|
;

e
“

W. C. Hayes

Director,

Orthopaedic Biomechanics Laboratory,
Beth Israel Hospital and

Harvard Medical School,

Boston, Mass. 02215

J.D. Gran

Division of Applied Mechanics,
Stanford University,
Stanford, Calif. 94305

M. L. Nagurka

Doctoral Candidate,

Department of Mechanical Engineering,
Massachusetts Institute of Technology,
Cambridge, Mass. 02139

Leg Motion Analysis During Gait
by Multiaxial Accelerometry:
Theoretical Foundations and
Preliminary Validations

A theoretical formulation for (studying limb motions and joint kinetics by
multiaxial accelerometry is developed. The technique is designed to study the swing
phase of human gait, modeling the lower leg as a rigid body. Major advantages of

the approach are that acceleration information needed for the calculation of forces
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and moments is generated directly, and that the method automatically generates its
own initial conditions. Results of validation experiments using both artificial and

experimental data demonstrate that the method is theoretically valid, but that it
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Introduction

Locomotion and other activities of daily living result in
large forces across human joints. Since these forces have been
implicated in joint degeneration and in the loosening of
prosthetic joint replacements, there has long been an interest
in the measurement or prediction of joint forces. Primarily,
indirect methods have been used, with joint resultant forces
and moments calculated given measured kinematic data and
assumed inertia properties. The required kinematic data
usually are obtained from cinematography, elec-
trogoniometers, or from target tracking systems, all of which
yield displacements of the limb segments versus time. To
obtain the necessary velocities and accelerations, numerical
differentiation is required. This process magnifies high-
frequency noise and requires the use of filtering [1] or in-
terpolation to obtain useful differentiated displacements [2,
3.

Because of these difficulties with indirect measurements,
there have been a few attempts to measure joint resultant
forces directly using instrumented prostheses {4-7]. For the
hip, these instrumented prostheses have generally measured
resultant joint forces consistently lower (by about 50 percent)
than those calculated theoretically. These lower values from
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patients with instrumented prostheses may be caused by less
energetic gait patterns compared to those occurring in normal
subjects [8]. However, these differences between directly
measured and theoretically predicted joint forces emphasize
the need for improved methods for the measurement or
prediction of joint resultant forces and moments.

An alternative approach to study the kinetics of articulating
limbs is to use body-fixed accelerometers to measure ac-
celerations directly. This approach is attractive since it avoids
the errors inherent in the differentiation of displacement data
and allows for the direct calculation of both inertial and active
forces. Gage [9], Smidt, et al. [10], and Robinson, et al. [11]
outlined methods to measure with three orthogonal ac-
celerometers the linear acceleration of the center of gravity of
the human body. However, these techniques are dependent on
other methods to generate the necessary initial conditions.

Recently, investigators have re-examined the theoretical
framework of the accelerometry approach. Morris [12])
developed a theoretical analysis to describe three-dimensional
motion using six accelerometers. Kane, et al. [13] presented a
theory for a twelve-accelerometer approach, which was
implemented experimentally to determine the forces exerted
on a tennis racket during swing. Padganokar, et al. [14)
showed that data reduction from Morris’ six accelerometer
scheme can be unreliable experimentally and extended the
theoretical development based on nine linear accelerometers.
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Mital and King (15} pointed out that noncommutativity of
finite rotations can lead to errors during numerical integration
in the determination of the orientation of a rigid body. They
suggested an alternative approach based on an orientation
vector concept.

Multiaxial accelerometry represents a promising method to
study limb motions and joint forces. This paper describes the
theoretical formulation and preliminary experimental im-
plementation of the accelerometry technique. The technique is
designed to study the swing phase of human gait, modeling
the lower leg as a rigid body. This approach offers three
major advantages. First, acceleration information needed for
the calculation of forces and moments is generated directly
from the accelerometers during gait. Second, the method
automatically generates its own initial conditions. Finally,
given the availability of miniature accelerometers and
computer-aided data acquisition, the method could be a viabie
clinical tool. Results of validation experiments using both
artificial and experimental data demonstrate that the method
is theoretically valid, but that it taxes available in-
strumentation and requires further development before it can
be applied in a clinical setting.

Theoretical Formulation

This formulation was developed for studying the rigid-body
motion of the lower leg during gait. The following parameters
are determined from simultaneous triaxial accelerometer
measurements on the leg: 1) the angular position, velocity
and acceleration of the leg; 2) the linear position, velocity,
and acceleration of the center of mass of the leg; 3) the
resultant force and moment acting at the knee. The theoretical
formulation requires the determination of the initial orien-
tation of the leg. This initial condition is calculated by ex-
ploiting the following facts: 1) during the ‘‘foot-flat’’ cycle
of gait, the motion of the leg is constrained; and 2) ac-
celerometers measure components of gravity. Given the initial
orientation obtained in the period of constrained motion
during ‘‘foot-flat,”’ the analysis then is applicable to all
subsequent motion of the leg. This section discusses the
analysis for time t=0 (involving the determination of the
initial orientation during constrained motion), and then
outlines the analysis for all subsequent time.

Fig. 1 Body-lixed and Inertia-lixed reference frames, and associated
unit vectors

Initial Conditions (¢#=0). Two orthogonal coordinate
systems, inertial and body-fixed, are shown in Fig. 1. The n;’s
denote an inertial reference frame, with associated unit
vectors n,’s, orientated such that the directions of the gravity
vector (g) and the negative n, axis are the same. Similarly, the
b;’s represent axes fixed in the leg, with corresponding unit

' vectors b,’s. The axes of this body-fixed frame coincide with

the directions of the three principal mass moments of inertia,
and the origin is located at the leg’s center of mass. The
orientation of the leg is specified relative to the inertial
reference frame by three orientation angles, 9, 6,, and 6,.
Body-fixed unit vectors (b;’s), initially aligned with the
inertial frame unit vectors (m;’s), are rotated successively
through angles 6,, 6,, and 6, to define the orientation of the
leg.

To find orientation information, the development depends
upon the fact that actual acceleration information of points
on the leg is not available from accelerometry. A inertial-
mass-type accelerometer consists of a semiconductor strain

Nomenclature
» a = acceleration of center of mass of leg
a;,,i=1,2,3,4 = acceleration at accelerometer location
i
a%,i=1,2,3,4 = actual acceleration at accelerometer
location i
a",i=1,2,3,4 = measured acceleration at ac-

celerometer location i

b.,.i=1,2,3 = jthbody-fixed unit vector
bi,i=1,2,3 = ithbody-fixed coordinate axis
fC} =9 x 1 vector of acceleration dif-
ference terms
dt = time step increment
F, = resultant force at arbitrary point k on
limb segment
g = gravity acceleration
£ = magnitude of gravity acceleration
(9.80665m/s?)
8i,i=1,2,3 = ith(body-fixed) component of gravity
acceleration
Il = central mass inertia dyadic along
body-fixed axes
m = massofleg
M, = resultant moment at arbitrary point k
on limb segment
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m;,{ =1,2,3 = ithinertia-fixed unit vector
n,,i=1,2,3 = jthinertia-fixed coordinate axis
P = position vector from arbitrary point
(0) to center of mass
R;,i=1,2,3,4 = position vector from arbitrary point

(0) to accelerometer location i
position vector to accelerometer
location i from center of mass

r, = position vector to arbitrary point k
from center of mass
[S] = 9 x 9 matrix of position vectors
t = time
{X} = 9 x 1 vector of angular parameters
X, i=1,2,...,9 = ithelement of { X} vector
a = angular acceleration of leg
a;,i=1,2,3 = ith (body-fixed) component of ac-
celeration
0;,i=1,2,3 = ithorientation angle
0;,i = 1,2,3 = ithorientation angle rate derivative
N, i=1,2,3 = position vector constant {
« = angular velocity of leg
wi,i=1,2,3 = ith (body-fixed) component of

angular velocity
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Fig.2 Free-body diagram of limb segment

gage fixed to a cantilever beam carrying a small mass at its
free end. When accelerated, this mass experiences a reaction
force which is the vector sum of gravity and inertial forces.
The reaction force which causes the strain in the beam is the
product of mass and measured acceleration. The inertial
force, by definition, is the negative of the product of mass and
actual acceleration. Mathematically, after dividing through
by mass,

~g=a"—ga’ (¢
where g is the gravity acceleration vector, 8™ is the ac-
celeration measured at accelerometer / , and &7 is the actual or
true acceleration at accelerometer location i. Thus, a
stationary accelerometer records an acceleration of one g unit
in the direction of the earth’s gravitation field; an ac-
celerometer in free-fall records zero acceleration.

The use of four triaxial accelerometers to monitor rigid-
body motion was described by Kane, et al. [13]. Consider a leg
with accelerometers located at four noncoplanar points as
modeled in the free-body diagram in Fig. 2. Since the ac-
celerometers are attached to the leg, all accelerations are
measured in the directions of body-fixed unit vectors (b,’s).
The center of mass of the leg is located at point P. The origin
of the body-fixed axes coincides with point P. (It is not drawn
this way to avoid complicating the figure.) The weight vector,
mg, acts through point P in the local downward direction (the
—n; direction). Position vector P defines the location of the
center of mass (point P) from an arbitrary point 0. The r;’s
represent position vectors to the accelerometers from the
center of mass (point P) and the R;’s designate position
vectors from the arbitrary point 0 to the accelerometers. A
resultant force, F,, and moment, M,, act at point k, which is
regarded as the knee.

Kane, et al., derived the following expression for the ac-
celeration of the center of mass, g,

_ e+ )\212 +\8; —a,

N+ AN+ -1

where a; is the acceleration at location / and ), is a constant
(i=1,...,4). The constants \; are functions of the position
vectors r,, ..., r, and are derived by simple vector
manipulations assuming that the accelerometers are mounted
at four noncoplanar locations on the leg. The center of the
mass of the leg, calculated by direct application of equation
(2) with accelerometer measurements, contains components
of acceleration due to gravity which are the same as the
gravity components in the accelerometer measurements. This

(03]
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fact is used to calculate the angular velocity and angular
acceleration of the leg. The fundamental kinematic relation
for the acceleration &, at location i on the leg is

a2, =a+axr,+wX (wxr,)fori=1,2,3,4 A3)

where a is the acceleration of the center of mass, « and w are
the angular acceleration and angular velocity of the leg,
respectively, and r; is defined as described in the foregoing.
The unknowns in equation (3) are & and w. The accelerations
a; and a are not known explicitly due to the nature of the
accelerometers. However, the quantity (s; —a) is known and
represents an actual acceleration difference since gravity is
subtracted out. For convenience, the nonlinear kinematic
relations of equation (3) are rewritten as a system of linear
equations in terms of alternate angular quantities.
Specifically, considering accelerometers i = 1, 2, 3, equation
(3) is equivalent to the following matrix equation

[S1{X])=(C] @)
where [S] is a 9 x 9 matrix of position vectors; (X} is a 9-
element vector of angular parameters; and [ C} is a 9-element
vector of acceleration values. The elements of the { X} vector
are

Xy = X; = ap Xy = o
X4y = wawy Xs = wyw Xe = @juy )]
X, = wi+wi xg = wi+uwt Xy = i+l

The elements of the { C} vector are the components of three
sets of acceleration differences, (8;,—8a) * b;, j=1, 2, 3 for
i=1, 2, 3 which are known. The [S) matrix is also known since
the position vectors r;’s are known. The elements of the { X}
vector are determined by multiplying the inverted [S] matrix
by the {C} vector. The [S] matrix is nonsingular and thus can
be inverted since the accelerometers are located at four
noncoplanar points. This implies that any set of three ac-
celerometers is noncolinear, the condition for nonsingular [S].
Equation (3) is equivalent to twelve scalar equations, although
only nine need to be solved to determine the { X} vector.
Accelerometers i=1, 2, 3 were used in the foregoing.
Similarly, the other sets of three accelerometers can be
used: i=1, 2, 4, i=2, 3, 4, and i=1, 3, 4. For noise-free
accelerometer measurements, these four combinations result
in identical { X'} vectors. In actual implementation, to ensure
that a maximum of information is extracted, equation (4) is
solved four times using the four combinations of ac-
celerometers and the resulting { X'} vectors are averaged.

This analysis generates the angular acceleration com-
ponents (x,, X,, X;) directly. The angular velocity components
are not available due to lack of sign information. The
magnitudes of the angular velocity components can be ob-
tained by algebraic manipulation of { X} vector elements. To
determine the signs, an assumption concerning the sign of one
of the angular velocity components must be imposed at time
t=0. Here, it is assumed that the angular velocity about the b,
axis, w,, is negative at the initial time step. It follows then

W=~ '/2[ (Xg +2h,6,)‘/1

+(XQ +2'XS ,)% —(x-/ +2 L\’Al)‘/"
X

= - — A
w; Thxg] ((xg+21x6 1)
+(X7 +2|X4|)Ié"(x; +2|X5|)I/” (6)
= "
Wi 2|x5| [(Xa +2|X5')

+ (7 +21x1)% = (xg+21x6 1) ).

Thus, the angular velocity and angular acceleration are
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calculated directly from accelerometer measurements without
knowledge of the orientation of the leg in space.

The orientation of the leg can now be determined. At the
initial time step it is assumed that the lower leg rotates about a
fixed point, the ankle, as suggested by Morris [10]. This
occurs during the “foot-flat’” period of the normal gait cycle.
Selecting the starting point for the analysis during “foot-flat”’
reduces the degrees of freedom of the motion from six to
three, since the leg can only rotate about a fixed point. The
restriction of pure rotation implies that the actual acceleration
at accelerometer location i is

af =°.‘x R, +wx(wxR;) (@)

where R, is a position vector to accelerometer location i from
point 0, the ankle. The negative of the gravity acceleration
vector, —g = & M, can be expressed in terms of its com-
ponents in body-fixed coordinates, g, £2 £3» by substituting
equation (7) into (1). The components g1, 82, £3» are the same
at any accelerometer location, given noise-free accelerometer
measurements. From the transformation between the body-
fixed and the inertia-fixed unit vectors, gy, g2, and g; can be
expressed in terms of g and of trigonometric functions of the
orientation angles. Assuming that at time (=0, 6, =0 and
—90deg < 0, < +90deg, i=1,2, direct manipulation yields
the orientation angles 6, and 6,

8, =sin~'(2:/8) @®)
il —8/8
f2=sin [(l—(gz/g)z)‘/']' @

Thus, the initial orientation of the leg in space is completely
determined from accelerometer measurements at four
noncoplanar locations given four assumptions at time
t=0: 1) the leg rotates about a fixed point; 2) the angular
velocity about the b; axis is negative; 3) angular rotation
about the b, and b, axes occurs only between —90 deg and
+90 deg; and 4) the angular position about the b axis
(corresponding to the long axis of the leg) is set equal to zero.
The initial orientation, together with accelerometer
measurements at future time steps can then be used to find the
subsequent orientation of the leg by integration.

The resultant force, F;, and moment, M,, which act at
point k, the knee, can now be calculated by applying the
principles of linear and angular momentum.

F,=ma—-mg 10
M, = ~(llux w) + Ha—-r, XF. (an

The mass, m, and the centroidal mass inertial dyadic along
body-fixed axes, I, are assumed known. The actual center of
mass acceleration, a, is calculated by substituting equation (7)
into (2). In equation (11), lw and lla represent matrix
products [16]. Equations (10) and (11) are valid only during
the swing phase of gait when no external forces (other than
gravity) or moments act on the leg. To calculate the force and
moment at the knee at the initial time step, these equations
must include ground reaction forces and moments which are
present since the leg is in the “‘foot-flat’’ phase of gait.

Analysis for Subsequent Time ( >0). The first objective of
the analysis for the general time step is to calculate the
orientation of the leg. Assuming small time step increments,
current orientation angles, 6,, 6, and 8;, are found by
numerical integration of the orientation angle rate derivative,
8;, from the previous time step. These derivatives are easily
related to the angular velocity components through a
transformation matrix which consists of trigonometric
functions of the orientation angles. This transformation is not
valid when 8, = =90 deg for which 8, and 6, become in-
finite. However, this is not a serious restriction since this
corresponds to a horizontal position of the leg.
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Fig. 3 Angular acceleration (rsdis?) versus ilmo' (s) tor § percent
random-noise simulation

Given the current orientation of the leg, the gravity ac-
celeration vector is expressed in body-fixed coordinates.
Using a recast form of equation (1), the gravity acceleration
vector is then eliminated from the accelerometry data to
determine the actual acceleration at each accelerometer
location. Direct application of equation (2) with these actual
accelerations result in the actual center of mass acceleration.
Equation (4) is then solved for the vector of angular
parameters. (The angular parameters could have been
calculated without recourse to actual accelerations.) The [S]
matrix is constant for all time steps since the accelerometer
locations remain fixed on the leg; the {C} vector changes for
all time steps since it is a function of the (difference of) ac-
celerations at the accelerometer locations and the center of the
mass. As before, the angular acceleration components are the
first three elements of the {X] vector. To solve for the
angular velocity components, w;’s, the signs must first be
determined. The sign of w, is no longer assumed negative, but
is determined for each time step by numerical integration of
. Similarly, the signs of w; and w, are determined by in-
tegration of a; and aj, respectively. The angular velocity
components are given by

(12)

where (sgn w;) refers to the sign of w; determined by in-
tegration of o; and lw;| is the magnitude of w; calculated
from equation (6).

Thus, the angular position, velocity and acceleration of the
leg and the acceleration of the mass center are calculated for
the current time step from accelerometry data. The resultant
force and moment acting at the knee are calculated from
equations (10) and (11). This completes the theoretical
develoment for characterizing the dynamics of a leg during
arbitrary motion given triaxial accelerometer measurements
at four noncoplanar locations.

w; =(sgnw;) lw;l,i= 1,2,3

Simulation Studies

The validity of the theoretical approach was demonstrated
with simulated three-dimensional rigid body motion involving
both rotation and translation. The motion of a cylindrical
rigid body (of mass 1.75 kg) possessing two large and equal
diametral principal mass moments of inertia (0.16 kg-m?) and
a much smaller axial principal mass moment of inertia (0.0001
kg-m?) was studied. The prescribed motion was large-
amplitude, low-frequency sinusoidal oscillations about the
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Fig. 4 Orientstion angles (rad) versus time (s) for 5 percent random-
noise simulation

body-fixed b, axis, and small amplitude, higher frequency
sinusoidal oscillations about the b, axis.

Noise-free and 5 percent random-noise simulated data was
calculated for one second of such motion at a sampling rate of
25 Hz. The random noise data was generated by multiplying
the maximum value of the noise-free accelerometer data by §
percent times a random number between zero and one and
then randomly adding and subtracting it to the noise-free
measurement at each time step. Since this procedure was
performed for each axis of each accelerometer, use of the
noisy data represents a severe test of the theoretical for-
mulation.

A graph of the angular acceleration as a function of time
obtained from noisy simulated data is shown in Fig. 3. This
graph agrees with a graph of the angular acceleration history
obtained from noise-free data. The method solves successfully
for the angular acceleration from noisy accelerometry data
since redundant data is available. At each time step, equation
(4) is solved four times and the resulting { X'} vector elements
are averaged.

The angular velocity is calculated by algebraic
manipulation of the accelerometer measurements and
position vector information. The angular velocity history
based on noise-free data is identical to that obtained by
numerical integration of the angular acceleration, using the
appropriate initial conditions (i.e., those calculated in the
initial conditions analysis). With noisy data, the angular
velocity does not agree as well with the integration of the
angular acceleration. The angular velocity about the b, axis
assumes nonzero values, and the angular velocity about the
b, axis no longer reflects a small amplitude, high frequency
oscillation. This can be explained by comparing the relative
magnitudes of the terms in the fundamental kinematic
relation, equation (3). During most of the prescribed motion,
the magnitude of the tangential acceleration term, involving
the cross product of the angular acceleration and a position
vector, is much larger than the magnitude of the centrifugal
acceleration term, composed of a triple cross product of the
angular velocity and a position vector. Thus, the centrifugal
acceleration term undergoes a much larger percent change
than does the tangential acceleration term. With noisy data,
the larger percent error in the centrifugal acceleration term is
responsible for the error in the angular velocity, while the
smaller percent error in the tangential acceleration term
allows for successful calculation of the angular acceleration.
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A graph of the angular orientation obtained from $§ percent
random noise data is shown in Fig. 4. The angles 6, and 6,
drift after one second of simulated motion. The orientation
angles are found by integration of the orientation angle rates,
which are calculated from noisy angular velocity components.

Most importantly, the simulation studies demonstrate the
ability of the method to self-generate the initial spatial
orientation of the rigid-body from accelerometer
measurements. For the noise-free run, the initial orientation
angles 6, and 6, used to calculate the simulated data (at ¢ = 0)
agree with the angles calculated by the analysis to seven
significant figures: 8, = -0.25, 8, = 8, = 0.00 rad. With
noisy data, the method maintains its ability to self-generate
the initial orientation angles. It calculated 6, = —0.245, 8, =
—0.011, and #, = 0.001 rad.

The strength of the technique is ultimately based on its
ability to successfully solve for the resultant force and
moment which must have been imposed to execute the
motion. Figures 5 and 6 display the force and moment graphs,
respectively, for the random noise runs. Each graph shows the
magnitude as well as the three vector components. For the
noisy run, the calculations are based on the unsmoothed
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A controlled verification experiment was performed by
analyzing the motion of a two-dimensional compound
pendulum, shown schematically in Fig. 7 with accelerometer
locations and body-fixed axes marked. Four triaxial ac-
celerometers were used in this study, each weighing 0.5g and
measuring 1 cm? (Entran Devices EGAL 3-125-5D). The
sensitivity of these transducers was on the order of 7 mV/g,
with a maximum output of +35 mV in the linear response
range (+ 5g). Cross axis sensitivity was specified to be 3
percent or less. For signal conditioning, a 12-channel Vishay
Instruments 2100 System was used to provide an excitation
voltage to the bridge circuit of each axis of each accelerometer
and to amplify the output voltage. A Honeywell 1858
Multichannel Visicorder provided a permanent record of the
acceleration data. Automatic data recording was ac-
complished using a DEC PDP 11/V03 minicomputer system
in conjunction with an analog-to-digital (A/D) converter
(Data Translation Model DT2762) and real-time clock (DEC
KWVI11). .

Experimental accelerometry data was acquired once the
pendulum was set in motion. To satisfy an assumption of the
analysis, data acquisition was initiated when the angular
velocity about the b, axis was negative. The period of the
pendulum was 1.25 s.

Verification of the theoretical formulation involved
comparing calculated angular parameters with those predicted
by an independent analysis which solved the dynamic
equations of motion of a compound pendulum executing large
rotations [17]. The pendulum analysis {17] represented an
approximation since it did not include frictional damping.
Since a two-dimensional pendulum was used, only b, com-
ponents of angular acceleration, velocity, and orientation
existed. The results of the accelerometry calculation gave a b,
component of angular acceleration which agreed with that
determined by the pendulum analysis and zero b, and b,
components. In comparing the results of the accelerometry
and pendulum calculations, agreement was also obtained for
the b, component of angular velocity. However, the ac-
celerometry method incorrectly predicted nonzero b, and b,
compotuients, with magnitudes approximately § percent of the
maximum value of the b, component. As discussed earlier,
the calculation of angular velocity is more sensitive to noisy
data than the calculation of angular acceleration.

Three independent curves of the angular position versus
time are shown in Fig. 8. The results of the accelerometry and
pendulum calculations appear, as well as the angular position

288/ Vol. 105, AUGUST 1983

VIV

100

FORCE ( newtons )

50~

szﬁ\
0.0 + -
W 10 14

TIME (sec)

5.0 L

Fig.® by snd b; components of force (N) versus time (s) calculated by
sccelerometry snslysis

as measured by a Rotary Variable Differential Transformer
connected to the pendulum axle. The curves representing the
pendulum calculation and the RVDT output show close
agreement, whereas the curve representing the results of the
accelerometry calculation show marked deviation. According
to the accelerometry results, the pendulum started at 37 deg
(0.65 rad) at the outset of its swing, but swung to ~55 deg
(—0.96 rad) on the extreme opposite side. This result is im-
possible in the absence of externally applied forces other than
gravity. The angular position is found by integration and,
therefore, depends on the results of the previous time step.
Any error in calculation at a particular time step will then
become part of the integration and accumulate with time.

Despite this problem with angular position, these results
confirm the validity of accelerometry as a viable technique to
study the dynamics of leg motion. It is the angular velocity
and acceleration which are required to find force and moment
information. Figure 9 is a plot of force as a function of time.
The centrifugal force (b,) is maximum when the pendulum is
vertical and minimum at the endpoints. Tangential forces (b;)
are most positive at the starting position and most negative at
the opposite endpoint due to the large contribution by the
carth’s gravitational field. Moment (b, component) versus
time is displayed in Fig. 10.

Discussion

The highly insular nature of the pendulum system required
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to obtain verification has exposed many of the severe
limitations which must be surmounted before multiaxial
accelerometry can be utilized as a tool to study the lower leg
during gait. Accelerations of points on the leg during the
swing phase of the gait cycle are on the order of several g-
units. The accelerometers employed in the pendulum ex-
periment operate in the =+ 5-g range and it might appear that
they would be suitable for swing-phase gait studies. However,
the accelerometers are quite sensitive, capable of measuring
accelerations that are fractions of g-units. Consequently,
when functioning in the laboratory environment, the ac-
celerometers are sensitive to vibrations originating from
sources such as heavy equipment in the building. This high
sensitivity to vibration has the effect of introducing artifacts
into the data. The possibility exists of filtering these artifacts;
however, a careful frequency analysis of the signals must be
performed to insure that no desired information is lost. An
advantage of the accelerometry technique, versus the
cinematographic approach, is that analog signals are available
for filtering.

The large accelerations and impulse effects at ‘‘heel-strike’’
would have a devastating effect on miniature accelerometers
attached to the shank. In particular, at ‘‘heel-strike’’ these
accelerometers would be permanently offset rendering further
signals meaningless. Even with recent promising results for
skin-mounted miniature accelerometers, soft tissue vibration
will introduce unwanted noise in the data. Ziegert and Lewis
[18], for instance, demonstrated that a 1.5-g skin-mounted
accelerometer on the shank showed nearly identical output to
tibia acceleration. Motor tremors of the body and shank
during gait will undoubtedly add a component of noise. It
appears that these difficulties cannot be overcome with
present transducer design, and that a major thrust of future
work in gait analysis by accelerometry will lie in the redesign
of the accelerometers and in the development of efficient
coupling procedures.

Conclusions

The accelerometry method presented here employs body-
fixed multiaxial accelerometers and models the leg as a rigid
body. A significant contribution of the theoretical
development is the self-generating character of the initial
angular orientation of the leg. This necessary information can
be calculated since: 1) the accelerometer measurements
contain gravity vector components; and 2) it is assumed that
the leg executes pure rotation about a known fixed point at the
initial time step. Body-fixed linear accelerometer
measurements are used to calculate the leg's angular ac-
celeration and velocity. Assuming accurate estimates of
segment mass inertial properties, the angular acceleration and
velocity can then be used to determine the resultant force and
moment at the knee.
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The present investigation provides an alternative approach
based on direct measurements of acceleration using multiaxial
accelerometry to study complex three-dimensional leg
motions during gait. The approach avoids the errors inherent
in the differentiation of displacement data and allows for the
direct calculation of resultant forces and moments applied to
the leg at the knee. Results of validation experiments using
both artificial and experimental data demonstrate that the
method is theoretically correct, but that presently it taxes
available instrumentation and requires further development
before it can be considered as a clinical tool.
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