Course Description:
Introduction to the theory and practice of discrete-time signals and systems. Concepts covered include Fourier Transforms, Z-transforms, linear time invariant system analysis in the time and frequency domains, sampling theory and Discrete Fourier Transforms. Application of these concepts includes digital filter design techniques and the use of Fast Fourier Transforms for efficient frequency domain analysis. Labs and design projects related to specific signal processing applications are used to illustrate the material, including topics such as audio and image processing.

Additional Details:
Simple examples using MATLAB, C/C++ and CUDA will be used to demonstrate key concepts of the course. Example source code will be shared from the class GitHub repository, and students will have access to the necessary hardware and software for implementation. Class notes and lecture recordings will be shared on D2L. Assignments will be given at least 2 weeks prior to the due date.

Additional expected learning outcomes for graduate students are to analyze and think critically to apply knowledge, skills, and values appropriate to Digital Signal Processing. In addition, graduate students should master new and various methods and technologies at an advanced level.

Location & Schedule:
Class meets in EHALL 323 on Mondays & Wednesdays: 4:00pm-5:15pm

Grading:
Homework and Projects: 60%
Mid-term exam: 20%
Final exam: 20%

Recommended Texts:
ISBN-10: 0131988425

ISBN-10: 0131394061

Other Notes:
Students are required to comply with all policies outlined in the Graduate Bulletin, including the Marquette University Honor Code and Honor Policy.

Office Hours:
By appointment; using Microsoft Teams or in-person Haggerty Hall – Room 235

Contact Info:
Email: Frederick.Frigo@marquette.edu