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ABSTRACT: The foundations of linear time-invariant control are re-examined via a new
geometric paradigm, gain plots. These plots depict eigenvalue trajectory as an explicit function
of gain. Various classical control concepts are generalized in nine theorems and demonstrated
in three simple, yet pedagogical, examples.

L. Introduction

There have been many important developments in classical control theory of
linear time-invariant (LTI) systems as a result of geometric perspectives (1-3).
These graphical methods remain key control analysis and design tools even in the
post-computer age. In fact, the advent of the computer has extended these methods
considerably. For example, multivariable root locus plots can be generated as
readily as single-input, single-output (SISO) root locus plots. The power and
availability of software tools has prompted us to consider a new geometric per-
spective of the Evans root locus. The resulting plots, called gain plots, show the
explicit variation of eigenvalue magnitudes and angles with respect to a scalar
system parameter, such as forward gain (4). The eigenvalue magnitude vs gain is
portrayed in a magnitude gain plot using a log—log scale and the eigenvalue angle
vs gain is displayed in an angle gain plot using a semi-log scale (with the logarithms
being base 10). Although we select gain as the variabie of interest, it should be
noted that any parameter may be used in the geometric analysis.

In this paper we employ the standard state-space representation of an LTI
system :

x(t) = Ax(¢) +Bu(s) ' 1
y(1) = Cx(1)+Du(1), : )

where x € R, is the state, ue ®,, is the plant command or control input, ye ®,, is
the plant output and {A, B, C, D} e # with appropriate dimensions. The input—
output dynamics are governed by a square transfer function matrix, G(s) :

G(s) = C[s—A]~'B+D. 3)

The system is embedded in a unity feedback closed-loop configuration with forward
static compensator, kI, implying that each input channel is scaled by the same
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constant gain, k. (Note that the plant transfer function matrix and any dynamic
compensation may be combined in the transfer function matrix G(s).) The control
law is given by

u(r) = kle(?), 4)

where

e(t) =r(1)-y() (5

is the error and r(t) € #,, is the reference (command) signal that y(r) must track.
The closed-loop transfer function matrix is

Gei(s) = M+KG(s)] ™ 'kG(s). (6)

To develop the root locus plot, the migration of the eigenvalues of G (s) in the
complex plane is portrayed for 0 < k < oc. The eigenvalues of the closed-loop
system.s = 4, (i = 1,2,..., n), are the roots of ¢, (s), the closed-loop characteristic
polynomial :

PcL(s) = dou(s) det T+kG(s)], (M
where ¢o. (s) is the open-loop characteristic polynomial :
$ov(s) = det [sT~ A]. ®)

The roots of (8) are the open-loop poles; they are also the eigenvalues of A. By
equating the determinant in (7) to zero, the multiple-input, multiple-output
(MIMO) generalization of the SISO characteristic equation (1+kg(s) =0) is
obtained. The presence of the determinant is the major challenge in generalizing
the SISO root locus sketching rules to MIMO systems and complicates the root
locus plot. For example, the root locus branches “move” between several copies
(Riemann sheets) in the s-plane that are connected at singularity points known as
branch points (5, 6).

Although it is not normally possible to sketch MIMO root loci by inspection,
the closed-loop system eigenvalues may be computed numerically from

i =eiglA—B(I+iD)~'kC), i=1,2,....,n, 9

where eig [Q] represents the eigenvalues of matrix Q. In the examples, the loci of
the eigenvalues are calculated from (9) as k is monotonically increased from zero. -

11. Geometric Paradigms of Fundamental Control Concepts

This section presents a series of theorems that encapsulate fundamental concepts
of classical control theory. Some of these concepts are discussed openly in the
literature (7-9), while others do not seem to be mentioned. These theorems dem-
onstrate the insight into control theory fundamentals provided by the gain plots.

We introduce two assumptions:

Assumption 1 : The systems analysed are lumped parameter LTI systems.
Assumption 2 : The forward scalar gain, k, is real and positive, i.e. ke ®#, k > 0.
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Open-Loop eigenvalue representation
Theorem [

‘lkifrg)Ri(k) = leig(A)|, i=1,...,n (10)
‘lki_r'r(llo,-(k) = L (eig(A)), i=1,...,n, (1

where R, and 6, are the magnitude gain plot and angle gain plot ordinate values,
respectively.

Proof : Tt follows from (7) that
11_[1(1] dcL(s) = P_[I}) dor(s) det [14+kG(s5)] = ¢or(5) (12)

which is the open-loop case. [ |

Root locus 180° criterion

Theorem 11
Lines in the angle gain plot must either lie on a multiple of 180° or must occur
in a set of two segments that are symmetric about a multiple of 180°.

Proof : Since {A, B, C, D} e, then (9) represents the standard eigenvalue
equation:

|il—(A=B(A+kD)~'kC)| = 0 (13)

generating a polvnomial in A with real coefficients. Therefore, any complex eigen-
value must occur in a complex pair. |

High gain behavior of infinite magnitude eigenvalues

As k increases from 0 to x, the closed-loop eigenvalues trace out “root loci” in
the complex plane. At zero gain, the eigenvalues of the closed-loop system are
the open-loop poles. At infinite gain some of these eigenvalues approach finite
transmission zeros, defined to be those values of -; that satisfy the generalized
eigenvalue problem:

sI-A —B[x(0) 0]
[ C ) D][ v :|=|:0:]v i=12,....m, (14)

where [x(0) v]” is the right generalized eigenvector corresponding to the generalized
eigenvalue, i.e. transmission zero, with x(0) representing the initial state and v
being a vector representing input direction in the multi-input case. In the absence
of pole/zero cancellation, the finite transmission zeros are the roots of the deter-
minant of G(s). Algorithms have been developed for efficient and accurate com-
putation of transmission zeros (10-12). Those eigenvalues that do not have match-
ing zeros in the finite part of the s-plane are considered to have matching zeros at
infinity ; these are the infinite eigenvalues. An interesting perspective of the high
gain SISO root locus behavior is presented in (13).
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Theorem I11
For SISO systems with # poles and m transmission zeros:
n(2i+ 1)

limf =+ , 1=0,1,..., (15)
k—x n—m

where there are n—m @ values corresponding to the n—m infinite eigenvalues. This
is the Butterworth configuration (14).

Theorem IV
For SISO systems with n poles and m transmission zeros :

kh;rgR,-ock”"'""’, i=m+1,...,n, (16)

where there are n —m magnitude values corresponding to n —m infinite eigenvalues.

Proof : An LTI SISO system may be characterized by the transfer function

m

$ b
g@=§§=? : (17
Z a,s’
j=0

where n(s) is the transfer function numerator of order m in s with coefficients, b,
(i=0,1,...,m), and d(s) is the transfer function denominator of order nin s with
coefficients, a; (=0, 1,...,n) witha, = 1. ¢c. (5) is

j=0

dcL(s) = d(s)+kn(s) = i as' +k ‘2 bs (18)
i=0

which can be written as

2 as
- R (9)
by
x=z()

From (19), as k — o, the ratio of d(s) to n(s) must also tend towards infinity at
the same rate. As kK — xc, there are two possibilities for the magnitude ratio of d(s)
to n(s), i.e.

n(s) -0 (20)
and/or
d(s) = . @n

In the literature, it is shown that both of these criteria are satisfied as k - o. For
large gain, the highest order s term for both d(s) and n(s) dominates, since |sj —
2. Thus, in the limit as & — ac, (19) may be approximated by
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s K

k= — b,,,_s”' = - T . (22)
From (22), the asymptotic behavior of the eigenvalues may be realized as
A=s= —(byk)'" ™, (23)

By taking the magnitude and angle of 4 in (23), the proof for Theorems 11 and
1V is completed. ]

Eigenvalue approach rates to transmission zeros

Theorem V
For SISO systems with m transmission zeros

lim |z~ 4] = k= i=1,...,m, (249)

where w; is the transmission zero multiplicity at z; in the complex plane.
Before the proof is presented, we make the following assumption.
Assumption 3 : There are no open-loop pole/zero cancelations. That is
p/ # zia V j! i, (25)
where p; and z; are the poles and zeros of the system, respectively.
Proof - For (20) to hold :

limi =2, i=1,....,m (26)
k—x

since the z;s are the roots of n(s).
Rewriting (19) as the ratio of products

n (S+Pj)
k=—— @7

[TG+:)
i=1
and evaluating it at
S= A2z (28)

we recognize that kK — =, as (28) and consequently (20) are realized. Furthermore,
since z, are defined as the finite transmission zeros, s—p, must be finite, and
s—z; # 0 (due to Assumption 3) if z, # z where i’ # i. In general, if there are w
multiple poles at z;:

[1G6+p) 1 TTG+p)
lim | =2 =lim | & —
m .= e | =1,..., 29
* [16G+:2) [1G6+:z) ! " 29)
i=1 S®4, im | $=4

and
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Aitp,=a;, i=L...mj=1,...,n, (30)

where 2; is a constant and

Aitzi=PB:, zi#zi=bl....om =1\1,...,m;i"#i 31
where B is a constant.
Thus
(s+p))
lim | £ = lim [———-—A—'—] i=1 m (32)
Az, - - A=z, B,- s+z; ¥ _\'a}:.’ T
[ +2) (42)"dms
i=1 s=4
where
j=1
and
B, = H B: (34)
=1
ok
242,
completing the proof. [ ]
Stability
Theorem VI
If the principal angle of the closed-loop system eigenvalues is
0° < 0 < 360° (35)
then the system is stable if
90° < 0 < 270°. (36)

Outside this range. the system is unstable.

Proof : Since the angle gain plot depicts the angle of the system eigenvalues,
eigenvalues having angles in the range given by (36) are in the right-hand plane
yielding unstable differential equations. This is the classical root locus stability
criterion. [ |

Gain margin

Theorem VII
For a given gain, k, the gain margin, GM, of the closed-loop system may be
computed from the angle gain plot as
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k, )
| dB), (37

GM = 20log

where k, is the gain corresponding to marginal stability.
Proof : In the frequency domain, GM (in dB) is defined as

_ - o k,(g(jo,))
GM = 20log |k, (g(jw,))| —20log |k(g(jw,))| = 20log ’mk(g(jw.)) ,  (38)
where
L g(jw,) = —180°. 39)
Equation (38) may be simplified as
_ ki lgUw)[) _ k,
GM = 2OIog( k| laGan) ) = 20log | (40)

This ratio is the factor by which & may be varied before instability occurs. Both
the numerator and denominator of (40) may be determined by inspection from the
angle gain plot. [ ]

Root sensitivity function

In classical control theory the root sensitivity, S, is defined as the relative change
in the system roots or eigenvalues, A, (i =1, ..., n), with respect to a system
parameter, p. Most often, the parameter analysed is the forward proportional
controller gain. k. The root sensitivity with respect to gain is given by

_ Rk _ditk) K
YT dk/k  dk Ak)

Since the eigenvalues may occur as complex conjugate pairs, S; may be complex.

Assumption 4: There are no eigenvalues at the origin of the s-plane, i.e.

A#0, Vi=l,...,n (42)

However, the theorems are valid for eigenvalues arbitrarily close to the origin
singularity. Based on these assumptions, we draw the following theorems.

@41

Theorem VIII
The real component of the sensitivity function is given by

Re (S} = M, (43)
where M, is the slope of the loci in the magnitude gain plot.

Theorem IX
The imaginary component of the sensitivity function is given by
| :
Im (S} = — M,. (44)
loge

where M, is the slope of the loci in the angle gain plot.
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FiG. 1. Root locus plot for Example 1.

Proof . Equation (41) may be rewritten (8, 15) in terms of the derivatives of
natural logarithms as

_ dIn(A(k))
7 din(k)
The natural logarithm of the complex value, 4, may be written as the sum of the
logarithm of the magnitude of 1 and the angle of 4 multiplied by j = ./ — 1. Thus,
(45) becomes
_dInjAk)| | dL Ak)._dlogldk)] . 1 dL Ak)
' = dink) Y dink) ~ dlogk) /ioge dlogth)’

(45)

(46)

The complex root sensitivity function is now expressed with distinct real and
imaginary components employing the polar form of the eigenvalues. Since k is real
and positive, d In (k) and d log (k) are purely real, obviating the need to decompose
those terms into polar form. (In general, most parameters studied are real and
this proof is sufficient. If, however, the parameter analysed is complex, it is a
straightforward task to extend the above analysis.) Equation (46) may be rewritten
as

1
Sy =Mp+ —M,. 47
loge
The proof is completed by taking the real and imaginary components of (47),
yielding (43) and (44). It is interesting to note that the Cartesian representation of
S; is related to the polar representation of 4,. ’ n
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FiG. 2. (a) Magnitude gain plot for Example 1. (b) Angle gain plot for Example 1.

HI. Examples

Example 1
To demonstrate the theorems presented above, we examine a second-order

system with a PD controller:
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Fic. 3. Distance to single finite transmission zero for Example 1.
s+3
§) = e 48
96 = G D6+ %)
The system has open-loop poles at s = —1, s = —2 and a finite transmission zero
at s = —3. Hence, n =2 and m = 1 in the notation employed earlier. The root

locus of (48) is presented in Fig. 1. It shows a break-out point at s~ —1.6, a
break-in point at s & —4.4, Butterworth asymptotes along — 180°, and reveals that
the closed-loop system is stable given Re(4,) < 0, V ik.

An alternate representation of Fig. 1 is the magnitude gain plot of Fig. 2(a) and
the angle gain plot of Fig. 2(b). Here, the explicit influence of gain on the eigenvalue
trajectories is represented. As k — 0 the magnitude gain plot and angle gain plot
reveal the influence on the magnitudes and angles, respectively, of the open-loop
eigenvalues demonstrating Theorem I. The segments in the angle gain plot are
either on the 180° line or symmetric about it, in agreement with Theorem II.
Also, the break-out and break-in points are evident at k =~ 0.17 and k ~ 5.83,
respectively. As k — oo the angle gain plot shows the Butterworth configuration
for a single infinite eigenvalue proceeding along a trajectory of 180° in accordance
with Theorem III. Theorem IV is demonstrated by the corresponding high gain
magnitude gain plot slope of unity for the infinite eigenvalue.

To observe the approach rate to the finite transmission zero, we have constructed
a modified magnitude gain plot which shows the distance of the finite eigenvalue
to the finite zero at s = — 3. The resulting figure, Fig. 3, shows that as k — oo the
distance is inversely proportional to k confirming Theorem V for w = 1. Figure 3
also shows that between the break points there is a constant distance between the
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FiG. 4. (a) Real component of sensitivity for Example 1. (b) lmaginafy component of
sensitivity for Example 1.

eigenvalue and the transmission zero, demonstrating that the eigenvalue trajectory
about the transmission zero is circular in the complex plane.

Since 8, is always in the range prescribed by (36), the closed-loop system is
stable for all gains, and hence has an infinite gain margin. A more interesting
demonstration of Theorems VI and VII follows in Example 2.
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FiG. 5. Root locus plot for Example 2.

Theorems VIII and IX are demonstrated by the sensitivity plots of Fig. 4(a,b),
respectively. (These figures were generated from (45) by plotting the real and
imaginary components of S,.) They clearly highlight the infinite sensitivities at the
break points. Furthermore, they show the sensitivity function is real for 4, #. The
crossover point at k & 2 in Fig. 4(b) corresponds to the extremum of Im{4;}. As
k — oo the finite eigenvalue becomes completely desensitized whereas the infinite
eigenvalue has a sensitivity of unity, again confirming Theorems VIII and IX.

Example 2
This example (16) considers a third-order system employing PI control :

s+1
s(s—DE+10)*°

This system is open-loop unstable. The root locus plot of Fig. 5 shows that there is
a regime for which the closed-loop system is stable. The corresponding gain plots are
shown in Fig. 6(a), (b). It is possible using Theorem VI to determine the stable
range as 132 < k < 1230. From Theorem VII the gain margin can be computed at
any design value of k. For example, at k = 300, the lower gain margin is 20
log (132/300) ~ —~7.1 dB and the upper gain margin is 20 log (1230/300) =~ 12.3
dB.

g:(s) = (49)

Example 3
Here we consider the same system as in Example 2 with a PID controlier:
(s+1)?

g3(8) = SGoDGT 1) (50)
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FIG. 6. (a) Magnitude gain plot for Example 2. (b) Angle gain plot for Example 2.

The root locus plot is presented in Fig. 7 and shows the two finite eigenvalues
approaching the double transmission zero at s = — 1. As expected from Theorem
V the approach rate to the double zeros is inversely proportional to k"2 since
w = 2. This is demonstrated by the high gain slope of —1/2 in Fig. 8 which shows
the distance to the finite transmission zeros.
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1V. Conclusion

This paper has promoted the use of gain plots that expose closed-loop eigenvalue
geometry as a function of a system parameter such as proportional gain. By
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displaying the eigenvalue magnitude vs gain in a logarithmic plot and the eigenvalue
angle vs gain in a semi-logarithmic plot, fundamental concepts of classical control
can be determined by inspection. For example, stability, gain margin, root sen-
sitivity, eigenvalue approach rates to both finite and infinite transmission zeros, as
well as other properties are available. The gain plots embellish the information
presented in the root locus, and are recommended as a supplementary tool for
control system analysis and design.
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