_sum/peaks_found;
 bias_phase_err = bias_phase_sum/peaks_found;
 bias_sigma_err = bias_sigma_sum/peaks_found;
end

% False positives (as a percentage)
false_peaks = ((total_peaks - peaks_found)/Nw)*100. 0;

% Missed peaks (as a percentage)
missed_peaks = ((num_expected_peaks - peaks_found)/ num_expected_peaks)*100.0;

% Create plots if selected.
if (show_plots == 1)

 mrs_name='x(t)';

 % Plots
 if(spectrumtype == 1)
 analysis_string = '2D-Capon ';
 else
 analysis_string = '2D-APES ';
 end

 figure
 title_string = strcat([analysis_string, 'surface plot of |S(\sigma,\omega)| for ',
mrs_name]);

 290

 surf(wset,sigset,abs(S)),title(title_string), xl abel('\omega'),
ylabel('\sigma'),zlabel('|S(\sigma,\omega)|');

 figure
 title_string = strcat([analysis_string, 'contour plot of |S(\sigma,\omega)| for ',
mrs_name]);
 contour(wset,sigset,abs(S)),title(title_string), xlabel('\omega'),ylabel('\sigma');

 figure
 title_string = strcat([analysis_string, 'peak en hanced surface plot of
|S(\sigma,\omega)| for ', mrs_name]);

surf(wset,sigset,abs(Sp)),title(title_string),xlabe l('\omega'),ylabel('\sigma'),zlabel('|
S(\sigma,\omega)|');

 figure
 title_string = strcat([analysis_string, 'peak en hanced contour plot of
|S(\sigma,\omega)| for ', mrs_name]);
 contour(wset,sigset,abs(Sp)),title(title_string) ,xlabel('\omega'),ylabel('\sigma');

 figure
 title_string = strcat([analysis_string, 'project ed peaks of |S(\sigma,\omega)| for ',
mrs_name]);
 plot(wset,Spp),title(title_string),xlabel('\omeg a'),ylabel('|S(\sigma,\omega)|');

 X=fft(x.').';
 [Cft,Nft]=size(abs(X));
 k1ft=floor(Nft*k1/(2*Nw));
 k2ft=floor(Nft*k2/(2*Nw));
 wfset=[k1ft:k2ft]*2*pi/Nft;
 figure
 plot(wfset,abs(X(:,k1ft+1:k2ft+1))/Nft),title(st rcat(['Fourier Transform of
',mrs_name])),xlabel('\omega'),ylabel('|S(\omega)|');
 if C>1
 Xest=fft(xest.').';
 figure
 plot(wfset,abs(Xest(:,k1ft+1:k2ft+1))/Nft),ti tle('average abs(FFT)'),xlabel(paras)
 end
 figure
 plot(n,abs(x).'),title(strcat(['Input signal ',m rs_name])),
xlabel('t'),ylabel('x(t)');

end % (show_plots == 1)

return

