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This paper proposes an alternate graphical representation of the
Evans root locus, a well known controls technique for stability and
performance evaluation. It shows via a series of transformations a
set of Gain Plots (GPs) that depict the polar coordinates, i.e.,
magnitude and angle, of each closed loop system eigenvalue in the
complex plane as a function of proportional gain.

The GPs impart significant insight for determining the values of
gain that render a closed-loop system either stable or unstable, and
are useful tools for identifying closed—loop designs meeting
performance specifications. The GPs are applicable to single~input,
single—ouwtput and multiple—input, multiple—output feedback systems.

Introduction

In a sequence of landmark papers, W.R. Evans presented a
technique for analyzing and graphically portraying the loci of closed—
loop system poles (Evans, 1948, 1950). Since the publication of
these papers, Evans root locus has become a standard and commonly
employed tool of the control engineer. It has several qualities that
make it valuable, including the ease with which it may be
implemented and the richness of information that it provides.

For most single-input, single—output (SISO) linear time—
invariant systems sketching the root locus as a function of gain is a
straight-forward task. Most undergraduate controls textbooks
present the sketching rules for constructing the root locus plot. By
following these rules, the loci of roots or system eigenvalues may be
graphed in the complex plane as a system parameter is varied. The
most commonly adjusted parameter is the proportional control gain.

This paper promotes an alternate graphical representation of the
root locus plot that exposes the relationship between the system
eigenvalues and the gain without sacrificing any of the information
presented in the standard root locus. The representation is
summarized in a pair of Gain Plots (GPs) that casts the magnitude
and angle of the system eigenvalues in the complex plane as an
explicit function of gain. By displaying eigenvalue polar
information, the GPs present system performance in terms of
damping ratio and natural frequency in a clear and concise manner.
Additionally, eigenvalue sensitivity can be obtained by examining the

slopes of the GPs with changing gain. The GPs can be constructed
for both SISO and multiple—input, multiple-output (MIMO) systems.

Conceptualization

This section presents a conceptual framework that motivates the
development of the GPs. For purposes of illustration, a single
“theme” system given by the open-loop transfer function, g(s),

_ (s+3)
g(s)-m 0

is investigated. This plant is embedded in a standard closed-loop
negative feedback system shown in Figure 1.

+ e(s) u(s)

1(s) k g(s) T y(s)

Figure 1. Closed-Loop SISO Negative Feedback Configuration.

The development of the GPs from the root locus plot is paralleled
by the development of the Bode plots from the Nyquist diagram. As
such, a fundamental relationship appears to exist between the Bode
plots, the Nyquist diagram, Evans root locus, and the GPs. A
unified framework linking these four controls tools is discussed in
the closing section of this paper.

Two Old Friends: 2-Dimensional Nyquist & Root Locus

The Nyquist Diagram (Nyquist, 1932)

The Nyquist diagram is a plot of a sinusoidal transfer function,
g(jo). The real and imaginary components of g(jw) are plotted for 0
< @ < o where the implicit variable is w. Figure 2 is the Nyquist
diagram of equation (1) for positive . The curve starts at ®=0
corresponding to a D.C. gain of 1.5 and phase angle of 0°, and
asymptotically approaches the origin (zero magnitude) from -90° as
W — oo,
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Figure 2. The Nyquist Diagram of Equation (1).
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Figure 3. Evans Root Locus Diagram of Equation (1).

The Evans Root Locus (Evans, 1948, 1950)

The root locus plot shows the location in the complex plane of the
characteristic roots, i.e., the eigenvalues, in terms of a (real valued)
system parameter such as the proportional gain. It is based on the
closed—loop transfer function of Figure 1 given by

k
gcL(s) = 1—;—% V)

where k is the proportional gain. The stability of the closed—loop
system is determined by the eigenvalues, which are the solutions of

kgs)=-1 ?3)

i.e., the denominator roots of equation (2). The root locus is the
solution of equation (3) as the gain k varies in the range 0 < k < o,
Equation (3) is equivalent to two conditions: the angle criterion,

Zkg(s)=+180"2m+1), m=0,1,2,... @

and the magnitude criterion,
[kg(s)l=1 (5)

The root locus plot of equation (1) is shown in Figure 3. Each
branch of the root locus starts at k=0 corresponding to a system
open-loop pole, and asymptotically approaches either a finite or
infinite transmission zero as k—eo,

By observing if branches enter the right half complex plane, the
closed-loop system stability can be determined as the gain varies. In
addition, the root locus plot is a graphical performance tool providing
metrics of natural frequency and damping ratio. These two
characteristics, known from magnitude and angle information, enable
the calculation of other performance measures (damped natural
frequency, system time constants, ezc.)

It is possible to show the gain graduation on the locus (with tick
marks denoting equal values of k) or to present superimposed
constant gain contours. However, even if the root locus is scaled, it
is not convenient for determining the gain associated with a given
point on the locus. For example, from Figure 3 the gain k = 5.8
_generat‘ing the break—in point at s = —4.4 cannot be determined by
inspection.

Three Dimensional Nyquist and Root Locus

Three Dimensional Nyquist Diagram

The Nyquist diagram can be viewed as the two—dimensional
“collapsed” perspective of the three~dimensional curve shown in
Figure 4 for the transfer function of equation (1). Here, a third axis
is added to the Nyquist plane denoting frequency, w. Although the
three—dimensional curve adds frequency explicitly to the Nyquist
diagram, it does not present the controls engineer with an intuitive
feel for the system behavior, partly because of the difficulty in
following the contour and in extracting coordinate information.

Three Dimensional Root Locus

In a similar manner, the Evans root locus plot can be presented in
three—dimensional space where the gain, k, can be displayed on the
third axis. Figure 5 presents a three~dimensional root locus for the
closed—loop system of Figure 1 with the open—loop transfer function
of equation (1). The original Evans root locus is the projection of
this three—dimensional locus onto the real-imaginary plane. As
before, the three—dimensional representation does not provide the
controls engineer with an intuitive feel for system behavior.

Three Dimensional Magnitude and Angle ‘Representations

New three—dimensional representations can be generated by
mapping the real and complex components to their magnitude and
angle components. Here, the complex value, s,

s=0+jo=Rei® 6)

is expressed in terms of its angle, 6, and magnitude, R,

6=tan'(w,0) K R= Vo? + 02 ), 8)

where 0 is given by the two argument inverse tangent function.

Three Dimensional Frequency Plot

Equations (7) and (8) can be used to transform Figure 4 into
Figure 6 showing the effect of frequency on the magnitude and angle
of the open-loop system given by equation (1). This curve is related
to well-known frequency plots (Bode, 1940).

Three Dimensional Gain Plot
Equations (7) and (8) can be used to conformally map Figure 5
into Figure 7 showing the effect of gain on the magnitude and angle




of the closed-loop system assuming the plant of equation (1). This
three~dimensional curve is related to the root locus plot.
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Figure 4. Three Dimensional Nyquist Diagram of Equation (1).
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Figure 5. Three Dimensional Evans Root Locus Plot of Equation (1).

An Old Friend and a New Friend: Two Dimensional

Magnitude and Angle Representations

The Bode Plots (Bode, 1940)

Figures 8a,b are the Bode magnitude and phase (angle) plots,
respectively, for the open—loop system given by equation (1). The
Bode plots represent two orthogonal views of the three—dimensional
frequency plot of Figure 6, i.e., the Bode magnitude plot is seen by
observing Figure 6 from a direction orthogonal to the magnitude—w
plane and the Bode phase plot is seen by viewing Figure 6 from a
direction orthogonal to the phase— plane. Although Figures 6 and 8
were generated using the same data, the projections, i.e., the
traditional Bode plots, are significantly simpler to understand.

The Gain Plots (GPs)

Just as Bode plots simplify the three~dimensional frequency plot,
GPs elucidate the three—dimensional gain plot. Figures 9a,b are such
a representation for the system of equation (1). The Magnitude Gain
Plot (MGP) is seen by viewing Figure 7 from a direction orthogonal
to the magnitude—k plane and the Angle Gain Plot (AGP) is seen by
observing Figure 7 from a direction orthogonal to the angle—k plane.
Although the same information is presented in Figures 7 and 9, the
GPs are significantly easier to comprehend.
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Figure 6. Three Dimensional Frequency Plot of Equation (1).




Three Dimensional Gain Plot
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Figure 7. Three Dimensional Gain Plot of Equation (1).
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Figure 9. The (a) MGP and (b) AGP of Equation (1).
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The AGP reflects the basic construction rule of the root locus,
i.e., the angle criterion of equation (4). As a result, the AGP is
symmetric along the 180° (= —180°) line. Furthermore, the angle
criterion dictates that the eigenvalues must lie on the real axis or be
complex conjugates. Thus, a pair of complex conjugate eigenvalues
is shown as a single (overlapping) curve in the MGP with
corresponding angles symmetrically configured about the 180° line
shown in the AGP. As k varies, the complex conjugate eigenvalues
may become distinct real eigenvalues, causing their angles to become
equal (at a multiple of 180°) and permitting their magnitudes to differ.

The MGP shows two open—loop poles with magnitudes 1 and 2
as k—0. It also shows a single finite transmission zero with

magnitude 3 and an infinite transmission zero as k — . The AGP
indicates that the two open—loop poles and finite transmission zero
are located in the left-half plane since they have angles of 180°.
Furthermore, the AGP shows that there is an asymptote of 180°
(corresponding to the infinite transmission zero) as k — ee,

The GPs highlight the break points corresponding to points
where branches leave or enter the real axis of the root locus. For
example, these break points occur at k= 0.17 and at k = 5.83.
Between these break points the AGP indicates that the loci of the two
branch points are not on the real axis and the corresponding
coincident curves of the MGP confirm that the trajectories are those
of a complex conjugate pair.

The GPs present several important stability and performance
features of the system; these are summarized in Figure 10. Stability
may be determined from the AGP by noting if the angle of an
eigenvalue meets the following criterion

180°(2m + 1)~ 90" < |6] < 180°(2m + 1) + 90° o

for m=0, 1, 2, ..., corresponding to a location in the second and
third quadrants of the complex plane. For the case m=0, equation (9)
simplifies to 90° < 6 < 270°. This range is shown in the shaded
region in Figure 10b.
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Figure 10. Parameters in the (a) MGP and (b) AGP.

Performance measures are available directly from the GPs. In
particular, for complex conjugate eigenvalues the natural frequency,
@y (rad/s), is the magnitude presented in the MGP, and the damping
ratio, { = — cos(@) where 0 is the angle in the AGP. In Figure 10,
additional axes have been added to display y and { in the MGP and
AGP, respectively. If the eigenvalues are on the real axis, the MGP
presents the system time constants. (Note that negative values of {
result in unstable systems.)

Although the conventional root locus plot provides such
performance information, there are several advantages of the GPs.
First, the value of k as an independent variable is represented directly
on the abscissa. Hence, the influence of gain on ordinate
(dependent) variables is exposed explicitly. Second, the performance
measures of ®p and { are provided directly. Thus, given a design
specification for wp and £, the corresponding value(s) of k may be
determined by inspection. A novel feature of the GPs is this link of
performance and gain.

In addition to these and other advantages (e.g., gain margin, root
sensitivity, high gain asymptotic behavior, etc.), the GPs provide a
unified approach for SISO and MIMO systems where compensation
dynamics are governed by a single scalar gain amplifying all plant
inputs. MIMO GPs are introduced later in two examples.

INlustrative Examples
This section presents three examples that demonstrate the utility
of the GPs.
Non-Trivial SISO Example
Figure 11 is the root locus plot for the negative feedback system
of Figure 1 with the open—loop transfer function
(s+1)
s(s - 1)(s2 + 4s +16)

g(s)= 10)

(Equation (10) is studied in example A-5-3, Ogata, 1990.) The root
locus begins at the open-loop poles located at s={0, +1,

-2 * 2Y3j}. The open-loop complex conjugate pole pair migrates
to the real axis with increasing gain. One of these poles then
proceeds to the finite transmission zero at s=—1; the other pole moves
to an infinite transmission zero along an asymptote of 180°. The two
real open—loop poles migrate to s=0.46, and then break out from the
real axis. As a complex conjugate pole pair, they move to the left of
the imaginary axis. Subsequently, they migrate back to the right of
the imaginary axis and continue toward infinite transmission zeros
along asymptotes of +60°. For a small range of k, the root locus is
located completely within the left half of the complex plane,
corresponding to a stable closed—loop system. This range may be
found from the magnitude criterion to be 23.3 < k < 35.7.

Figure 11. Root Locus for System Given by Equation (10).

Figure 12 shows the GPs for the system given by equation (10).
Information about the open—loop eigenvalues at k = 0 shows (i) there
is an unstable set of open—loop poles at an angle of 0° having
magnitudes of 0 and 1, and (ii) there is a complex conjugate open—
loop pole pair having magnitude 4 at angles of 120° and 240°. By
inspection, these complex conjugate poles have a natural frequency
of 4 rad/s and a damping ratio of 0.5, although this information is
“secondary” since the open—loop system is unstable.

For positive values of gain, the system operates under closed—
loop negative feedback and reveals interesting eigenvalue trajectories.
For example, the solid and solid dashed lines in the MGP and AGP
track the locus of the poles that start as a complex conjugate pair.
The dotted and dotted dashed lines in these plots represent the locus
of the pole pair that originates on the real axis. Notice that when a
given pole pair is complex, the two poles have the same magnitude
but are distinguished in angle. Conversely, when poles lie on the
real axis, they have a principal angle of either 180° or 0°
corresponding to negative or positive real values, respectively.
Furthermore, the GPs show that the system is stable only for a
specific range of k, matching that found from the magnitude
condition. The +90° boundaries are marked in the figure in
accordance with the criterion presented in equation (9).
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Figure 12. (a) MGP and (b) AGP for Equation (10).
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Figure 13. Closed-Loop MIMO Negative Feedback Configuration.

The high gain asymptotes of the root locus are found by
examining the AGP for large values of k. The finite zero at s=—1 is
identified by the single pole asymptotically approaching unity
magnitude at an angle of 180°. The remaining three eigenvalues
asymptotically approach infinite zeros at angles +60° and 180°. For
gains higher than those reported in Figure 12, these asymptotes are
increasingly prominent.

The slopes of the GPs provide information about the closed-loop
system sensitivity to changes in gain. In the example, the system is
highly sensitive to gain variations when k is small as evidenced by
the rapid change in both the angle and magnitude of the system
eigenvalues. This behavior is noticeable at k=3.1, where the angle of
the unstable pole pair rises abruptly. Clearly, as k—»eo (i) the angles
in the AGP asymptotically approach the Butterworth configuration,
and (ii) the magnitudes of the eigenvalues are related to the gain via a
power law relationship depicted as a straight line on the MGP
(Kurfess and Nagurka, 1991).

MIMO Theory

' In the MIMO examples presented below, the system is embedded
in the closed-loop feedback configuration of Figure 13. The input—
output dynamics are now described by a square transfer function

matrix, G(s), whose elements are transfer functions. For the
examples, the controller is K(s) = kI, implying that each input
channel is scaled by the same constant gain k. The internal structure
of G(s) is given by the state-space equations:

x(t) = Ax(t) + Bu(t) (11
y(t)=Cx(t) +Du(y) 12

where x is the state vector of length n, u is the input vector of length
m, and y is the output vector of length, m. Matrices A, B, C and D
are the system matrix, the control influence matrix, the output matrix,
and the feedforward matrix, respectively, with appropriate
dimensions. The feedback law

u(t) = kIe(t) (13)
is specified where the error vector, e, is
e(t)=r(t)- y(1 (14

The eigenvalues of the closed—loop system, s = A; (i=1,2,...,n), are
the roots of dcy(s), the closed-loop characteristic polynomial,

ocLl(s) = douls)det(I + kG(s)] (15)
where G(s) is the transfer function matrix,
G(s)=C[sI- Al'B + D a6
and where ¢oL(s) is the open—loop characteristic polynomial,
doL(s) = detsI - A] 17

By equating the determinant in equation (15) to zero, the MIMO
generalization of equation (3) is obtained. The presence of the
determinant is the major challenge in generalizing the SISO root locus
sketching rules to MIMO systems. The closed-loop system
eigenvalues may also be determined from equations (11) — (14) as

Ai=eciglA -BI+kDy'kC] , i=1,2,--.,n (18)

In the examples, the loci of closed-loop eigenvalues are calculated
from equation (18) as k is monotonically increased from zero.

Decoupled MIMO Example

The state space representation of this decoupled multivariable
system is

x0=[0 90+ 2 Voo . yo=[ ] O]x) 193, 20

corresponding to the transfer function matrix




5o
S+
G(s)= ] @1)
o —1_
s+2

It represents two first order SISO systems with eigenvalues at s={-1,
—2}. Since the system is decoupled, the multivariable root locus may
be considered to be the superposition of two SISO root locus plots.
That is, the MIMO root locus diagram depicts two eigenvalue
trajectories, one beginning at s=—1 and the other beginning at s=—2.
Both trajectories follow a straight line path along an angle of 180°.
Figure 14 presents the root locus for this MIMO decoupled system.
Notice that it does not follow the rules of the familiar SISO root locus
(e.g., the SISO rule for the portion of the root locus on the real axis
is violated), and is not intuitive.
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Figure 14. Root Locus for System Given by Equations (19) — (21).

Figure 15 is the MGP for this decoupled MIMO system.
Although not shown, the AGP indicates that both eigenvalues have
angles of 180" for all gains. Thus, the open—loop eigenvalues are at
s={-1, -2}. Furthermore, as k increases, both eigenvalues proceed
deeper into the left half plane along the negative real axis at the same
constant rate. From the MGP, there is no ambiguity as to the number
or location of the poles. Thus, the GPs provide significantly more
insight into the behavior of the closed—loop system.

Coupled MIMO Example

The plant dynamics of this example are given by the state space
model

1= 3 S0 +[ 2 ] Juy . v =

2 ]x(t) 22), 23)

-11
32
corresponding to the transfer function matrix
(s-1) s
(s+1)fs+2) (s+1)s+2)

-6 (s-2) 4
(s+1)s+2) (s+1)s+2)

G(s)=

(Equation (24) is used as an example by Postlethwaite and
MacFarlane, 1979, and later by Yagle, 1981.) This MIMO system
has eigenvalues at s={-1, —=2}. Since the system is coupled, the
multivariable root locus is more complicated than superimposed
SISO root locus plots. The MIMO root locus diagram shown in
Figure 16 depicts two eigenvalue trajectories, one beginning at s=1
and the other beginning at s=—2. As in the decoupled example, the
eigenvalue at s=—2 follows a negative real axis trajectory. The
eigenvalue at s=1 does not follow the same trajectory. It initially
migrates to the right, proceeding to s=1/24 = 0.042, and then
reverses. As k is increased, the pole moves back to the left of the
imaginary axis. For all values of k, both eigenvalues are purely real.

Notice that Figure 16 does not follow the rules of the familiar SISO
root locus, and is counter intuitive.
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Figure 16. Root Locus for System Given by Equations (22) — (24).

Figure 17 presents the GPs for the coupled MIMO system. Itis
clear that gain values in the range 1 < k <2 yield an unstable closed—
loop system. This is known since there is a 180" jump in angle as
the eigenvalue passes through the origin, highlighting the stable-
unstable transition.

The standard root locus plot of this coupled MIMO example is
confusing because of the collapse of the Riemann surface into a
single complex plane. Since the plot is drawn in two dimensions,
branch points may be generated by more than one gain value and,
therefore, may not be uniquely presented. The GPs, however,
display eigenvalue magnitude and angle information in an
unambiguous and concise manner.

Conclusions

The Gain Plots are a set of illuminating plots that expand and
enhance the control engineers’ design tool set. Just as the Bode plots
add a “frequency dimension” to the Nyquist diagram. The GPs are
designed to augment the root locus by exposing the “gain
dimension.” As such, the GPs are the gain domain analogy to the
frequency domain Bode plots.

Figure 18 highlights the correspondence of four classical controls
graphical tools. As shown, the GPs fill what may be viewed as a




“missing” quadrant of the classical controls tool set. The first row
portrays the Nyquist diagram and the Evans root locus spanning a
two—dimensional complex plane. The second row shows the Bode
plots and GPs spanning a three—-dimensional (real) space. The
columns show the variable that is used to increase the dimension,
i.e., frequency for Bode plots, gain for GPs.
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Figure 17. (a) MGP and (b) AGP for Equations (22) - (24).

The GPs enhance the root locus by explicitly portraying the
relationship between the gain and the location of each eigenvalue
whose trajectories are mapped by the root locus. This information is
not readily available from the root locus. The enhancement enables
the control designer to identify, by observation, an eigenvalue
location with a specific gain, and hence directly view the influence of
the gain on stability as well as on system performance. Furthermore,

the slopes of the GPs provide a direct measure of eigenvalue gain
sensitivity.
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Figure 18. Quadrant Representation of Graphical Control Tools.

Many similarities and differences exist between the root locus and
the GPs. For example, both the root locus plot and the GPs can be
drawn for systems with transportation lags or dead time. Unlike the
root locus plot, the GPs explicitly highlight open-loop poles near or
at transmission zeros. These poles are depicted as horizontal lines
indicating constant magnitude and angle for all gains. In the root
locus plot pole-zero cancellations are normally camouflaged.

Finally, the GPs offer significant advantages over standard root
locus plots for MIMO systems. Whereas MIMO root locus plots do
not necessarily show unique trajectories, as some branches may
overlap, the GPs are a unique description of the eigenvalues. They
provide a broad spectrum of information about closed-loop control
systems, including stability, performance, and robustness attributes,
and are a recommended addition to the control engineers’ tool set.
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