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ABSTRACT

This paper suggesis a method of control system parameter
selection based on a ser of parametric plots of closed-loop system
performance. Here, the petformance measures of rise time,
sertling time, percent overshoot, root sensitivity, gain margin, and
Phase margin are investigated as Junctions of the forward loop
gain. The explicit functional dependence of these performance
indices is summarized in plots that hightight the control sysiem
design space as well as the tradeqffs between feasible system
parameters.  An example problem demonsirates how the
information serves as an aid in satisfying design specifications and
uncovering design tradeoyfs.

1. INTRODUCTION

Control system design invariably involves tradeoffs, €.g., an
increase in loop gain to reduce the steady-state ervor is generally
accompanied by detetioration of the transient performance (in
terms of increased overshoot in the response and reduced damping
of the dominant poles). Closed-loop specifications are most often
given in terms of steady-state error and SIEp TESpONse parameters
such as rise time, peak time, settling time, peak overshoot, erc.
Relative stability measures of gain margin and phase margin,
typically associated with frequency-domain specifications, may
also be given,

This paper promotes the use of computer-based tools to
generate parametric plots to aid in the process of control system
tuning and design. The premise of the method is that various
performance measures may be plotied as funciions of control
design parameters to highlight the control system design space as
well as identify tradeoffs among feasible system parameters.
Many performance metrics may be considered when designing
control systems {e.g., [1]). In this paper, a theme problem is used
1o demonstrate the graphically-based parametric design approach,
We simultaneously explore rise time, setiling time, percent
overshoot, oot sensitivity, gain margin and phase margin as
functions of the forward loop gain.

1.1, Overview of Gain Plots

Geometric perspectives by Nyquist [2], Bode [3], and Evans
[4] have lead to many important developments in classical control
theory of linear time—invariant (LTI) systems. These graphically-
based methods remain key control analysis and design tools even
in the post—computer age. The advent of the computer has enabled
the rapid simulation of closed-loop responses as well as the near-
automatic generation of Nyquist diagrams, Bode plots, and Evans'
root locus plots. It has also extended the classical methods
considerably. For example, multivariable root locus plots can be
generated as readily as single—input, single—ourpm (SISO) root
lecus plots,
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The power and availability of software tools has prompted the
consideration of a new geomemic perspective of the Evans root
locus [5]. The resulting plots, called gain plots, show the explicit
variation of eigenvalue magnitudes and angles with respect 10 a
scalar system parameter, such as forward gain [6]. Eigenvalue
magnitudes vs. gain are portrayed in a magnitade gain plot using a
log—log scale and eigenvalue angles vs. gain are displayed in an
angle gain plot using a semi-log scale (with the logarithms being
base 10). Although these plots employ eigenvalue magnitde and
angle as the functions of interest, similar plots depicting classical
control performance measures may be generated. As seen in
Section 2, these plots are rich in design implications.

12, Example

The example chosen for this paper is adapted from Problem
DP6.3 of the textbook by Dorf [7]. The example considers the
design of a Mars vehicle robot controlier, shown in Figure 1. The
task is to select the forward loop gain, k, cascaded with the PID
controller shown in the block diagram of Figure 1 that meets the
following specifications:

L. Maximum Percent Overshoot to Unit Step = 15%
{This ensures that the robot arms do not substantially
overshoot their target destination, )

2. 2% Seuling Time to Unit Step < 3 seconds. (This
guaraniees 2 reasonably rapid target lock.)

3. Rise Time 1o Unit Step > 0.25 seconds. (This limits
the maximum power requirement of the actuators.}

4. Phase Margin > 45°. (This is a frequency domain
specification providing the design with robusiness.)

5. Gain Margin> § dB. (Thisisa frequency domain and
gain domain specification providing the design with
robusiness.)

6. Maximum Root Sensitivity (for both real and
imaginary components) < 2. (This is a robusiness
specification that ensures limited closed-loop dynamic
changes to gain and parameter variations and
unceriainties,)
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Figure 1. Mars vehicle robot and block diagram.,
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2. GRAPHICAL ANALYSIS

This section presents a variety of graphical representations
portraying closed-loop system specifications as a function of
forward loop gain. Initially, each of the specifications is
considered separately, and conclusions are drawn. Concurrent
consideration of the graphs, the topic of the following section,
permits the determination of the feasibility of the specifications as
well as the identification of tradeoffs.

2.1. Root Locus

Figure 2 presents the root locus for the robot control system of
Figure 1. There are open-loop poles at s =0, -1, and -2 and a pair
of complex conjugate ransmission zeros at s =-3.25 + 1.2j, There
are also two breakout points and one break-in point. The root
locus shows that for all positive values of gain the system is
nominally stable. At high gains, two of the poles migrate to the
finite zeros, essentially negating the dynamics of the two closed-
loop poles and zeros. Also at high gain the "excess” pole waverses
the negative real axis toward —=. The resulting high gain closed-
loop system may be considered to behave as a first order system.

migrating towards —ee. This is manifested in the constant
magnitudes and angles of the two poles approaching the zeros, and
the constant angle (180°) and unity slope of the pole magnitde as
a function of gain shown in the magnitude gain plot [8].

Imag Axis

Real Axis

Figure 2. Root locus plot for the robot control system of Figure 1.
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Figure 3a,b. Gain plots for the robo: control system of Figure 1.

2.2, Gain Plots

The gain plots, shown in Figures 3a,b, uncover the explicit
functional dependence of the poles’ magnitude and angle on
forward gain in the range 10! <k < 10+3, (The breakout point at s
= -0.5 is not depicted in the gain plots since it occurs at a very low
value of gain that does not correspond to the specifications.) The
angle gain plot of Figure 3b indicates that two of the closed-loop
poles are complex conjugates as depicted in the root locus plot.
Also clearly seen is the maximum deviation of the poles from the
teal axis at a gain of approximately 0.9, corresponding to the pole
angles of 2507 and 110" or a damping ratio of 0.34. The gain plots
indicate that the value of k corresponding to the break-in point and
the second break-out point is approximately 12, Also, the range of
k that results in purely real poles is so small that it cannot be seen
on the scale of Figures 3a,b. Finally, at a gain of approximately
100, the closed-loop system eigenvalues display firsy order
Butterworth asymptotic behavior that is the result of the close
proximity of the two poles 10 the zeros and the one excess pole
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2.3. Root Sensitivity

The root sensitivity function, Sg, can be determined graphically
from the slope of the magnitude gain plot, M, and the slope of the
angle gain plot, M, [9]. The relationships are

Re{S,}=M,, M

Im{S, } =log,(e)M, 4]

Figures 4a,b are root sensitivity plots for the system of Figure 1.
From the sensitivity plots, it is clear that to meet specification
6, the gain should not be near k=12, This corresponds 1o the break-
in point and the second break-out point on the root locus. Clearly,
this segment of the root locus is quite sensitive to forward loop
gain variations and should be avoided. It should be noted that at
high gain, the root sensitivity of the poles migrating towards the
zeros asymptotically approach zero; this is indicative of the poles
approaching the zeros. Also, for the pole on the real axis the
Re{Sk) approaches unity at high gain, which is characteristic of
the first order Butterworth pattern. From Figures 4a,b, it is clear




that any gain higher than approximately 15 satisfies the root
sensitivity requirement.
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Figure 4a,b. Sensitivity plots for robot control systerﬁ of Figure 1.
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Figure 5. Maximum percent overshoot for the closed-loop system.

2.4, Parametric Plots

2.4.1. Overshoot

Figure 5 presents the maximum percent overshoot for the
closed-loop system as a function of forward gain, The largest
peak overshoot occurs at a gain of approximately 0.9; this value
results in the lowest damping coefficient as is seen directly in the
angle gain plot (Figure 3b). As the gain is increased past unity, the
maximum percent overshoot decreases. Al a gain of
approximately 800 there is no overshoot, indicating that there is
effective pole/zero cancellation at k~800. However, one may
argue that the 1% 10 3% overshoot seen at values of k=100
corresponds 1o virtual pole zero cancellation since the closed-loop
system behavior is quite close to being first order. By inspection
of Figure 5, the gains that satisfy the maximum percent overshoot
requirement (specification 1) are approximately k < 0,18 and k >
10.

242 Seuling Time

In Figure 6 the 2% settling time for the closed-loop system is
plotted as & function of gain, The jagged nature of the graph,
particularly at low gains, is a result of the definition of the 2%
settling time, Le., it is the time after which the transient response
remains within a 2% bound of the steady state step response value.
As such, the settling time is not guaranteed to be a continuous
function of gain, and may vary substantially depending on the
intersection of the transient response and the 2% envelop about the
steady state value. As the gain is increased above approximately
0.5, the settling time tends to decrease. From Figure 6, it is clear
that to satisfy specification 2 (f.e., 2% settling time in less than 3
seconds), k > 2.5,

Sealing Time vs Gain

Settling Time (5)
£

> S
102

Gain
Figure 6. 2% settling time for the closed-loop system.

243, Rise Time

Figure 7 is a plot of the rise time of the closed loop system as a
function of gain. With increasing gain, the rise time is reduced.
This is expecied since the dominant poles shown on the root focus

‘move further into the right hand plane. At higher values of gain,
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the two complex poles effectively cancel the zeros, and the third
pole on the real axis becomes the dominant pole. It continues to
migrate towards —eo further reducing the rise time. From Figure 7,
the range of gain that satisfies specification 3isk < 7.

2.5. Design Summary

Rise Time vs Gain
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Figure 7. Rise time for the closed—loop system.

Table 1 summarizes the results of exploring gain dependence
on various system measures, as presented in Figures 2-8. The
summary indicates that the closed-loop configuration, with a single
forward gain, cannot simultaneously meet all of the requirements.
In particular, the rise time specification is in direct conflict with the
maximum percent overshoot requirement.

Specification | Figure Number Range of k
1 5 k<018, k>10
2 6 k>2.5
3 7 k<7
4 8 k<035 k>2
5 NA k>0
6 Jab:4ab k<il,k>13

Table 1. Summary of Control System Design and Analysis Plots.

2.44. Gain and Phase Margin

The closed-loop sysiem, being stable, has infinite gain margin
for all positive values of gain. As such, a plot of gain margin vs,
gain is not shown. (The fact thar the system is always stable may
be determined from the angle gain plot of Figure 3b; see [10].)
Figure 8 is a plot of the phase margin of the closed loop system as
a function of gain. It shows that the minimum phase margin is 40°
occurring at a gain of approximately 0.9. This coincides with the
lowest damping coefficient shown in Figure 3b and the largest
percent overshoot shown in Figure 5. As the gain is increased past
0.9, the phase margin asymptotically approaches 90°. At k=1{{},
the system phase margin is nearly 90° indicating that the higher
gain system may be approximated by a first order system. Again,
this is consistent with the other performance measure plots. From
Figure 8, gains that satisfy specification 4 are k <0.35and k > 2.

Several options are available to resolve the conflicting
specifications including: modifying the specifications, modifying
the control configuration and/or modifying the plant configuration
to achieve differen1 dynamics. Toward resolving the design
conflict, the parametric plots are quite useful. From Figures 5 and
7, it is clear that slight modifications in the requirements enable the
proposed control configuration to be acceptable. For example,
permitting the rise time to be reduced to 0.2 seconds and the
maximum percent overshoot to be increased to 18% yields a viable
solution without modifying the plant or controller, This slight
relaxation of requirements, if tolerable, will yield accepiable
closed-loop system behavior. Again, these tradeoffs are clearly
visible from the paramewric plots shown in Figures 2-8. Note that
the limiting specification, rise time, is used to consirain the power
requirement of the actuator motors. Higher power motors are
increasingly cosdy and typically are nonlinear.

Figure 9 is the unit step response of the closed-loop system
shown in Figure I with a forward gain of 8. It can be verified that
the new set of requirements has been met.
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Figure 8. Phase margin for the closed-loop system.
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Figure 9. Unit step rcspoﬁsc of closed-loop system.
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3. CONCLUSIONS

A control system usually requires some adjusiment so that the
various conflicting and demanding specifications can be met. This
paper demonsirates that a set of parametric plots, used in a
properly orchestrated manner, ¢an aid in the control system design
process. The parametric plots suggested here were generated in a
matter of minutes with simple commands on microcomputers; they
are readily available and recommended tools for the control
engineer,

The key to a solid understanding of the design tradeoffs is the
ability to view the system parameters from a variety of
perspectives simultaneously. Here only a small number of design
specifications is considered; if other requirements are introduced,
additional parametric plots may be generated. The graphical
analyses presented in this paper give the control designer the
ability 1o quickly determine if specifications can be met, and what,
if any, tradeoffs are necessary to complete the control desi gn.
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