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Geometric Links Among Classical Controls Tools

T. R. Kurfess and M. L. Nagurka

Abstract— This paper develops a geometric perspective that
ties together a number of graphically based techniques from
classical control theory. In particular, in the frequency domain,
a connection between the Nyquist diagram and the Bode plots is
unfolded via a sequence of three-dimensional representations. A
parallel development in the “gain-domain” begins with the Evans
root locus plot and leads to a set of gain plots that portray
eigenvalue behavior as an explicit function of forward gain.
The gain plots extend the standard root locus plot by depicting
explicitly the influence of gain (or any system parameter) on the
closed-loop system eigenvalues. This is similar to the way the
Bode plots embellish the information of the Nyquist diagram
by exposing frequency explicitly. The gain plots enable direct
determination of gain values for which the closed-loop system
is stable or unstable. By exposing the correspondence of gain
values to specific eigenvalues, the plots serve as a pole-placement
tool for identifying closed-loop designs meeting performance
specifications. Furthermore, the gain plots reveal by inspection
information about the closed-loop root sensitivity. We have found
the gain plots as well as the underlying geometric development in
both the frequency and gain domains invaluable in undergradu-
ate and graduate controls education.

I. INTRODUCTION

N A SEQUENCE of landmark papers, W. R. Evans [1],

[2] presented a technique for analyzing and graphically
portraying the loci of closed-loop system poles. Since the
publication of these papers, the Evans root locus technique
has become a standard and commonly employed tool of the
control engineer. The root locus plot has several qualities that
make it a valuable classical controls tool, including the ease
with which it may be implemented and the tremendous amount
of information and insight that it provides.

For most single-input, single-output (SISO) linear time-
invariant systems, sketching the root locus as a function of gain
is a simple and well-documented task. Most undergraduate
controls textbooks [3]-[6] present the sketching rules for
constructing the root locus plot. By following these rules,
the loci of roots or system eigenvalues may be graphed in
the complex plane as a parameter is varied. Although the
rules are applicable to any real valued parameters, the most
common parameter investigated is the proportional control
gain. This paper promotes an alternate graphic representation
of the root locus plot that exposes the explicit relationship
between the pole locations and the gain (without sacrificing
any of the information presented in the standard root locus.)
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Fig. 1.  Closed-loop SISO negative feedback configuration.

The representation, based on the same variable gain analysis
employed by Evans, is summarized in a pair of gain plots
that casts the magnitude and angle of the system eigenvalues
in the complex plane as a function of gain. By utilizing an
eigenvalue polar representation, the gain plots present system
performance-related information, such as damping ratio and
natural frequency, and, as such, serve as a graphic pole-
placement tool. Additionally, sensitivity of the closed-loop
eigenvalues with respect to gain can be obtained by examining
the slopes of the gain plots.

Although gain plots are applicable to multivariable systems
[7], (8], this paper specifically addresses SISO systems as
covered in “classical controls.” For purposes of illustration, the
system represented by the open-loop transfer function, g(s),

_ (s+3)
9(s) = G+1)(s+2)

is used as a theme example problem in the following two
sections. This transfer function is embedded in a standard
closed-loop negative feedback system shown in Fig. 1.

The paper is organized as follows. A conceptual frame-
work that motivates the development of the gain plots is
presented in the next two sections. First, the development
of classical frequency-domain techniques is unfolded via a
sequence of three-dimensional representations; then, in parallel
fashion, a progression of gain-domain methods is identified.
A subsequent section describes properties and advantages of
gain plots that make them a rich design tool. A nontrivial
SISO example, demonstrating the utility of the gain plots for
stability, performance, and root sensitivity analyses, is then
solved. Finally, a high-level perspective that integrates the gain
plots with three key classical control tools is suggested.

(1

II. FREQUENCY-DOMAIN CONCEPTUALIZATION

This section promotes a unifying framework for viewing
classical control frequency-domain tools, such as the Nyquist
diagram and Bode plots. The premise is that the Bode plots
present the information of the Nyquist diagram in an enhanced
perspective by exposing frequency explicitly. Furthermore,
the Bode plots are the result of a natural progression of
perspectives of the classical Nyquist diagram. Although this
progression does not necessarily reflect the chronological
unfolding of events, it serves as a useful paradigm that
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Fig. 3. The Nyquist diagram of (1).

logically bridges the fundamental frequency-domain tools of
classical controls. This transition from the Nyquist diagram to
two different three-dimensional representations, including one
that reveals the classical Bode plots via orthogonal views, is
summarized in Fig. 2.

Later in this paper, it is shown that this development of
the Bode plots from the Nyquist diagram is paralleled by the
development of the gain plots from the Evans root locus plot.
As such, fundamental geometric relationships appear to exist
among the Nyquist diagram, the Bode plots, the Evans root
locus, and the gain plots.

2.1 The Nyquist Diagram

The Nyquist diagram [9] is a polar plot of a sinusoidal
transfer function, g(jw), graphed over the range 0 < w < oc.
(The lower limit of the range can alternatively be chosen as
—o0, with the resulting curve being symmetric about the real
axis.) Although the Nyquist diagram is a polar representation,
it is graphed in a complex Cartesian plane where the implicit
variable is w. Fig. 3 is the Nyquist diagram of (1). The Nyquist
curve starts at w = 0 corresponding to a dc gain of 1.5 and
phase angle of 0°, and asymptotically approaches the origin
(zero magnitude) from —90°.

It is possible to show the frequency graduation on the locus
(with tick marks denoting equal values of w) or to present
superimposed constant frequency contours [5]. However, even
if these are added, it is not convenient to identify the frequency
associated with a given point on the Nyquist diagram.

2.2 Three-Dimensional Nyquist Diagram

The Nyquist diagram can be conceptualized as a two-
dimensional “collapsed” perspective of a three-dimensional
curve, as shown in Fig. 4 for the transfer function of (1).
In this representation, two of the axes remain the same as in
the Nyquist diagram, i.e., real and imaginary components, and
a third axis is added to denote the frequency, w. Note that
as w — oo, the curve approaches the origin of the complex
plane. Although the three-dimensional curve is one means to
incorporate frequency information into the Nyquist diagram, it
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Fig. 4. Three-dimensional Nyquist diagram of (1).
yq g
e ///4 ‘\\\
- ~/>/
/
|
® /
Maglgla)) Anglelg(a)
Fig. 5. Three-dimensional Bode plot of (1).

does not present the controls engineer with an intuitive feel for
system behavior, partly because of the difficulty in following
the contour and in extracting coordinate information.

2.3 Three-Dimensional Bode Plot

An alternative three-dimensional representation can be con-
ceptualized that maps the real and complex components of
g(s) to magnitude and angle components. Here, the complex
transfer function, g(s), is written as

9(s) = Relg(s)] + iImg(s)] = |g(s)|e’49®) (2

where the transfer function angle and magnitude are given,
respectively, as

Lg(s) = tan_l(Im[g(s)], Re[g(s)]) 3)
lg(s)] = v {Relg(s)1}2 + {Im[g(s)]}? @

where Zg(s) in (3) is given by the two argument inverse
tangent function.

Equations (3) and (4) can be used to transform Fig. 4 into
Fig. 5, showing the effect of frequency on the magnitude
and angle of the open-loop system given by (1). Fig. 5 is
a three-dimensional extension of well-known frequency plots,
the Bode plots.

2.4 The Bode Plots

The Bode plots [10] consist of two planar plots, one being
the Bode magnitude plot showing magnitude vs. frequency,
and the second being the Bode angle (or phase) plot reporting
angle versus frequency. Fig. 6 shows the Bode magnitude and
angle plots for the open-loop system given by (1).

The Bode plots represent two orthogonal views of the three-
dimensional Bode plot of Fig. 5, i.e., the Bode magnitude
plot is seen by observing Fig. 5 from a direction orthogonal
to the w-magnitude plane and the Bode angle plot is seen
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Fig. 7. Progression of gain-domain tools.

by viewing Fig. 5 from a direction orthogonal to the w-
angle plane. (In fact, Figs. 5 and 6 were generated using the
identical data set.) Although the same information is presented
in Figs. 5 and 6, the traditional Bode plots are significantly
simpler to understand. Also, by viewing Fig. 5 from a direction
orthogonal to the magnitude-angle plane the Nichols plot may
be seen. Additional insightful geometric perspectives, such
as those offered by generalized Bode diagrams, have been
proposed in the literature [11], [12].

III. GAIN-DOMAIN CONCEPTUALIZATION

In an analogous fashion to the frequency-domain
progression, the development of the gain plots follows
a gain-domain evolution beginning with the Evans root
locus plot. The traditional two-dimensional root locus
plot is then complemented by a third axis representing
gain. The resulting three-dimensional plot is conformally
mapped into a new space, from which the gain plots can
be viewed via two orthogonal perspectives. A summary of
this development is traced in Fig. 7.

3.1 The Evans Root Locus

The root locus plot [1], [2] drawn in the complex plane
shows the location of the characteristic roots, i.e. the eigenval-
ues, in terms of some (real valued) system parameter, such as
the proportional gain. It is based on the closed-loop transfer
function of Fig. 1 given by

kg(s)

1+ kg(s) )

goL(s) =

Rels]

Fig. 8. Evans root locus plot of (1).

Fig. 9. Three-dimensional root locus plot of (1).

where k is a proportional gain. The stability of the closed-loop
system is determined by the eigenvalues, i.e., the denominator
roots of (5). The root locus is the solution set of

kg(s)=-1 (6)

as the gain k varies in the range 0 < k& < oo. Equation (6) is

equivalent to two conditions: the angle criterion
Lkg(s) = £180°(2m +1), m =0,1,2,... )

and the magnitude criterion

lkg(s)| =1 ®
The shape of the root locus plot is determined entirely by
the angle criterion. Then, for any eigenvalue s on the root
locus, the magnitude criterion is invoked to solve for the
corresponding value of k. (This process is referred to as scaling
the locus.) Fig. 8 is the root locus plot of (1) for the given
range of k. Each branch of the root locus starts at & = 0
corresponding to a system open-loop pole, and asymptotically
approaches either a finite or infinite transmission zero. It is
possible to show the gain graduation on the locus (with tick

marks denoting equal values of k) or to present superimposed
constant gain contours.

3.2 Three-Dimensional Root Locus

In similar fashion to the way the Nyquist diagram was
extended by adding a third frequency axis, the Evans root
locus plot can be presented in three-dimensional space with
the real and imaginary s-plane axes and a third gain axis. Fig.
9 presents such a three-dimensional root locus for the closed-
loop system of Fig. 1 with open-loop transfer function of (1).
The Evans root locus is the projection of this three-dimensional
locus onto the real-imaginary plane.

The idea of adding a third dimension for gain is suggested
in the literature [11]-[13]. It is useful for depicting a break-
point as a saddle point. For example, two saddle points
may be seen in Fig. 9. However, as before, the portrayal of
three-dimensional information does not provide the controls
engineer with an intuitive feel for system behavior.
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Fig. 10.  Three-dimensional gain plot of (1).

3.3 Three-Dimensional Gain Plots

The three-dimensional representation described above can
be viewed alternatively by mapping the real and complex
components to magnitude and angle components. Here, the
complex value, s, is expressed as

$ =0+ jw = Rel® )}

where the angle, §, and magnitude, R, are
6 = tan"!(w,0) (10)
R=+Vo0?+w? an

In (10) @ is given by the two argument inverse tangent
function.

Equations (10) and (11) can be used to transform Fig. 9 into
Fig. 10 showing the effect of gain on the magnitude and angle
of the closed-loop system. Although difficult to visualize, this
three-dimensional curve is related to the root-locus diagram.

3.4 The Gain Plots

Just as two-dimensional Bode plots simplify the three-
dimensional Bode plot, two-dimensional gain plots may be
employed to simplify the three-dimensional gain plot. Fig. 11
is such a representation, showing the magnitude and angle
gain plots for the closed-loop system. The magnitude gain
plot is seen by viewing Fig. 10 from a direction orthogonal
to the k-magnitude plane and the angle gain plot is seen by
observing Fig. 10 from a direction orthogonal to the k-angle
plane. Although the same information is presented in Figs. 10
and 11, the gain plots are easier to understand and use.

The angle gain plot reflects the basic construction rule of
the root locus, i.e., the angle criterion of (7). As a result, the
angle gain plot is symmetric about the 180°(= —180°) line.
Furthermore, the angle criterion dictates that the eigenvalues
must lie on the real axis or be complex conjugates. Thus, a
pair of complex conjugate eigenvalues is shown as a single
curve in the magnitude gain plot with corresponding angles
symmetrically configured about the 180° line in the angle
gain plot. As k varies, the complex conjugate eigenvalues
may become distinct real eigenvalues, causing their angles
to become equal (at a multiple of 180°) and permitting their
magnitudes to differ.

The magnitude gain plot shows the presence of two open-
loop poles with magnitudes 1 and 2 as & — 0. It also shows a
single finite transmission zero with magnitude 3 and an infinite
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Fig. 11. Magnitude and angle gain plots of (1).

transmission zero as k — co. At low gain, the angle gain plot
indicates that the two open-loop poles are located in the left-
half plane since they have angles of 180°. Furthermore, the
angle gain plot shows that there are two asymptotes of 180°
(corresponding to the finite and infinite transmission zeros) as
k — oo

The gain plots highlight the break points corresponding to
points where branches leave or enter the real axis of the root
locus. For example, these break points occur at k ~ 0.17 and
at k =~ 5.83. Between these break points the angle gain plot
indicates that the loci of the two branch points are not on the
real axis and the corresponding single curve of the magnitude
gain plot confirms that the trajectories are those of a complex
conjugate pair.

IV. PROPERTIES OF GAIN PLOTS

The gain plots highlight several important stability and
performance features of the closed-loop system. Stability may
be determined from the angle gain plot by noting if the angle
of an eigenvalue meets the following criterion:

180°(2m + 1) — 90° < |8} < 180°(2m. + 1) + 90°,

m=0,£1,%£2,... (12)

corresponding to a location in the second and third quadrants
of the complex plane. For the case m = 0, (12) simplifies to

90° < 6 < 270°. (13)

This range is shown in the shaded region in Fig. 12(b). Since
the angle gain plot of Fig. 11(b) satisfies (13), the closed- loop
system is stable for the gain range depicted (1072 < k < 10?)
and, more generally, for all positive gains.

Performance measures are presented directly by the gain
plots. In particular, for complex conjugate eigenvalues the nat-
ural frequency, w,,, is the magnitude shown in the magnitude

gain plot, and the damping ratio, ¢, is
(= —cos b 14)

where 6 is the angle from the angle gain plot. As shown
in Figs. 11 and 12, supplementary axes can be added to the
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Fig. 12. Parameters in the gain plots (assuming complex conjugate poles).

gain plots displaying w, and (. If the eigenvalues are on the
real axis, the magnitude gain plot presents the system time
constants.

Although the conventional root locus plot provides such
performance information, there are several advantages of the
gain plots. First, the influence of independent variable gain on
ordinate (dependent) variables is exposed explicitly. Second,
the performance measures of time constant or w, and (
are represented directly. Thus, given a design specification
for time constant or w, and (, the corresponding values of
k may be determined by inspection, making the gain plots
a graphic pole-placement tool that links performance and
gain.

The gain plots are also well suited for determining eigen-
value sensitivity to changes in gain. The slopes of the gain
plots represent the change in magnitude and angle of each
eigenvalue per change in gain. This information is useful in
the design of robust control systems that are less sensitive to
gain variations. An in-depth treatment of sensitivity and its
relation to gain plots is covered in [14].

The classical concepts of gain and phase margins are clearly
depicted in the gain plots. The gain margin is the factor of
gain that can be varied before the closed-loop system becomes
unstable. This margin can be determined from the angle gain
plot by identifying the increase/decrease in gain needed to
reach the stability boundary. In principle, a system with a
larger gain margin should be relatively more stable than one
with a smaller gain margin. The phase margin is the largest
angular interval corresponding to a constant magnitude gain
for which the closed-loop system is stable. It can be determined
from a modified angle gain plot where the gain is treated as
complex [15].

In addition to the above advantages, the gain plots provide
a unified approach for SISO and multi-input, multi-output
(MIMO) systems where compensation dynamics are governed
by a single scalar gain amplifying all plant inputs. The
advantage of the gain plots to uniquely identify locus branches
as a function of gain is of paramount importance in MIMO
systems analysis, where this information is typically hidden in
presenting multivariable root loci [7], [8].

Im{s)
5
3 Ak=35,7
k=233
x=70. l‘; :k=3.07
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4 3 2 / 12
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3 \
5
Fig. 13. Root locus plot of (15).

V. ILLUSTRATIVE EXAMPLE

This section presents a more complicated SISO example
given by the open-loop transfer function

_ (s+1)
9(s) = s(s —1)(s2 +4s +16)

(Equation (15) is studied in example A-5-3 in [5].) Fig. 13 is
the root locus plot for this system embedded in the negative
feedback system of Fig. 1. The root locus begins at the open-
loop poles located at s = {0,+1, -2+ 2\/§j}. The open-loop
complex conjugate pole pair migrates to the real axis with
increasing gain. One of these poles then proceeds to the finite
transmission zero at s = —1; the other pole moves to an
infinite transmission zero along an asymptote of 180°. The
two real open-loop poles migrate to s = 0.46, and then break
out from the real axis. As a complex conjugate pole pair, they
move to the left of the imaginary axis. Subsequently, they
migrate back to the right of the imaginary axis and continue
toward infinite transmission zeros along asymptotes of +60°.
For a small range of %, the root locus is located completely
within the left half of the complex plane, corresponding to a
stable closed-loop system. This range may be found from the
magnitude criterion to be

23.3 < k < 35.7.

(15)

(16)

Figs. 14(a) and (b) are the gain plots for the system given
by (15). Information about the open-loop eigenvalues can be
obtained by observing events as £ — 0 and shows: (1) There
is an unstable set of open-loop poles at an angle of 0° having
magnitudes of 0 and 1; and (2) there is a complex conjugate
open-loop pole pair having magnitude 4 at angles of 120°
and 240°. By inspection, these complex conjugate poles have
a natural frequency of 4 rad/s and a damping ratio of 0.5;
this information is “academic,” since the open-loop system is
unstable.

The angle gain plot shows that the system is stable only for
a specific range of &, matching that given in (16). Fig. 15 is an
enlargement of a section of the angle gain plot, highlighting
one of the complex conjugate poles near the stable region of
the closed-loop system, from which the gains may be read
directly. The stability boundaries are denoted by dashed lines
in accordance with the criterion presented in (12).



82

102

108 £ B
g :
w100 & 3
L3 E =
2 E 2
S r ]
:,ﬂ F H |
= 101k 5
102 3
103 : :
10-! 100 10t 102 103
k
(a)
Eigenvalue Angle vs Gain
250 T T
200
1501
g" 00F
°
=)
g 501
=50}
-100
101
k
(b)
Fig. 14. (a) Magnitude gain plot of (15); (b) Angle gain plots of (15).

Angle s (deg)
8 2 2 8 8 &8 & & &8 &

Fig. 15. Expanded angle gain plot of (15).

The high gain asymptotes of the root locus are found by
examining the gain plots for large values of k. The finite
zero at s = —1 is identified by the single pole asymptotically
approaching unity magnitude at an angle of 180°. The remain-
ing three eigenvalues asymptotically approach infinite zeros at
angles +60° and 180°. For gains higher than those reported
in Figs. 14(a) and (b), these asymptotes are increasingly
prominent.

Further inspection of the gain plots provides information
about the closed-loop system sensitivity to changes in gain. In
the example, the system is highly sensitive to gain variations
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Fig. 16. Quadrant representation of graphic control tools.

near k ~ 3.1, where the angle of the unstable pole pair changes
abruptly. As kK — oo: (1) The angles in the angle gain plot
asymptotically approach the Butterworth configuration; and (2)
the magnitudes of the eigenvalues are related to the gain via
a power law relationship depicted as a straight line on the
magnitude gain plot [16].

VI. CONCLUSION

The gain plots proposed in this paper are a set of illu-
minating plots that expand and enhance the design tool set
of the controls engineer. By presenting eigenvalue magnitude
and angle in separate graphs, the gain plots supplement the
information contained in the Evans root locus, in analogy to the
role the Bode plots play with respect to the Nyquist diagram.
As such, the gain plots add an explicit third “dimension” (gain)
to the Evans root locus plot, whereas the Bode plots add an
explicit third “dimension” (frequency) to the Nyquist diagram.
In the gain plots, the common axis linking magnitude and
argument is gain; in the Bode plots, the common axis bridging
magnitude and argument is frequency.

Fig. 16 highlights the correspondence of four graphic con-
trols tools. The first row portrays the Nyquist diagram and the
Evans root locus spanning a two-dimensional complex plane.
The second row shows the Bode plots and gain plots span-
ning a three-dimensional (real) space. The columns show the
variable that is used to increase the dimension, i.e. frequency
for Bode plots, gain for gain plots. The columns correspond to
the earlier progression figures (Figs. 2 and 7) where the three-
dimensional representations have been removed. The four tools
identified in Fig. 16 are tightly connected and are all valuable
for stability and performance evaluation.

The gain plots enhance the root locus by explicitly portray-
ing the relationship between the gain and the location of each
eigenvalue whose trajectories are mapped by the root locus.
The enhancement enables the control designer to identify, by
observation, an eigenvalue location with a specific gain, and
hence directly view the influence of gain on stability as well
as on system performance. Furthermore, the gain plots provide
a direct measure of root sensitivity. The change in eigenvalue
magnitude and angle per change in gain is indicated by the
slope of the gain plots. This measure of sensitivity highlights
the “cost” of selecting eigenvalue locations corresponding to
specific gain values, and provides the designer with a graphic
means to assess control system robustness.

Many similarities and differences exist between the root
locus and the gain plots. For example, both the root locus plot
and the gain plots can be drawn for systems with transportation
lags or dead time. Unlike the root locus plot, the gain plots
explicitly highlight open-loop poles near or at transmission
zeros. These poles are depicted as horizontal lines indicat-
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ing constant magnitude and angle for all gains. In the root
locus plot pole-zero cancellations are normally camouflaged.
Explicit sketching rules exist for the root locus plot. Although
only an incomplete set of sketching rules has been found for
the gain plots, their utility may be limited given the wide
availability of computer graphics.

Further work is necessary to develop intuitive geometric
relationships between the Bode plots that present open-loop
information and the gain plots that present closed-loop in-
formation (for & # 0). The Nichols chart may provide the
appropriate connection. It presents the relationship between
the frequency response of the open-loop system and that of the
closed-loop system. In so doing, it displays four dimensions of
information (i.e., open and closed-loop gain and magnitude)
in a two-dimensional format where w is the implicit variable.
The Nichols chart is challenging to generate and comprehend;
however, it does provide a bridge between open-loop and
closed-loop systems in the frequency domain. Other controls
tools, such as the generalized Bode diagrams [11}], [12], can
be used to geometrically link the open-loop and closed-loop
regimes as well as the frequency and gain domains.

We have introduced the concept of gain plots in undergradu-
ate and graduate controls courses and in a faculty enhancement
workshop. The concept and its development have met with
tremendous success. Proof of student excitement is evident in
their endorsement of gain plots for a variety of control system
analysis and design problems. Common student feedback is
that “the gain plots give you a feeling of what’s going on.” As
educators, we value the gain plots as offering an alternative and
complementary representation of the classical graphic tools.
For control system design, we see the gain plots being valuable
for SISO and MIMO systems where the influence of any scalar
parameter can be explored.

In closing, controls engineers have historically embraced
powerful graphic design methods with striking success. These
methods supply significant insight, permitting rapid system
analysis and synthesis. This paper promotes the gain plots as
a graphic control systems design tool. It motivates these plots
via a global perspective that ties together important classical
control tools. The gain plots provide a broad spectrum of
information about the closed-loop control system, including
stability, performance, and robustness attributes.
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