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H*-Optimal control for a class of reaction—diffusion equations
Decision and

JOHN E. DZIELSKIt{ and MARK L. NAGURKA?

This paper investigates the control of laminar combustion processes represented by
a class of one-dimensional, non-linear, reaction—diffusion equations. The control
objective is to regulate the spatial location of a propagating flame front dynamically
by varying the fuel-air velocity. It is shown that when viewed from an input—output
perspective, the problem is equivalent to the control of a system consisting of linear
clements and a single time-varying non-linear element. The system is controlied
using a linear compensator that is designed based on an H* (minimax) optimality
criterion.

1. Imtroduction

The desire to improve the performance of gas turbine engines has naturally led to a
need to develop procedures for sensing, controlling, and optimizing engine operating
characteristics. Of particular interest is the optimization of the combustion processes
occurring in the engine’s combustor. The goals of such an optimization might be to
minimize heat flux to critical areas of the combustor, control operation near stability
limits, minimize undesirable by-products, and maximize the efficiency and operating
range of the engine. At present, the approach to this optimization problem is generally
static in nature and usually involves solving for the geometry of the combustor. It is of
practical interest to consider the use of an active control system to regulate the
combustion process in the engine dynamically in order to modify and improve its
performance.

A control system for a combustion process might be designed to regulate such
quantities as temperature profile, pressure distribution, and species concentrations in
the flow field. The control system would necessarily have available a set of variables
that can be manipulated to alter the combustor’s properties. These might include fuel
concentration, inlet conditions, and combustor geometry. In order to study the design
of control systems for these processes, it is necessary to examine the nature and the
state-of-the-art of models for combustion processes. The complexity and accuracy of
these models will have a strong bearing on determining whether certain theoretical
and analytical approaches are practical or intractable.

In general, models for combustors are described by non-linear, mixed
hyperbolic-parabolic partial differential equations for such properties as velocity and
pressure distributions, temperature profile, and species concentrations. The optimal
control of systems described by partial differential equations is a problem in the
general area of distributed parameter control. In practice, combustion models cannot
accurately predict the behaviour of an actual system due to uncertainty in such
physical parameters as the reaction rates of the various species, the boundary
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conditions, and the influence of turbulence and its inherently statistical nature. In lamina:
addition, the non-linearity and extremely high—in theory infinite—order of these some ¢
models precludes the use of conventional design techniques. Consequently, it is Howev:
desirable and necessary to investigate control strategies and design procedures that do (i) phys
not rely heavily on the use of an accurate model. cold be
Previous work on the control of combustion processes has involved the appli- ] Since b
cation of simple or heuristic strategies to one-dimensional laminar combustion accurat
equations (Dzielski and Nagurka 1985, Ramos 1984, 1986). The heuristic control law The pa;
proposed in Ramos (1986) results in a system which exhibits very lightly damped non- be refer
linear oscillations. A very similar heuristic control policy proposed in Ramos (1984) solutios
has been found to have a response time several orders of magnitude ( ~ 10°) slower . illustra
than that achieved by a proportional-plus-integral control law (Dzielski and Nagurka i the val:

1985). In addition, the highly oscillatory behaviour of the responses achieved in
Ramos (1984, 1986) suggests that the desired equilibrium state is weakly stable. With
the exception of Dzielski and Nagurka (1985), previous work has not included any
theoretical justification and has relied solely on the use of simulations of a single
equation describing the temperature profile to establish results; therefore, the validity
of these results is intimately tied to the particular model equation in which all
quantities are assumed known. As a consequence, the results do not provide a basis for
a practical approach for the control of combustion processes.

In view of the preliminary nature of previous investigations, research has been
aimed at broadening the applicability of the results. The goal of this work has been to
develop an approach which requires a minimum amount of quantitative information
from a dynamical model—or perhaps only qualitative information from the
physics—to design compensators that can be rigorously justified. This paper is
organized as follows. In § 2, a general class of one-dimensional combustion problems
is described. Viewed from an input-output perspective, this class of problems can be Figure |
shown to reduce to a single linear element and a single time-varying non-linear
element. In § 3, the desired control objectives are related to constraints on the
sensitivity function of an approximation of the system. Owing to the presence of

uncertainty in the model, as well as uncertainty in the non-linearity, it is necessary to The
choose a linear compensator that guarantees the stability of the actual system. The the fuel
search for an optimal trade-off between the competing performance requirements and driven
a stability constraint leads to a frequency domain optimization of the minimax or H® by a fu
type. In § 4, an application of this method to a simple example is presented. 1 PTOﬁva
certain
exists a
2. Input—output model for a class of reaction—diffusion equations be rela
The class of reaction—diffusion equations that has been investigated can be locatio:
characterized by the dimensionless partial differential equation (Williams 1965) In .
T+ VT, =T, +/(T) §) determ
. . measul
where x e [L™, L*] is the spatial variable, T denotes temperature with boundary
conditions T(L™) =0, T(L*) = 1, t denotes a temporal variable, and f(T) € C[0, 1]
is an algebraic function of the temperature satisfying where ;
Sensor:
f(0)=f(1)=0 and fdfd—(xg >0 2 relatio;
denote

with a first derivative that changes sign once in [0, 1]. Equation (1) describes the time
evolution of the temperature distribution, T(x, t), in a moving, one-dimensional,
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laminar, reacting medium. The function f(T) is called the reaction rate function. For
some choices of f(T) and for x € (— oo, + 00) there exist explicit solutions to (1).
However, it will be assumed from the outset that the spatial domain is bounded since
(i) physically we tend to think of the fuel-air mixture as being injected at some finite
cold boundary of the system, and (ii) it must be truncated for numerical solution.
Since boundary effects have not been considered in deriving (1), this equation does not
accurately describe the process if the flame front approaches too near either boundary.
The parameter V in (1) is related to the flow rate of the medium and will subsequently
be referred to as the fuel-air velocity. Subject to the specified boundary conditions, the
solution to (1) is a monotonically increasing function in the spatial variable as
illustrated in Fig. 1. The wavefront propagates either to the left or right depending on
the value of V.
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Figure 1. General shape of the solution of the class of systems described by reaction—diffusion

Equation (1).

The control objective for this class of problems is to find a strategy for adjusting
the fuel-air velocity, V, such that a well-defined point on the temperature profile is
driven to a desired location in the spatial domain, x* = x4.,;,.s. This point is defined
by a function of the form F[T(x*,t)]=0 and could be the inflection point of the
profile, F{T] = T,(x*, t) =0, or perhaps the point where the temperature takes on a
certain value, F[T] = T(x*,t) — Ty =0. The only requirements are that the point
exists and is unique at all times, and that it is possible to make measurements that can
be related to its location, x*. In physical terms, the problem is one of regulating the
location of the combustion front as defined by the quantity x*.

In general, it is not possible to measure directly the quantity x*. Its value is
determined from sensor measurements of the temperature profile, T(x,t). These
measurements, y;, are of the form

yi=8(T(x,1); i=1,...,N 3)

where g; is the influence function of the sensor on the medium, and N is the number of
sensors. Naturally, for these measurements to be useful, there must be some functional
relationship between the sensor outputs and the measured location of the point x*,
denoted x¥;

X =h(y1, ..., yx) @
; BT e 3 7 :‘:;'r
73 %ng gf ra 3
(Tisies S o > : if T
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A distinction has been made between the physical quantity, x*, and the measured
quantity, x%, since a precise calculation of x* is based on exact knowledge of the
current temperature profile, and the profile cannot be determined from a finite
number of measurements. The form of the function k depends strongly on the number
of sensors. In principle, a continuous measurement of the temperature profile would
permit an exact determination of x*. On the other hand, for the case of a single
measurement, it is not possible to determine accurately the location of the flame front,
except when the front is located in the immediate vicinity of the (single) sensor. From
the definition of x*, the measurement function implicitly inverts the temperature
profile, and as can be seen from Fig. 1, this inverse is nearly singular except in the
neighbourhood of the front. In addition, due to the assumed uncertainty in the
function f(T) in (1), h cannot be determined accurately.
Given a suitably defined reference, x4.,;.cq> an error is defined as

e= X: — Xdesired = h(yh (I3} yN) — Xdesired (5)

and the compensation objective is to regulate the error by adjusting the fuel-air
velocity, V.

Consider the dynamical relation between V and x* implied by (1). Since the rate at
which the wavefront of the temperature profile propagates into the medium is related
to V, the relationship between V and x* can be expressed functionally as

d *
% = ¢.(V, T(x, 1)) (6)

where ¢, denotes the functional relationship. There exists a non-zero value of V for
which dx*/dt = 0 and the shape of the temperature profile does not change with time.
This value of V is known as the steady-state wave speed and is denoted by V*.
It is related to the function f(T) by

ye= 'f _m F(Tolx)) dx 7

where T,,(x) is the steady-state solution corresponding to the eigenvalue V* and
x € (— o0, + 00). Therefore, uncertainty in the reaction rate function can be interpreted
as uncertainty in the value of V* as well as uncertainty in the solution T(x, t). This
suggests that it may be better to write (6) as

dx*

e H(V—V* T(x,1))

=¢(V;, T(x, 1)) (8)

where ¢ denotes the functional relationship and V; denotes an input variable which
when equal to zero causes the flame front to remain stationary. Naturally, the lack of
knowledge about the function f leads to uncertainty in the functional value of ¢ for
given values of the arguments. It should be noted that ¢ is a non-linear time-varying
function. The class of systems described by (1) can be represented by the block
diagram shown in Fig. 2.

In Fig. 2 it is assumed that the fuel-air velocity, V, is manipulated by the controller
and that the steady-state wave speed, V*, is a constant. Equation (7) suggests that it is
also possible to assume that the fuel-air velocity, V, is constant and to use the reaction
rate function, f(T), as the control variable. Manipulating the shape of the reaction
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rate function corresponds to altering the composition of the fuel-air mixture. This
approach is in a sense dual to the one considered here since the roles of ¥ and V* in
Fig. 2 are interchanged. The former problem in which V is the control variable is
addressed here because the relationship between physical quantities and the reaction
rate functions is not as well understood.

Xdesired

. x* J A LY )

Figure 2. Input-output block diagram representing the class of systems described by (1)
under assumptions.

No additional simplifying assumptions have been made beyond those made in the
derivation of (1). The dynamics of the system described by (1) are implicit in the
relations h and ¢. The difference between the two characterizations is only in point of
view, i.e., a state-space description (1) vs. an input—output description (3), (8). The
advantage of the input-output representation is that the functional relationships
between the various quantities are displayed clearly. The complexity of partial
differential equations of the form (1) often hides relationships among variables.
It will be seen in the following section that these relationships, which are often
overlooked, can be very simple; not exploiting them can lead to acceptance of
undesirable results. In this paper, the determination of ¢ and h has been based on
numerical considerations, although in practice it could easily be based on experi-
mental results.

3. Compensation problem

This section addresses the problem of designing linear compensators for the class
of plants characterized by (1). The designs are based on the input—output model of
Fig. 2. The problem is to find a linear compensator to correct the error, e(t), by
manipulating the controlled variable, V, such that the closed-loop system has
desirable stability and performance characteristics. An optimality criterion is
developed for choosing compensators for the closed-loop system.

Although it will be shown that ¢ can be approximated by a unity gain, for
practical reasons (to be discussed) it will be represented by a linear dynamical system.
Following this, conditions will be placed on the resulting loop such that the closed-
loop system will reject a specific set of disturbances. Additional restrictions will be
placed on the transfer function consisting of the compensator and the linear
approximation of ¢ to guarantee that power levels in the loop are reasonable. Since
these considerations are based on a linear approximation, a method of guaranteeing
the closed-loop stability of the non-linear system will be proposed. These discussions
will lead to requirements on the shape of the system’s sensitivity function or its
complement in certain frequency ranges.

In the discussion, the H® norm of a transfer function is used as a measure of
system performance. The H* norm of a complex function, g(s), analytic in the closed
right-half-plane is defined to be

lig(s)llc = ess sup lg(jw)| )
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where || denotes the usual complex modulus. This norm has been proposed for
feedback controller design (Zames 1981) and for application to robustness optimiz-
ation (Zames 1983). Here, each of the control objectives will be formulated as a desire
to minimize a suitably weighted transfer function. The optimization of a weighted sum
of these individual measures in the H® norm will yield the controller.

The direct linearization of an equation such as (1) for the relationship between V
and x* is a difficult task. In addition, linearization assumes significant knowledge of
the model and relevant data, which, as mentioned earlier, is generally inaccurate.
Numerical studies of (1) have been conducted to investigate the qualitative
input-output behaviour of these systems. The results suggest that the relationship
between V and dx*/dt defined by (1) can be accurately represented by a unity gain. A
physical justification for such a relationship can be obtained by examining the system
modelled by (1). The flame is assumed to propagate relative to the medium at a
constant rate determined by the reaction rate function, f(T). The fuel-air velocity
characterizes the flow rate of the medium and is the control variable. Therefore,
changes in the flow rate of the medium cause an equal change in the propagation rate
of the flame front. In actuality, the shape of the profile changes as ¥ changes; however,
the approximation is accurate due to the fact that the shape changes are very localized
in the region of the flame front. The reaction rate functions which have been studied in
detail are

H(N)=T(1-T) (10)

for n=1, 2. The class of functions (10) has been proposed as representative of flames
having an excess of one reactant (Spalding 1957).

Equation (1) was simulated for f(T) given by (10) with n=2 using a time
linearization algorithm. (This is the identical equation studied in Ramos 1986, and the
reader should consult that paper and its references for a more detailed discussion of
this equation and the numerical method.) The simulated responses of x* to steps in V
of varying magnitude are shown in Fig. 3. The point x* is assumed to be the spatial
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Figure 3. Response of (1) to steps in the fuel-air velocity.
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location of the point T(x*)=0-5. The simulations assume initial steady-state
conditions, V(0) = V*, with steps at increments of V*/4. The responses for equal
negative increments in the control are symmetrical with respect to the time axis.

The simulations show that there are no apparent transient dynamics associated
with the steps and that the rate of propagation is proportional to the magnitude of the
steps. Based on this observation, it seems that there is no need to resort to a heuristic
approach as suggested in Ramos (1986) and that the problem can be treated as a
classical servo problem with a single non-linearity, h. There are, however, physical
effects that occur that are not modelled by (1) which should be considered in an
overall design. These effects are particularly important for the dual problem of
controlling with the reaction rate function f(T). In this case, it becomes necessary to
include the eflects of a fuel transport delay, which can be approximated as

_kexp(—1s)

s+a (an

p(s)

The term exp (— ts) could represent a delay associated with fuel transport and the lag
term, s + a, could account for the fact that neither the composition of the medium nor
the fuel-air velocity can be changed instantaneously. We assume below that the
operator ¢ has been modelled by a linear dynamical operator such as (11). It should
be noted that the H®-optimization problem to be formulated here has not yet been
solved for non-rational transfer functions and delays must also be approximated
(progress is being made: Flamm and Mitter 1986).

The non-linear function h cannot be approximated accurately, and the only
assumptions on its form are that it satisfies a sector criterion to be defined. The system
for which a linear compensator, c(s), is to be designed is illustrated in Fig. 4. This
figure shows that the closed-loop system has been reduced to a set of linear
components and a single time-varying non-linearity. In compensating the closed-loop
system for disturbance rejection and power limitation, it will be assumed that the
function h can be approximated by its tangent at the desired equilibrium state and
that this approximation is incorporated into the approximation, p(s), given by (11).
The linear system, p(s)/s with h = 1, will be regarded as the nominal system for which
compensation is to be designed. Note that unless f(T) is given explicitly, it is not
possible to determine h or its tangent exactly.

The sensitivity function of a linear system is defined to be the transfer function
from a signal entering additively at the plant output to the signal measured at the
output of the system. For the nominal system of Fig. 4, the input signal enters

€ Xdesired

Figurc 4. Feedback block diagram of closed-loop system (p* and ¢* denote convolution
operators).
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immediately following h and the output is x*; therefore, the sensitivity function, S(s), is

1

|+ 9P
S

S(s) = (12)

The complementary sensitivity function, T(s) =1— S(s), represents the transfer
function from the reference signal, x4,;.d, t0 the plant output. In the following
paragraphs, the desired performance characteristics of the system will be related to the
values of the sensitivity function and its complement in certain frequency ranges.
In order for the nominal closed-loop system to reject constant disturbances at the
plant input, such as the uncertain value of V¥, the final value theorem requires that

p(s)
. s Ve P( )
s — o s~ im0 -0 w
S

where S(s) is the system’s sensitivity function. Since p(s) is assumed to have no finite
zeros, (13) implies that S(s) must have a zero of order 2 at s=0. This can be
accomplished using a weighting 1/s% on the sensitivity function and requiring that

1
=509

o

be bounded. From the definition of the H® norm, it is clear that for the above norm to
be bounded on the imaginary axis, S(s) must have a zero of at least the required order.
In addition, it is also desirable for the system to attenuate disturbances in V* at the
plant input. These disturbances could be attributed to environmental effects or
variations due to transport. For attenuation of these disturbances reflected to the
plant output, it is sufficient that the system sensitivity function, S(s), be small in the
frequency range in which the disturbance has its energy. If W,(s) denotes a weighting
function reflecting the frequency content of the disturbance in the fuel-air velocity,
acceptable disturbance rejection can be achieved by designing S(s) such that

(S)

Wy(s) 222 8(s)

®

is small. Combining this expression and the condition for rejection of constant
disturbances yields an objective

d(S)P(S)

I Tillo = = |Wi(s)S(9) (14)

for minimization.

The model that has been postulated is assumed from the outset to include
parameters that are simultaneously uncertain and time-varying. This requires a much
stronger stability requirement than those typically used in robust compensation
problems where the uncertainty is generally assumed constant. The fact that the
closed-loop system of Fig. 4 can be separated into a linear block and a time-varying
non-linear block suggests the use of one of the various stability criteria that have been
developed for this class of problems (e.g. the circle criterion, Taylor 1980). Since
many of these criteria are stated in the frequency domain in terms of the linear
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on, S(s), is subsystem’s transfer function, it is possible to relate these constraints on the open-loop
to the system’s sensitivity function and its complement. The circle criteria is employed
(12) here due to the fact that there is an interesting geometrical interpretation of the

constraint that it imposes.
The circle criterion can be applied to find constants k, and k, such that k, > 0 and

: transfer *

following ky < A - ) <k, (15)
ited to the x

ranges. implies stability of the closed-loop system. The constants can be found from any circle
ices at the drawn on the Nyquist diagram of the linear subsystem such that the circle does not
uires that intersect the Nyquist curve. The minimum and maximum of the negative inverse of the

points where the circle intersects the real axis give k, and k,, respectively.
Based on the monotonicity of the profile in Fig. 1, h will lie in the first and third
(13) quadrants of the (x*, h(x*, t))-plane. Note that the perturbations in the temperature
profile caused by turbulence can be accommodated by designing the sensor influence
functions and h such that the product (h(x*)/x*) is strictly positive for the expected
disturbances.

2 no finit . . . .
is cann; For a circle centred at (— 1, 0) in the complex plane, the radius of the largest circle
ing that that can be drawn without intersecting the Nyquist curve is
r=inf|1 + E-(s)—sp(i) (16)
e norm to Inverting this equation yields
red  or. 1 1
V*...he — =sup|—————| =sup|S(s)| amn
effects or r 14+ cAs)p(s)
ed to the *
lal! in Fhe Maximizing the radius of this circle, r, is thus equivalent to minimizing the sensitivity
Wclght{ng function. In general, it is more important to impose this constraint in some frequency
r velocity, ranges than others; therefore, this objective can be stated in the H® norm as a desire
1at to minimize
120l = IW2(s)S(5) Il (18)

where W,(s) is large in the frequency ranges for which 1/r, given by (17), is undesirably

constant ]arge'
In real systems, it is often desirable to restrict the bandwidth of the closed-loop
system. This is important for two practical reasons. First, it is necessary to neglect the
(14) effects of very high-frequency dynamics in a design model to limit the order of the
model. As a result, it is undesirable to drive the system in frequency ranges in which
the input—output behaviour of the model is not representative of the actual system.

o include ' The second reason for limiting system bandwidth is to bound the power requirements

es a much of the closed-loop system. For minimum-phase systems, the sensitivity minimization

pensation theory states that it is possible to achieve ‘perfect’ disturbance rejection, (S = 0), and

t that the tracking, (T=1—S = 1), over an arbitrarily large frequency range (Helton 1985).

ie-varying This is achieved by allowing the controller bandwidth, and hence the energy

have been requirements, to be as large as necessary.

30). Since The bandwidth of the closed-loop system can be restricted by applying a

the linear weighting, W;(s), to the complementary sensitivity function, T(s), that is unbounded

. SN Tk o e, 2 v

ke Lo e = = 3 o A " SRy, e @




- e b At 1< 5 e

1956 J. E. Dzielski and M. L. Nagurka

as s — co and requiring that
V31l = IW3() T(S) | (19)

be a bounded function. If W;(s) has a zero excess m at high frequencies, then T(s) and
the open-loop transfer function must have at least a pole excess of m for (19) to be
finite. This weighting function can be used to regulate the character of the system in
the cross-over region and at high frequencies.

4. H>-Optimization
The three objective functions discussed above can be combined into a single
function:

J(c(s),a,b) = (al J,)* + (b1 T2D)* + T3 |l (20)

where a, b e R* are non-negative scalars which can be adjusted to alter the relative
weighting of each term and the optimization is over a class of admissible com-
pensators, c(s). Only two weighting coefficients, a and b, need to be considered since
(20) can always be scaled to make the third coefficient equal to 1. It is possible to
rewrite (20) and define an optimization problem as

min J(c(s), a, b) = min [|a*(W,S)(W,S)* + b*(W,S)(W;8)* + (W; T)(Ws T)* |,
co(s) c(s)

(21

where W(s)* = W(—s), a and b are fixed, and J is optimized over the set of
compensators that stabilize the nominal linear system. The optimization of functions
of this type over the class of stabilizing compensators has been discussed in
Kwakernaak (1985) and Helton (1985). The solution of this optimization problem
usually reduces to solving a polynomial equation in which the number of coefficients
to be matched equals the number of unknowns. An exception arises when there are
multiple solutions to the optimization which yield the same minimum. The solution
of these equations yields a set of coefficients for the numerator and denominator
polynomials of the compensator. The interested reader should consult Kwakernaak
(1985) for the details of the solution procedure for this optimization problem.

5. Example

In this section, the approach outlined previously will be applied to an example
problem. In this problem the effects of transport delays will be neglected and it will be
assumed that the control variable V can be specified instantaneously. Therefore, it is
reasonable to choose the simplest nominal model, namely, p(s) = 1. The control
objective is to regulate the position of the flame front defined as the point where the
temperature profile has the value of (-5 at the point xye,.q = 0. It is assumed that
there is one sensor that measures the temperature at the desired location of the flame
front, y; = T(Xgesireas t)- I B(¥1) = ¥; = T(Xgesirea> t) the only non-linearity is due to
the temperature profile, which from the general shape of the profile shown in Fig. 1, is
a saturation-type non-linearity. For simplicity it is assumed that the output of the
sensor is scaled such that the derivative dh(T(x*))/dx = (dh/dT)(dT/dx)(x*) = 1. This
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assumption is not necessary; it has been included to scale the problem such that the
nominal linear model for the plant is an integrator, 1/s. Thus scaled, the circle criterion
can be applied to guarantee stability exactly as discussed in the previous section.
Finally, the goal is to design a compensator, c(s), such that the nominal system,
c(s)p(s)/s, has a closed-loop bandwidth of between 1 and 10 rad/s.

There are three weighting functions that need to be defined. The weighting W, (s) is
chosen to be

10)?
Wi =12 @)

since a detailed disturbance process has not been postulated. The asymptote of the
Bode magnitude plot of this transfer function has a slope of —40 dB/decade at low
frequencies and is horizontal with a magnitude of 0-01 above 10 rad/s. By increasing
the scalar a in (21) this weighting function can be used to decrease the magnitude of
the sensitivity function at each frequency and thus increase the system bandwidth. The
second weighting function W,(s) is given by

(s + 0-2)(s + 500)

(s +2)(s+ 50) (23)

Wi(s) =

The magnitude asymptotes of this weighting function are 1 at frequencies below and
above 0-2 and 500 rad/s, respectively, and 10 between 2 and 50 rad/s. The asymptote
has a slope of +20 dB/decade between 0-2 and 2-0 rad/s and — 20 dB/decade between
50 and 500 rad/s. The rationale for this function is as follows. The magnitude of this
weighting function is largest in the frequency range of the desired cross-over
frequency, and therefore, in the frequency range where the Nyquist curve of the linear
subsystem is in the neighbourhood of the — 1 point. In conjunction with the scalar b,
this weighting can be used to decrease the magnitude of the sensitivity function in this
region. In light of (16) and (17), this amounts to increasing the distance of the nearest
approach to the —1 point of the Nyquist locus and thus increasing the tolerance to
uncertainty in the measurement h. Finally, the weighting W,(s) is chosen as

s+ 10
10

This weighting has a zero excess of 1 to ensure that T(s) has a pole of excess of 1. The
location of the zero begins attenuation of T(s) near the desired cut-off frequency.

It is now possible to solve the optimization problem (21). Following the method
outlined in Kwakernaak (1985), the minimizing compensator is given by

10n(s)

s(s + 2)(s + 50)d(s)
where n(s) and d(s) are polynomials given by a solution to (3.10) in Kwakernaak
(1985):

ny(s)n;(—s)d(s)d(—s) + ny(s)ny(—s)n(s)n(—s)

= A%(d,(s)d(s) + dy(s)n(s))(dy(—5)d(—s) + dy(—s)n(—s))  (26)

where n,(s), n,(s) and d,(s), d,(s) correspond to the numerators and denominators,
respectively, of the weightings on the sensitivity function, §, and its complement, T,

(24)

3(8) =

(25)

c(s)=




P S

J. E. Dzielski and M. L. Nagurka

and where A2 is the optimal value of the objective function. To simplify the notation, a
single weighting, W,(s), is introduced for the sensitivity and a weighting, Wy(s), is
introduced for its complement:

Wi(s) = :—122—; = Wy(s) + Wi(s) )
and
Wy(s) = 2—53 = Wy(s) (28)

For the solution of (26), the numerator polynomial, n(s), can be assumed to have
degree equal to one less than the number of zeros of d,(s) plus the number of poles of
p(s)/s in the open right-half plane; the degree of the denominator polynomial, d(s), can
be assumed to have degree equal to one less than the number of zeros of d,(s) plus the
number of zeros of p(s)/s in the open right-half plane plus the zero excess of W(s). For
the examples presented here, the degree of n(s) and d(s) is 4 and 1, respectively. The
numerical algorithm which determines the compensators solves for the coefficients of
n(s) and d(s) by matching coefficients in (26). Since there may be several solutions to
(26) which are not necessarily optimal, it is necessary to check the solution by showing
that it satisfies a sufficient condition (3.16 in Kwakernaak 1985). It turns out to be
much easier to solve the necessary condition (26) and check sufficiency.

Figure 5 shows the effect on the complementary sensitivity function, T=1— 8§, of
increasing the coefficient a of the weighting W, while holding b = 0. The numbered
curves correspond to a = {0-1, 1-0, 10-0}, respectively. As a is increased, the cross-over
frequency of the weighting W, is increased. This reduces the magnitude of the
sensitivity function at low frequencies and increases the system bandwidth as shown
by the fact that the function T(s) rolls off at progressively higher frequencies in Fig. 5.

Figure 6 illustrates the effect of holding a = 0-1 and increasing b on the Nyquist
diagram of the system. The numbered curves correspond to b= {04, 1-0,4-0},

1 — T
DN
g 0
S
&
-4
2
-g: - ——— g = 0.1 .
wmwoew 3 * 1,0
LIY PPy a=10.0
.2 2 H

Logyq fFrequency (Freq. rad/s)

Figure 5. Effect of weighting (a) on the nominal closed-loop sensitivity function.
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respectively. Increasing b increases the distance of the nearest approach of the Nyquist
contour to the — 1 point. Therefore, the radius of the largest circle centred at (—1, 0)
and not touching the contour increases. Recalling the discussion of the circle criterion,
it is clear that the system can tolerate more uncertainty in the temperature profile.
Figure 7 shows the effect on the sensitivity for the same values of . The important
feature of this plot is that the closed-loop bandwidth is reduced as b is increased.

|
e
w

-0.4

Imaginary Part

—— b = (.4

waame he 1,0

escccces b » 4.0

2% e ] 1 | ] ] ] ]
-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
Real Part

Figure 6. Effect of weighting (b) on the Nyquist diagram of the nominal open-loop transfer
function.
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Figure 7. Effect of weighting (b) on the magnitude of the nominal open-loop transfer function.

In this example we have illustrated an approach to the design of compensators for

controlling the location of the combustion front in a simple class of reaction-diffusion
equations. In the example, an integrator has been chosen to model the process to be




Control of reaction-diffusion equations

controlled. In a more realistic problem, it might be necessary to include the effects of
dynamics in the device used to manipulate the fuel-air velocity, V, and possibly to
model the time-delay inherent in transport processes. These effects could be included
in the nominal model relating the controlled variable to the translation rate of the
flame front, p(s). The general approach proposed in the preceding section could still
be applied to this more complicated problem.

6. Conclusion

In this paper we have studied the control of a non-linear reaction—diffusion
equation representing a flame propagation problem. The control objective was to
regulate the location of the flame front in the spatial domain by manipulating the
fuel-air velocity. It was shown that the problem could be simplified to that of
controlling a linear system with a scalar non-linearity by studying the input-output
characteristics of the system. In fact, this point of view enabled us to consider a more
general class of systems than modelled by (1) alone. The H*-optimality criterion that
has been proposed for the compensator design yields a trade-off among performance,
power requirements, and stability in the presence of an uncertain non-linearity.

The principle advantage of the approach outlined in this paper is that it is only
necessary to understand the qualitative behaviour of the modelled system to control it
successfully. This advantage is a necessary feature when developing practical
approaches to the control of combustion processes since models are generally
inaccurate. Furthermore, the approach does not rely on the use of heuristic or ad hoc
considerations. Future research must be aimed at studying the applicability of this
approach to more complicated flow geometries and combustion models.
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