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ABSTRACT

This paper describes the development of an experimental
testbed for investigation of human arm impedance. A two-
degree-of-freedom SCARA-configuration robotic arm with an
endpoint force sensor has been developed for measuring
parameters such as postural viscosity and dynamic stiffness
and viscosity. The measurement device is to be used in
disturbance tests that will determine the degree and nature of
impedance tuning during the accomplishment of various tasks.
The experimental results may have applications both to
prosthetics, where artificial limbs should mimic natural limbs
as closely as possible, and to robotics, where the choice of
parameters for impedance control is a current topic of
research.

INTRODUCTION

Research in human motor control has led to a wide variety
of viewpoints concerning the strategy used by the central
nervous system (CNS) in controlling limb movements.
Researchers have suggested control of muscle variables such
as force, length, velocity, stiffness, and viscosity, although
many have recognized the difficulty of positing a single
strategy in light of the vast complexity of the human nervous

g';tem and the great variety of tasks of which it is capable
1.

Several researchers have proposed the control of
mechanical impedance as a primary means of human motor
oontr91 (1,5,11]. In a mechanical system, impedance is a
descripion  of the relationship between forces and
deplaE:ements and forces and displacement rates. Stiffness,
Viscosity, and inertia are three basic components of
impedance, relating force to position, velocity, and
acceleration, respectively. An advantage of impedance control
i a fmmework for motion control lies in its ability to unify
Position and force control, which it views as the limiting cases
of zero and infinite impedance, respectively [7].

 Theories and experiments regarding human limb
impedance control have progressed historically from

consideration of single muscles to the investigation of multi-
jointed limbs. - Feldman [1] showed that the stiffness of an
individual muscle about an invariable equilibrium length
increases with neural activity. In order for different postures
to be achieved, the equilibrium angle of a limb about a given
joint axis must be variable. Hogan [5] went beyond
consideration of single muscles to propose a simplified joint
model in which coactivation of antagonist muscles allows
variation of the joint’s equilibrium angle as well as its stiffness
about that angle. Extending this idea to more than one joint,
he then showed that the stiffness tensor of the endpoint of the
human arm should be tunable based on degrees of freedom
provided by a combination of singly and doubly joint-
connected antagonist muscle pairs at the shoulder and elbow.

In order to investigate the way in which the CNS controls
stiffness to achieve posture, Mussa-Ivaldi et al. [10] displaced
the human arm’s endpoint from a series of equilibrium points
in a plane and measured the corresponding restoring forces
before the onset of any voluntary reaction. They concluded
that the stiffness characteristic of the arm endpoint is spring-
like, meaning that the stiffness for small displacements about
an equilibrium position is symmetrical. They characterized the
arm endpoint stiffness at various positions of several human
subjects using ellipses representing contours of equal potential
energy. The orientation with respect to a frame fixed in the
body and the shape, or aspect ratio, of these ellipses was seen
to remain relatively constant among subjects, whereas their
sizes varied.

The postural stiffness investigated in [10] is the static case,
in the sense that the person attempts to maintain the arm
stationary rather than move it from one point to another. In the
dynamic case, the idea that the CNS can vary the equilibrium
position of a joint suggests the equilibrium trajectory
hypothesis, which states that multi-joint arm movements are
achieved by gradually shifting the commanded endpoint
equilibrium positions and allowing muscle visco-elastic forces
to propel the arm along the trajectory [6]. Flash tested this
hypothesis by investigating the trajectories of reaching
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motions [3]. A simple dynamic model of the human arm was
used, and the elbow and shoulder joint positions and their
derivatives were measured during a movement, resulting in the
joint torques necessary to drive the arm. These torques were
equated to a function of the instantaneous difference between
the actual and equilibrium joint positions, and the joint
velocities. The unknowns in this function were the (dynamic)
joint stiffness and viscosity tensors, and the joint equilibrium
positions. Because no experimental data on dynamic stiffness
and viscosity were available, in order to solve for the joint
equilibrium positions Flash assumed that postural viscosity
scales with postural stiffness, which had been measured in
[10], and that dynamic impedance (stiffness, viscosity and
inertia) scales with postural impedance. Flash concluded that
the equilibrium trajectory hypothesis is plausible, because the
calculated joint equilibria lay along nearly straight lines
connecting the initial and target points.

PROBLEM STATEMENT & ANALYTIC APPROACH

There are three basic ways in which the work to date in
characterizing human arm impedance control may be
extended. First, dynamic, rather than static, or postural,
impedance can be measured. Thus far, based on certain
assumptions, measurements of postural stiffness have been
used to infer postural viscosity and dynamic stiffness and
viscosity. Actual measurements of postural viscosity and
dynamic impedance can be made. Secondly, variations in
impedance can be investigated not simply for the case in
which the arm is unimpeded, but also under different loadings,
or impedances. Finally, the first and second steps can be
repeated for different tasks and conditions, and variations in
impedance across tasks can be investigated.

This study concerns itself with measurement of the gross
mechanical properties of the endpoint of the intact human arm.
It is possible to monitor myoelectric signals in an effort to
determine the nature of human muscle and limb control at a
more microscopic level, and many such studies have been
made [4,9]. Although these studies provide valuable
information about local control mechanisms, it is difficult to
assess their importance with respect to the mechanical
characteristics of the arm endpoint without exhaustive
knowledge of the interconnections and overall structure of the
human arm "control system.” Because in many tasks the goal
of the arm’s neural activity appears to be control of the arm
endpoint, it is justifiable to consider the degree and nature of
the modulation of the endpoint’s mechanical properties as a
direct indicator of the nature of that control.

Many tasks performed by the human arm endpoint, such
as moving from one point to another in pick-and-place
operations, or maintaining a force normal to a surface as in
driving a screw, are conveniently described in Cartesian space.
This fact suggests the possibility that the CNS plans endpoint
impedance in Cartesian space. Individual joint impedances are
difficult to measure directly, although, if desired, they can be
estimated from a dynamic model of the human arm coupled
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with measurements of the endpoint Cartesian impedance to
which they give rise. For these reasons, it is appropriate to
measure human arm endpoint impedance in Cartesian space.

Because the human arm works in three-dimensional space,
its endpoint has a three-dimensional impedance. In multi-
dimensional space, impedances are represented by tensors,
rather than by scalars as in the one-dimensional case [5]. The
transition from one to two dimensions captures the essence of
this qualitative change, and therefore, in the study reported in
[10] and in this work, it has not been deemed necessary to
incur the additional experimental complexity needed to extend
impedance measurement to three dimensions.

A common method of identification of dynamic system
parameters is the application of an input test signal and
measurement of the resulting output. The input and output
may then be correlated by any of a number of standard
methods, yielding a description of the system dynamics [8].
This approach is most commonly used in the identification of
open-loop systems, because it is difficult to isolate a given
plant within a closed-loop system of unknown structure. Thus,
for example, it is difficult to determine a model of the passive
human arm by observing its closed-loop behavior, as it is
actuated by neural control signals. Because it is the arm
endpoint’s closed-loop behavior which is of interest in our
case, this does not present a problem. However, because the
CNS is adaptive, input signals should be as unobtrusive as
possible in order not to artificially change the level of
adaptation.

continuous-time

The multi-dimensional  Cartesian
identification problem involves determinationr of the
relationship

F = f(X,X,X) (1)

where F and X are multi-dimensional vectors representing the
arm endpoint input force perturbations and output
displacements, respectively, and f is a vector of undetermined
functions. If f is continuous and differentiable, linearization of
equation (1) for small displacements yields

F = MX + BX + KX @
where M, B, and K are the localized inertia, viscosity, and
stiffness tensors about a given point. In order to carry out the
identification, it is necessary to use a device which can permit
or impose a wide range of motions throughout a prescribed
workspace while measuring desired input and output
quantities. One such device is a robot manipulator. Mussa-
Ivaldi ez al. [10] determined the postural stiffness tensors at
various points in a horizontal plane by using a two-degree-of-
freedom motor-controlled planar manipulator to (i) displace
the human arm from a series of equilibrium positions, and (ii)
measure the final motor positions and torques. The Cartesian
positions and forces were then calculated from the well-known
kinematic relationships




X = L(0) 3
F = J7®)1 @

where 6 denotes the vector of joint angular displacements, L
represents the manipulator forward kinematic transformation,
and J is the manipulator Jacobian. The Cartesian stiffness
tensor was then calculated according to:

F = KX %)

In order to determine the viscous and inertial components of
impedance, endpoint force and position trajectories are
required. Measurement of joint angles followed by a forward
kinematic transformation yields the position trajectory, as
before. However, the interpolation of time-varying endpoint
Cartesian forces from joint motor torques is insufficiently
accurate, because the forces exerted by the human arm are
mediated through the manipulator, whose dynamic model is
difficult to know exactly. The dynamic equation for the
endpoint force in this case is

F = JT(8)[M(8)6 + C(6,8) — 1] ©)

where M(0) is the manipulator inertia tensor, C(G,é) represents
the manipulator Coriolis and centripetal forces, and 1
Tepresents the actuator torques. This calculation is further
complicated by the need for accurate values for the derivatives
of 8 and the potential noisiness of the digital control signal 1.
Direct sensing of endpoint Cartesian force obviates these
problems.
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Figure 1a. Force Sensor (Internal).

Because data-gathering, as well as control of the
manipulator, is most convenient in the digital domain, the
initial identification is based on discrete values of the inputs
and outputs. Application of the least-squares, maximum-
likelihood or other method to a two-input, two-output system
results in a discrete-domain 2x2 transfer function matrix H(z)
[8]. An estimate of the corresponding analog transfer function
matrix H(s) can be found by an extension to the
multidimensional case of a technique described by Feliu [2].
The resulting parameters can be interpreted in terms of the
stiffness, damping, and inertia tensors given in equation (2).
Mussa-Ivaldi er al. [10] suggest representing a two-
dimensional stiffness tensor by an ellipse characterized by
size, shape or aspect ratio, and orientation. This representation
is concise and visually appealing, and can be extended to
representation of the inertial and viscous components of
impedance.

TESTBED DESCRIPTION

We have designed and built a two-degree-of-freedom,
SCARA-configuration, direct-drive robotic arm. The arm is
kinematically anthropomorphic, with upper arm and forearm
link lengths of 0.30 and 0.35 m, respectively. It is relatively
lightweight, with link moments of inertia about their axes of
rotation of approximately 0.15 N-m/rad/s. Joint Coulomb
friction is on the order of 0.05 N-m.

Each joint is driven by a PMI U12M4H DC servo motor.
Each motor is controlled by an IBM PC AT by sending a
digital voltage command to a DAC, feeding the resulting
voltage into a PMI VXA voltage-to-current amplifier, and
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Figure 1b. Handle and Force Sensor.




applying the resulting current to the motor. Position
information is acquired from an 8000-count encoder on each
joint, giving a spatial resolution of about 0.25 mm for full
extension of the arm. Software has been developed to exercise
Cartesian or joint-based control, with the option to neglect or
to account for dynamic coupling effects.

The endpoint two-axis force sensor, shown schematically
in Figure 1, was designed for compactness and fits within a
comfortably graspable 54 mm diameter handle. Each axis is
formed by one pair of strain gages in a parallelogram linkage
in order to limit errors introduced by off-center loading.
Decoupling is achieved by transmitting all handle forces to one
of these linkages, which senses forces along its loading axis
and transmits forces orthogonal to its loading axis to the
second linkage for sensing. Torque loadings are minimized by
allowing the handle to rotate on bearings, permitting free
rotation of the human wrist during experiments. Each axis can
sense forces of up to 44.5 N (10 Ib), with a resolution of 0.011
N (0.002 Ib). The standard deviation of the sensor noise is
0.005 N (0.001 /b). Deviation from linearity is smaller than
one percent. Hysteresis effects and repeatability are to within
+ 0.011 N (0.002 /b).

SUMMARY

Human beings are adept at a wide variety of tasks, ranging
from the maintenance of posture to the fine manipulation of
tools in the face of environmental contact forces. To achieve
these tasks, the CNS exercises complex and versatile control
of the body’s limbs. Investigators have sought to characterize
aspects of this control in various ways. Some have taken a
"low-level" = approach, measuring the mechanical and
myoelectric characteristics of individual muscle preparations,
for example, or tracing the neural feedback of intact muscles in
various situations.  Others have focused on the gross
mechanical properties of human limbs. Based on evidence
from both of these lines of research, several researchers have
theorized that in many tasks the CNS uses impedance control
to move the limbs. Impedance has at least three familiar and
physically intelligible components: stiffness, viscosity, and
inertia.

In testing the impedance control hypothesis, the static
(postural) stiffness of the human arm endpoint in various
configurations has already been measured. These data have
then been used to estimate viscosity characteristics and to
investigate the use of impedance control as the arm traverses
straight-line trajectories. The current work seeks to extend this
by measuring postural viscosity and dynamic stiffness and
viscosity under a variety of task conditions. It is hoped that
lessons learned from human control of impedance in the face
of deterministic as well as nondeterministic disturbance
loading can be transferred to the control of robots and
prosthetics. We are currently beginning the data collection
phase of the study, and plan to report findings in a future
communication.
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