Lund, L., *Nagurka, M.L., and Kurfess, T.R., "Parameter Variation for Dynamic

System Performance,” IFAC International Workshop on Automatic Control for
Quality and Productivity, Istanbul, Turkey, June 3-5, 1992, pp. 400-407.




400

Parameter Variation for Dynamic System Performance

Laura Lund, Mark L. Nagurka, and Thomas R. Kurfess
Carnegie Mellon University, Pittsburgh, PA 15213

Key Words: Root Sensitivity, Parameter Variation, Root Locus, Linear Control

Abstract: The paper promotes the use of special eigenvalue plots for providing a geometric

_ perspective in control analysis and design. It is shown that the proposed eigenvalue plots are

related to the classic root sensitivity function, a normalized measure of parameter variation
effects on the closed-loop eigenvalues. Followin g the analytical development, an example
demonstrating a position-actuated gantry robot with link compliance is analyzed. The effects of
System parameters on the closed-loop performance are investigated using the proposed
eigenvalue plots and resulting sensitivity plots.

INTRODUCTION

This paper adopts a global closed-loop dynamic perspective and suggests a set of tools
for linear control system analysis and design. The tools provide the designer with insight into
the explicit functional dependence of the closed-loop system eigenvalues on various system
parameters. The associated plots, called the eigenvalue plots, are an alternate graphical
representation of the Evans root locus plot. They explicitly portray the closed-loop eigenvalue
magnitude vs. a systemn parameter in an eigenvalue magnitude plot and the eigenvalue angle vs.
parameter in an eigenvalue angle plot. These two plots permit the designer to visualize the
effects of parameter variation on the system performance through eigenvalue relationships.

In classical control theory the root sensitivity, Sp, is defined as the relative change in

the system roots or eigenvalues, &; (i = 1,..., n), with respect to a system parameter, p. The
typical parameter analyzed is the forward proportional controller gain, k, in a closed-loop
configuration. The root sensitivity with respect to gain is given by :

_dAk)/A(k) _dAk) x
i 1yt e MK) (1)

Since the eigenvalues may occur as complex conjugate pairs, S; may be complex.

Equation (1) is often introduced in determining the break points of the Evans root locus
plot for single-input single-output systems. At the break points, Sk becomes infinite as at least
two of the n system eigenvalues undergo a transition from the real domain to the complex
domain or vice versa. This transition causes an abrupt change in the relation between the

eigenvalue angle £A and gain k yielding an infinite eigenvalue derivative with respect to gain
(Ogata, 1990).

‘ The root sensitivity function Sy is a measure of the effect of parameter variations on the
eigenvalues. It is important since one of the key objectives of feedback control theory is to
reduce system sensitivity to variations in parameters. For example, the control system of a
robot should be relatively insensitive to the payload carried by the arm for the recommended
payload range. If the robot's performance is sensitive to payload variations, then the control
system is not robust and performance is difficult to guarantee. In this case, Sm, where m is the
payload mass, should be relatively small over the operational range of m. Such considerations
are critical if control designers are to develop high performance, robust, closed-loop systems.

This paper presents a geometric technique for finding the root sensitivity which is built
upon the set of "gain plots" described above (Kurfess and Nagurka, 1991a). An example is
presented demonstrating the insight provided via this geometric perspective on the sensitivity
function, and its utility in system design and analysis.
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ROOT SENSITIVITY ANALYSIS

This section derives the root sensitivity function by employing a polar representation of
the eigenvalues in the complex plane, The derivation is based on the following three
assumptions: (i) the systems analyzed are lumped parameter, linear time—invariant systems; (i)
there are no eigenvalues at the origin of the s-plane, i.e.,

A#0, Vi=1,.,n Q)

(although the eigenvalues may be arbitrarily close to the origin singularity); and (i) the

forward scalar gain, k, is real and positive, i.e., ke &, k>0. From these assumptions, the
following observations are made: the real component of the sensitivity function is given by -

_dmfagk)
and the imaginary component of the sensitivity function is given by
' _dZA(k)
Im{Sg)= (0 )

where ZA is the eigenvalue angle.

These observations may be proven by rewriting equation (1) in terms of the derivatives
of natural logarithms (Horowitz, 1963; Kuo, 1991) as

5, - dinfr () | )
din{k) '
The natural logarithm of the complex value, A, is equal to the sum of the logarithm of the
magnitude of A and the angle of A multiplied by j= Y-1. Thus, equation (5) becomes

5 - dlmA (k) +j £A(K) )
LT din(k)
Since j is a constant, equation {6) may be rewritten as
5, = dinf(k) | dLAK) o

= din(k) din(k)

The complex root sensitivity function is now expressed with distinct real and imaginary
components employing the polar form of the eigenvalues. It follows from assumption (ii) that
In(k) is real. (In general, most parameters studied are real and this proof is sufficient. If,
hogcver, the parameter analyzed is complex, it is a straightforward task to extend the above
analysis.) '

The proof is completed by taking the real and imaginary components of equation (7),
yielding equations (3) and (4). Itis interesting to note that the Cartesian representation of Sg is

- related to the polar representation of A;.

GEOMETRIC RELATIONS TO GAIN PLOTS

The gain plots (Kurfess and Nagurka, 1991a) explicitly depict the eigenvalue
magnitude vs. gain in a magnitude gain plot and the cigenvalue angle vs. gain in an angle gain
plot. The magnitude gain plot employs a log-log scale whereas the angle gain plot uses
semi-log scale (with the logarithms being base 10.) Although gain is used as the variable of
interest in the derivation, any parameter may be selected. This capability is pursued in the
example which demonstrates the ease with which design parameter explorations can be
conducted.
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By observation, the slope of the magnitude gain plot is the real component of §;. The
magnitude gain plot slope, M, is

_ dloglhwy) o
g W) | ®

which may be rewritten as

s, g nflageY)) _ dna)) | ©
™" d[log(e) In(k)] dln (k)

corresponding to equation (3).
Furthermore, the slope of the angle gain plot is linearly related to the imaginary
component of §; by the constant, {(loge))-1. The angle gain plot slope, M,, is
d ZA(k)
Mo Tog 1) a0
which may be rewritten as

__derk) 4 dZAK) an
" d[logle) In()] ~ log(e) din (k)

Hence, M, is proportionally related to equation (4) with constant (log(e))-! (Kurfess and
Nagurka, 1991b). ' ‘

EXAMPLE

This section highlights the utility of the eigenvalue plots and the associated sensitivity
analyses for system design by exposing the influence of a parameter on the closed-loop
dynamics. The example demonstrates the determination of the root sensitivity function with
TESpect to a system parameter. In so doing, the method extends the "gain plots" and the root
locus to system variables other than the control gain, enabling the contro! designer to conduct
parametric sensitivity studies when synthesizing and analyzing dynamic systems.

This example considers the translational dynamics of an industrial gantry-robot carrying
a payload m via a single cantilevered link of length L, base width w, and thickness (height) t.
The plant and nominal system parameters are shown in Figure 1.
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_Eig. 1. Lumped Parameter Model of Gantry Robot.
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The transfer function relating the input gantry displacement, Xjp, to the payload

displacement, x, is ’
X(s) __ 2805+ o}

XinlS) 52 + 2Lwys + @2

where the natural frequency, @y, and damping ratio, {, are
| - b
wm=yE == (13a,b)

in terms of payload mass, m, lumped damping, b, and lumped stiffness, K. From linear
elastic beam theory, the stiffness can be expressed as

=3ElL
K 13 (14)
where E is the Young's modulus of elasticity, L is the length of the beam, and 1 is the area
moment of inerta. (For the link of rectangular cross section, I = wt3/12.) The model assumes
that all modes above the first mode are well beyond the bandwidth of the controller and are,
thus, negligible. The plant is embedded in a unity gain feedback configuration with (forward)
proportional control k yielding a closed-loop transfer function '

X(s) _ k(2 ys + 02)
Xa(s) 241 + k)2Leps + (1 + k)ad

where X is the desired or reference command payload displacement. In typical control design,
the proportional gain k is varied to investigate its influence on the closed-loop eigenvalues of a
fixed system,

(12)

gals)= (15)
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_Fig. 2. Root Locus Plot for Example.
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The intent of this example is to analyze the influence of geometry on the closed-loop
system. In particular, the forward gain is fixed at k = 20, and all dimensions except for the
thickness are held at their nominal values (as indicated in Figure 1). The resulting root locus
plot where t is the implicit variable is shown in Figure 2. At small values of thickness, the
locations of the complex conjugate eigenvalues indicate that the closed-loop system is highly
oscillatory, At larger thicknesses, the system becomes less oscillatory, and the eigenvalues
migrate toward the real axis. At a certain thickness, the eigenvalues break-in to the real axis.
As the thickness increases further, the eigenvalues migrate along the real axis; one moves
toward negative infinity, while the other approaches the finite transmission zero at the origin.

_ An alternate perspective is offered in the eigenvalue magnitude vs. thickness plot of
~ Figure 3a, and the eigenvalue angle vs. thickness plot of Figure 3b. Figures 3a,b show that
the thickness corresponding to the break-in point is tcriy=8.6 mm., Thicknesses below this
value correspond to oscillatory closed-loop behavior; thicknesses above this value correspond
to exponentially decaying behavior, The horizontal line of Figure 3a, indicating constant
magnitude, demonstrates that thicknesses less than ter; give rise to complex conjugate
eigenvalues that follow a circular trajectory about the origin. This is observed in Figure 2. At
large thicknesses, the eigenvalue magnitudes behave in an asymptotic manner.

Figures 4a,b are the real and imaginary components, respectively, of the sensitivity
function. These plots were obtained from the slopes of Figures 3a,b. The most prevalent
feature of these plots is the high sensitivity at try;. (Theoretically, the sensitivity is infinite at
terit from equation (7). In the plots, finite values are indicated due to the discrete nature of the
computation.) At the break-point the high sensitivity is indirectly available by noting the large
spacing of the eigenvalues in Figure 2 (where each dot represents a logarithmically equally-
spaced thickness increment). The sensitivity plots demonstrate this information in a direct
fashion and directly indicate the value of ter;.

The zero real sensitivity below o in Figure 4a indicates that the natural frequency
(which is the magnitude of the eigenvalues) is not changing as a function of thickness. Well
above teris the high speed time constant (purely real cigenvalue) has a large constant real
sensitivity of 1.5, Similarly, the slower eigenvaiue has a constant real sensitivity of ~1.5 at

large thicknesses. This negative sensitivity is a result of A; — 0 ast — eo. Beams with
thicknesses larger than 1 cm possess eigenvalues with highly sensitive real components.
Figure 4b shows a reverse trend for the imaginary component of the semsitivity function.
Above tcrit the imaginary sensitivity is zero, indicating that damping is not a function of
thickness. At values of thickness well below ters, the imaginary sensitivity is also zero. For
thicknesses above 1 mm and below tery, the imaginary sensitivity increases substantially and
indicates high damping variations with respect to thickness.

CLOSING

The concept of root sensitivity in classical controls is often inroduced to emphasize the

high "sensitivity” of eigenvalues with respect to a system parameter such as gain near the
—points. Normally, the root sensitivity function is not discussed as a complex quantity in
control system analysis and design. Here, we have derived and demonstrated a powerful
means to visualize the root sensitivity function via the eigenvalue plots. The slopes of the
eigenvalue plots provide a direct measure of the real and imaginary components of the root
sensitivity, and are available by inspection. The use of the eigenvalue plots in conjunction with
other traditional graphical techniques offers the designer important information for selection of

.

appropriate system parameters.
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