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In this paper, we present a geometric method for
representing the classical root sensitivity function of
linear time—invariant dynamic systems. The method
employs specialized eigenvalue plots that expand the
information presented in the root locus plot in a manner
that permits determination by inspection of both the real
and imaginary components of the root sensitivity
function. We observe relationships between root
sensitivity and eigenvalue geometry that do not appear
to be reported in the literature and hold important
implications for control system design and analysis.

THE ROOT SENSITIVITY FUNCTION

In classical control theory the root sensitivity, Sp,
is defined as the relative change in the system roots or
eigenvalues, A; (i = 1,..., n), with respect to a system
parameter, p. Most often, the parameter analyzed is the

forward proportional controller gain, k. The root
sensitivity with respect to gain is given by
=dk(k)/X(k)=dk(k)_1(_ )

dk / k dk Ak

Since the eigenvalues may occur as complex conjugate
pairs, Sx may be complex.

Equation (1) is often introduced in determining
the break points of the Evans root locus plot for single-
input single-output systems. At the break points, Sk
becomes infinite as at least two of the n system

eigenvalues undergo a transition from the real domain
to the complex domain or vice versa. This transition
causes an abrupt change in the relation between the
eigenvalue angle ZA and gain k yielding an infinite
eigenvalue derivative with respect to gain (Ogata, 1990).

The root sensitivity function Sy is a measure of
the effect of parameter variations on the eigenvalues. It
is important in light of one of the key objectives of
feedback control theory to reduce system sensitivity to
variations in system parameters. For example, the
control system of a robot should be relatively insensitive
to the payload carried by the arm for the recommended
payload range. If the robot's performance is sensitive to
payload variations, then the control system is not robust
and performance is difficult to guarantee. In this case,
S, where m is the payload mass, should be relatively
small over the operational range of m. Such
considerations are critical if control designers are to
develop high performance, robust, closed-loop systems.

In this paper, we present a geometric technique
for root sensitivity. The technique relies on a set of
plots called gain plots (Kurfess and Nagurka, 1991a)
that are an alternate visualization of the Evans root locus
plot. In particular, we prove that the slopes of the gain
plots are directly related to the real and imaginary
components of the sensitivity function. Two examples
are presented demonstrating the insight gained via this
geometric perspective on the sensitivity function, and its
utility in control system design and analysis.
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ROOT SENSITIVITY ANALYSIS

In this section, we derive the complex root
sensitivity function by employing a polar representation
of the eigenvalues in the complex plane. We proceed by
positing three assumptions: (i) the systems analyzed are
lumped parameter, linear time—invariant (LTI) systems;
(ii) there are no eigenvalues at the origin of the s-plane,
1€,

Ai#0, Vi=1,..,n )
(although the eigenvalues may be arbitrarily close to the
origin singularity); and (iii) the forward scalar gain, k,
is real and positive, i.e., k € R, k>0. Based on these
assumptions, we draw the following observations: the
real component of the sensitivity function is given by

dIn|A(k)|
Re{Sk) = 3
{8l din(k) =
and the imaginary component of the sensitivity function
is given by
dZMk)
Im {Ski = 4
m {5 din(k) T

where ZA is the eigenvalue angle.

These observations may be proven as follows.
Equation (1) may be rewritten (Horowitz, 1963; Kuo,
1991) in terms of the derivatives of natural logarithms
as

S, = din(A(k))
din(k)
The natural logarithm of the complex value, A, is equal
to the sum of the logarithm of the magnitude of A and
the angle of A multiplied by j = Y-1. Thus, equation
(5) becomes

&)

_ dlinfAfk) + j 2 K]
din(k)

Since j is a constant, equation (6) may be rewritten as

Sk (6)

_ dinfAfk) | dZMK)

" dinfk) ) din(k)
The complex root sensitivity function is now expressed
with distinct real and imaginary components employing
the polar form of the eigenvalues. It follows from
assumption (ii) that In(k) is real. (In general, most
parameters studied are real and this proof is sufficient.

(7

If, however, the parameter analyzed is complex, it is a
straightforward task to extend the above analysis.)

The proof is completed by taking the real and
imaginary components of equation (7), yielding
equations (3) and (4). It is interesting to note that the
Cartesian representation of Sy is related to the polar
representation of A;.

GEOMETRIC RELATIONS TO GAIN PLOTS

The gain plots are an alternate graphical
representation of the Evans root locus plot (Kurfess and
Nagurka, 1991a). They explicitly graph the eigenvalue
magnitude vs. gain in a magnitude gain plot and the
eigenvalue angle vs. gain in an angle gain plot. The
magnitude gain plot employs a log—log scale whereas the
angle gain plot uses a semi-log scale (with the
logarithms being base 10.) Although we use gain as the
variable of interest, it should be noted that any
parameter may be used in the geometric analysis.

We next make the observation that the slope of the
magnitude gain plot is the real component of Si. The
magnitude gain plot slope, My, is

_ d log(|A(k))

d log (K] &
which may be rewritten as
_ d[logle) (AR _ampi) o)

d[log(e) In(k)] dIn (k)

corresponding to equation (3).
Furthermore, the slope of the angle gain plot is

linearly related to the imaginary component of S by the

constant, (log(e))-!. The angle gain plot slope, M,, is

42K 1)
\ d log (k)
which may be rewritten as
- dzMk)  _ 1 dZAk) (11

d[log(e) In(k)] ~ log(e) d In (k)
and hence M, is proportionally related to equation (4)
by (log(e)) .
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Figure 1. Root Locus Plot for Equation (14)
EXAMPLES

In this section we demonstrate the graphical
method of determining the root sensitivity function.
The first example employs a closed-loop system in
which the forward loop gain is varied. The goal of this
example is to introduce the proposed graphical view of
root sensitivity; the example is purposely designed to be
straightforward and intuitive.

The second example involves a system using
positive modal feedback (Sardar and Paul, 1991). We
use this more complicated system to demonstrate the
determination of the root sensitivity function with
respect to a system parameter, namely stiffness. The
example demonstrates the utility of extending the root
locus to system variables other than the control gain,
enabling the control designer to conduct parametric
sensitivity studies when designing and analyzing control
systems.

raditional PD ntroller Exampl
This example considers the plant

_ 1
g=— 1 (12
&ls) 2+ 65+ 18 )

with a PD compensator
ge(s) =k (s + 1) (13)

giving the loop—transmission transfer function

k(s+1)

o ad W (14
s24+6s+ 18 )

8(s) = &p(s) gc(s) =
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Figure 2.

The root locus plot of Figure 1 portrays the effect
of varying gain k. An alternate visualization is shown in
the magnitude gain plot and angle gain plot of Figures
2a,b, respectively. These figures show that the
eigenvalues are either completely real or are complex
conjugate values. The real and imaginary components
of Sy are plotted as functions of gain in Figures 3a,b.
These are determined from the slopes of the magnitude
gain plot and angle gain plot, respectively.

Figures 2a,b and 3a,b show that the break point
occurs at kpp, = 3.21. In particular, Figures 3a,b
highlight the infinite values of the real and imaginary
eigenvalue components at ky,. Below kp, the closed—
loop eigenvalues follow a circular trajectory about the
point s =—1 as demonstrated in Figure 1.
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Figure 3. (a) Real and (b) Imaginary
Component of S for Equation (14)

Figures 2a and 3a show that the eigenvalues have
coincident trajectories below kpp. Above kpp one
eigenvalue migrates to the finite transmission zero at
s=—1 while the other eigenvalue migrates to the infinite
sze10 at —oo. At high gains the real components of Sy are
zero and one, respectively (Kurfess and Nagurka,
1991b). Thus, at high gains the finite transmission zero
is desensitized from k, and there is a unity magnitude
relation between k and the finite eigenvalue. In contrast
to Figures 2a and 3a, Figures 2b and 3b show multi—
valued eigenvalue trajectories above kpp and coincident
trajectories below Kpp. This is expected since the
eigenvalues are either purely real or complex
conjugates. Finally, since the eigenvalues are purely
real above kpp, the imaginary component of Sy is zero
for k > Kpp.

X2 Parameter Values
l——' (Sardar and Paul, 1991)
K = 14,400 N/m
C=1.2N-s/m

m, =20kg
m;=2kg

Figure 4. Lumped Parameter System Model

Positive
Modal
Kas Feedback
)
+ +
T +< System X1+ X2
z K Dynamics z
Negative
b Rigid Mode
Feedback

Figure 5. Block Diagram with PD Control and
Positive Modal Feedback

iti 1 F k_Exampl
Sardar and Paul (1991) considered the application
of positive modal feedback to the dynamic system,
shown in Figure 4, representing a lumped parameter
structural model. The block diagram of the positive
modal feedback is shown in Figure 5. The transfer
function between the actual and desired position (R(8)) is

Xafs) _ K,(Cs +K) (15)

R(s) bast + b3 3 +bys2 +bys + bo

where

bs = mjmy (16)
by = 2mKq + (my + my)C a7
b, = 2m2Kp + (ml + mz)K + KdC (18)
b1 =KPC+KdK (19)
bg = KpK (20)

where K, is the proportional gain and Kg4 is the
derivative gain. The term, 8, in Figure 5 is the relative
vibration of the masses given by

d=xp—X1 (21)
In their work, Sardar and Paul assumed a value of
K4 = 200, and varied the value of K, to generate root

—
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locus plots. It is our objective to pick a value of K and
then conduct a sensitivity analysis of the closed-loop
system with respect to the spring stiffness, K. We use a
value of K, = 2000, yielding a stable system, and sweep
K through a large range (including the value used by
Sardar and Paul, K = 14400 N/m). Figure 6 is the root
locus for the closed-loop system as K is varied in the
range 101 < K < 105. (Note that the root locus axes
are not the same scale.) Figures 7a,b and 8a,b are the
gain plots and sensitivity plots, respectively, for the
system. In the gain plots, natural frequency and
damping ratio vertical axes have been added to aid in the
analysis.

From these figures, several interesting features




are available. First, the entire range of K corresponds a
closed-loop stable system. The design does, however,
place a set of high frequency poles near the imaginary
axis. These poles represent the mode of the system.
The designer cannot ignore these poles since they do not
decay fast enough, with respect to the other pole pair, to
invoke the dominant pole theory. The design may
indeed meet specifications; however, let us assume that
we would like a bit more damping. There is the
possibility of reducing the stiffness, K, which results in
increasing the damping, {. By inspection from the angle
gain plot, the value of K that results in the highest
damping for both pole pairs is approximately K=870
N/m. This is where the damping ratio for both sets is
approximately equal. At K=870 N/m, we can read the
natural frequency for each pole pair from the magnitude
gain plot to be 9 and 20 rad/sec, respectively.

We may now examine the sensitivity plots to see if
our design is robust to variations in K. The plots
indicate that the design is fairly robust to stiffness
variations. The real part of the sensitivity function
indicates sensitivities of 0.07 and 0.42 for the lower and
higher frequency pole pairs, respectively. This
translates to the fact that a 10% increase in K will yield
a 0.7% increase in the low frequency pole pair's natural
frequency, and a 4.2% variation in the natural
frequency of the high frequency poles. The values of
the imaginary part of the root sensitivity function are
approximately 0.24 and 0.18 for the higher and lower
frequency pole pairs, respectively. Again, this translates
directly to the rate at which the pole angles (and thus
damping) change as a function of K.

From both of these plots, the control designer
may observe that the chosen design does not generate a
highly sensitive system. Furthermore, higher stiffnesses
relate to smaller imaginary components of the sensitivity
function. For higher stiffnesses, the real part of the
root sensitivity for the higher frequency pole pair
increases asymptotically to 0.5, while the lower
frequency pair approaches zero. Several design insights
may be garnered from these plots. First, stiffnesses of
500 may not be desirable if low damping variations are
critical. Figure 8b demonstrates that the imaginary part
of the sensitivity function is maximum at that range.
However, at a K of approximately 400, the real part of
the root sensitivity function is equal for both pole pairs.
Therefore, if the radial pole motion of both pairs is to
be minimized, a stiffness of 400 may be considered.

Finally at high stiffnesses such as 104, the root
sensitivity function is relatively flat. Thus, stiffness
variations at these higher values should result in
predictable changes in pole locations.

CLOSING

The concept of root sensitivity in classical
controls is often introduced to emphasize the high
"sensitivity" of eigenvalues with respect to a system
parameter such as gain near the break—points.
Normally, the root sensitivity function is not discussed
as a complex quantity in control system analysis and
design. Here, we have derived and demonstrated a
powerful means to visualize the root sensitivity function
via the gain plots. The slopes of the gain plots provide a
direct measure of the real and imaginary components of
the root sensitivity, and are available by inspection. The
use of the gain plots in conjunction with other
traditional graphical techniques offers the control
system designer important information for selection of
appropriate system parameters.
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