A Geometric Representation of Root
Sensitivity

T. R. Kurfess' and M. L. Nagurka’

In this paper, we present a geometric method for representing
the classical root sensitivity function of linear time-invariant
dynamic systems. The method employs specialized eigenvalue
plots that expand the information presented in the root locus
plot in a manner that permits determination by inspection of
both the real and imaginary components of the root sensitivity
Sfunction. We observe relationships between root sensitivity and
eigenvalue geometry that do not appear to be reported in the
literature and hold important implications for control system
design and analysis.

Introduction

In classical control theory the root sensitivity, S,, is defined
as the relative change in a system root or eigenvalue, \; (i=1,

., n), with respect to a system parameter, p. Most often,
the parameter analyzed is the forward loop gain, k. The root
sensitivity with respect to gain is given by

_d\(k)/N(k) _dN(k) K
T dk/k dk A(k)

Since the eigenvalues may occur as complex conjugate pairs,
Sx may be complex.

Equation (1) is often introduced in determining the break
points of the Evans root locus plot for single-input single-
output systems. At the break points, S; becomes infinite as at
least two of the n system eigenvalues undergo a transition from
the real domain to the complex domain or vice versa. This
transition causes an abrupt change in the relation between the
eigenvalue angle <« \ and gain k yielding an infinite eigenvalue
derivative d\/dk (Ogata, 1990).

The root sensitivity function Sy is a measure of the effect
of parameter variations on the eigenvalues. S is an important
quantity in light of a key objective of feedback control theory,
the reduction of the system sensitivity to variations in system
parameters. For example, the control system of a robotic ma-
nipulator should be relatively insensitive to the payload carried
by the arm for the recommended payload range. If the ma-
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nipulator’s performance is sensitive to payload variations, then
the control system is not robust and performance is difficult
to guarantee. In this case, S,,, where m is the payload mass,
should be relatively small over the manipulator’s payload mass
range. Such considerations are critical if control designers are
to develop high performance, robust, closed-loop systems.

In this paper, we present a geometric technique for deter-
mining root sensitivity. The technique relies on a set of gain
plots (Kurfess and Nagurka, 1991) that are an alternate vis-
ualization of the Evans root locus plot. In particular, we prove
that the slopes of the gain plots are directly related to the real
and imaginary components of the sensitivity function. An ex-
ample is presented demonstrating the insight gained via this
geometric perspective on the sensitivity function, and its utility
in control system design.

Root Sensitivity Analysis

In this section, we derive an expression for the complex root
sensitivity function by employing a polar representation of the
eigenvalues in the complex plane. We posit three assumptions:
(i) the systems analyzed are lumped parameter, linear time-
invariant (LTI) systems; (ii) there are no eigenvalues at the
origin of the s-plane, i.e.,

N#O, Vi=1l,...,n )

(although the eigenvalues may be arbitrarily close to the origin
singularity); and (iii) the forward scalar gain, &, is real positive,
i.e., k€®, k>0. Based on these assumptions, we draw the
following observations: the real component of the sensitivity
function is given by
dln INK) |

dlIn (k)
and the imaginary component of the sensitivity function is
given by

Re (k) = 3)

d/\(k)

dln (k)

These observations may be proven as follows. Equation (1)

may be rewritten (Horowitz, 1963; Kuo, 1991) in terms of the
derivatives of natural logarithms as

S _dIn(\(k))
kT dn (k)

The natural logarithm of the complex value, A, is equal to the

sum of the logarithm of the magnitude of A and the angle of
A multiplied by j=+/ — 1. Thus, Eq. (5) becomes

_dlinINKk) | +j2N(k)]

Im {Sy) = @)

()
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Since j is a constant, Eq. (6) may be rewritten as
dinINk)| . dz\(k)
“=Tdink) Y dnk) @
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The complex root sensitivity function is now expressed with
distinct real and imaginary components employing the polar
form of the eigenvalues. It follows from assumption (ii) that
In (k) is real. (In general, most parameters studied are real and
this proof is sufficient. If, however, the parameter analyzed
is complex as explored in Nagurka and Kurfess (1992), it is a
straightforward task to extend the above analysis.)

The proof is completed by taking the real and imaginary
components of Eq. (7), yielding Egs. (3) and (4). It is interesting
to note that the Cartesian representation of Sy is related to the
polar representation of \.

Geometric Relations to Gain Plots

The gain plots (Kurfess and Nagurka, 1991) are an alternate
graphical representation of the Evans root locus plot. They
explicitly graph the eigenvalue magnitude versus gain in a mag-
nitude gain plot and the eigenvalue angle versus gain in an
angle gain plot. The magnitude gain plot employs a log-log
scale whereas the angle gain plot uses a semi-log scale (with
the logarithms being base 10.) Although gain is the variable
of interest, any parameter may be used in the geometric anal-
ysis.

We next make the observation that the slope of the mag-
nitude gain plot is the real component of S;. The magnitude
gain plot slope, M, is

_dlog(INK) 1)

"~ dlog(k) ®
which may be rewritten as
M _d[log(e)ln(l)\(k)l)]_dln(l)\(k)|) ©)
m=  dllog(e)ln(k)] ~  din(k)
corresponding to Eq. (3).
X1 X2 Parameter Values
‘—‘ ’—" (Sardar and Paul, 1991)
K
L AAA — K =14,400 N/m
— m m: C=12N-s/m
FLE— m =20 kg
m:=2 kg

I R RieRm

Fig. 1 Lumped parameter system model

Furthermore, the slope of the angle gain plot is the product
of the imaginary component of Sy and the constant, (log ()~ ".
The angle gain plot slope, My, is

d 2\ (k)
——— 10
“" dlog (k) (10)
which may be rewritten as
d/\(k 1 dzNk
M,= (k) 2 N(k) an

dllog () In (k)] log(e) dln(k)
and hence M, is proportionally related to Eq. (4) by (log ()~ X

Example

In this section we demonstrate the graphical method of de-
termining the root sensitivity function. The example involves
a system using positive modal feedback (Sardar and Paul,
1991). An example of a PD controller has been reported pre-
viously (Kurfess and Nagurka, 1992). Here a more complicated
system is used to demonstrate the determination of the root
sensitivity function with respect to a system parameter, namely
stiffness, and its implictions for design.

Positive Modal Feedback Example. Sardar and Paul (1991)
considered the application of positive modal feedback to the
dynamic system, shown in Fig. 1, representing a lumped pa-
rameter structural model. The block diagram of the positive
model feedback is shown in Fig. 2. The transfer function be-
tween the actual and desired position is

Positive
Modal

K.s = Feedback
)

d o e 1
r+ + u System | x, + X2
2 K, \2 2 Dynamics i

Negative
. Rigid Mode
Feedback

Fig. 2 Block diagram with PD control and positive modal feedback
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Fig. 4(b) Angle gain plot for Eq. (12)
X (s) K,(Cs+K) a2) yielding a stable system, and sweep K through a large range
=72 (including the value used by Sardar and Paul, K =14400 N/
R(s) ~ bis"+bss"+ bas + bis + by m). Figure 3 is the root locus for the closed-loop system as K
where is varied in the range 10' <K <10°. (Note that the root locus
by=mym, (13) axes are not square.) Figures 4(a,b) and 5(a, b) are the gain
plots and sensitivity plots, respectively, for the system. In the
by=2mKs+ (my+my)C (14)  gain plots, natural frequency and damping ratio vertical axes
by=2mK,+ (m;+my)K + K,C (15) have been added to aid in the analysis.
From these figures, several interesting features are available.
= + K, . . !
Bp=h O kK (16) First, the entire range of K corresponds to a closed-loop stable
bo=K,K (17)  system. The design does, however, place a set of high frequency

where K, is the proportional gain and K is the derivative gain.
The term, 6, in Fig. 2 is the relative displacement of the masses
given by ,

0=X3—X;

(18)

In their work, Sardar and Paul assumed a value of K;= 200
N-s/m, and varied the value of K, to generate root locus plots.
It is our objective to pick a value of K, and then conduct a
sensitivity analysis of the closed-loop system with respect to
the spring stiffness, K. We use a value of K,=2000 N/m,
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poles near the imaginary axis. These poles represent the mode
of the system. The designer cannot ignore these poles since
they do not decay fast enough, with respect to the other pole
pair, to invoke the dominant pole theory. The design may meet
specifications; however, let us assume that we would like more
damping. There is the possibility of reducing the stiffness, X,
which results in increasing the damping, {. By inspection from
the angle gain plot, the value of K that results in the highest
damping for both pole pairs is approximately K= 870 N/m.
This is where the damping ratio for both pole pairs is ap-
proximately equal. At K=870 N/m, we can read the natural
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Fig. 5(a) Real component of S, for Eq. (12)

Imaginary Sensitivity vs Stiffness
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frequency for each pole pair from the magnitude gain plot to
be 9 and 21 rad/s, respectively.

We may now examine the sensitivity plots to see if our design
is robust to variations in K. The plots suggest that the design
is fairly robust to stiffness variations. The real part of the
sensitivity function indicates sensitivities of 0.07 and 0.42 for
the lower and higher frequency pole pairs, respectively. In other
words a 10 percent increase in K yields a 0.7 percent increase
in the low frequency pole pair’s natural frequency and a 4.2
percent variation in the natural frequency of the high frequency
poles. The values of the imaginary part of the root sensitivity
function are approximately 0.24 and 0.18 for the higher and
lower frequency pole pairs, respectively. Again, this translates
directly to the rate at which the pole angles (and thus damping)
change as a function of K.

From Figs. 5(a, b), the control designer may observe that
the recommended design does not generate a highly sensitive
system. Furthermore, higher stiffnesses relate to smaller im-
aginary components of the sensitivity function. For higher
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Fig. 5(b) Imaginary component of S, for Eq. (12)

stiffnesses, the real part of the root sensitivity for the higher
frequency pole pair increases asymptotically to 0.5, while the

.lower frequency pair approaches zero. Several design insights

may be garnered from these plots. First, a stiffness of ap-
proximately 500 N/m may not be desirable if low damping
variations are critical, since the corresponding imaginary part
of the sensitivity function is maximum. However, at a K of
approximately 400 N/m, the real part of the root sensitivity
function is equal for both pole pairs. Therefore, if the radial
pole motion of both pairs is to be minimized, a stiffness of
400 N/m should be considered. Finally at high stiffnesses such
as 10* N/m, the root sensitivity function is relatively flat. Thus,
stiffness variations at these higher values result in predictable
changes in pole locations.

Closing
The concept of root sensitivity in classical controls is often

introduced to emphasize the high “‘sensitivity’’ of eigenvalues
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with respect to a system parameter such as gain near the break
points. Normally, the root sensitivity function is not discussed
as a complex quantity in control system analysis and design.
Here, we have derived and demonstrated a powerful yet un-
complicated means of visualizing the root sensitivity function.
The slopes of the gain plots provide a direct measure of the
real and imaginary components of the root sensitivity, and are
available by inspection. The use of the gain plots in conjunction
with other traditional graphical techniques offers the control
system designer important information for selection of ap-
propriate system parameters.

Acknowledgments

This work was partially funded by the National Science
Foundation under grant No. DDM-9257514, and by the En-
gineering Design Research Center, an NSF Engineering Re-
search Center. The government has certain rights in this
material. Any opinions, findings and conclusions or recom-
mendations are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References

Horowitz, 1. M., 1963, Synthesis of Feedback Systems, Academic Press, New
York.

Kuo, B. C., 1991, Automatic Control Systems, Fifth Edition, Prentice Hall,
Englewood Cliffs, NJ.

Kurfess, T. R., and Nagurka, M. L., 1991, ‘“Understanding the Root Locus
Using Gain Plots,”” IEEE Control Systems Magazine, Vol. 11, No. 5, pp. 37-
40.

Kurfess, T. R., and Nagurka, M. L., 1992, ‘A Geometric Representation of
Root Sensitivity,”” ASME Winter Annual Meeting, Control System Design Meth-
odologies Session, ASME Technical Paper #92-WA/DSC-10, Anaheim, CA.

Nagurka, M. L., and Kurfess, T. R., 1992, “‘Gain and Phase Margins of SISO
Systems from Modified Root Locus Plots,”” IEEE Control Systems Magazine,
June, Vol. 12, No. 3, pp. 123-127.

Ogata, K., 1990, Modern Control Engineering, Second Edition, Prentice Hall,
Englewood Cliffs, NJ.

Sardar, H. M., and Paul, F. W., 1991, “Controlling Structural Vibrations
Using Positive Modal Feedback,”” ASME Symposium Volume DSC-Vol. 31,
pp. 113-120.

Synthesis of Multivariable Controller
With Plant Test Data

Jeng-Tzong H. Chan'

A method to synthesize decoupled multivariable control system
Jrom a batch of plant test data is introduced. The method is
applicable when the system has more inputs than outputs and
is open-loop stable. An advantage of this method is that explicit
identification of an open-loop system model is not required
for controller synthesis.

I Introduction

In many multivariable control system syntheses, the objec-
tives of the design are 1) to have each output of the system
meet desired command response characteristics, and 2) to prop-
erly suppress the disturbance response. Normally, the first
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T T(s) el
Fig. 1 Basic system conllgu'ration with feedforward cascaded
controller

objective dictates a decoupled output response and is achieved
if the input-output transfer function matches some predeter-
mined Laplace domain rational function; the second objective
is achieved if a disturbance-attenuation filtering function can
be placed in the system equation. Often, the system under
consideration is open-loop stable.

For the controller design, precise plant models are generally
needed. In many cases, such models are not available. The
plant, however, may be available for testing. Controller design
techniques based on plant test data had thus been developed
(Astrom, 1980; Owens, 1984; Rogers and Owens, 1990). How-
ever, these techniques still require approximated plant models,
so that the control system design still consists of two separate
steps, namely, plant model estimation and controller synthesis.
In this paper, we present a method to synthesize the controller
directly from plant test data. This, in effect, combines the
estimation and synthesis procedures into one design process,
thereby simplifying the task.

I Statement of the Problem

In the present study, we will concentrate on the following
problem: Given an overall stable system with Laplace-domain
equation (Maciejowsky, 1989)

B(s)
A(s) (M)

where y is an p, X 1 output vector, u is an p; X 1 input vector,
@is an p, X 1 disturbance vector, A (s) is an nth order poly-
nomial and B (s) is an p, X p; matrix of 7ith order polynomials,
design a controller so that the system outputs meet the response
characteristics specified by the rational function R (s) = [N(s)/ -
D(s)] with given polynomials D(s) and N(s).?

In theory, an open-loop cascaded controller, T(s) (see Fig.
1) will serve the purpose if [B(s)/A4 (s)] T (s) = A(s)I. In prac-
tice, however, several major difficulties may arise:

y(s)= u(s) +§(s)

(a) T(s) will not be implementable if B(s)/A (s) does not
have a stable inverse when p;=p,;

(b) T(s) is an open-loop compensator and is thus sensitive
to disturbance;

(c) An estimate of B(s)/A (s) may be not available so that
T (s) cannot be computed.

The first problem is discussed in the Appendix, where it is
shown that if p,=p,+ 1 and B (s) /A (s) is of full row rank for
all s, then there always exists, for some m =1/, an appropriate
polynomial matrix

R(s)= D ®s™"
=0

where ®; are constant p;x p, matrices which will satisfy the
relation

B(s) R(s) [
A(s) s'g(s) s

(2

%(a) The value I=n—n signifies the relative order of B(s)/A (s). For causal
systems, we will have 1</<n. (b) If we denote the order of D(s) as np and
that of N(s) as ny, then the causality of the formulation demands that np, > /+ ny.
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