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ABSTRACT

This paper introduces a graphically-based tool for the analysis
and design of linear, dynamic, digital control systems that is an
alternate representation of the digital root locus. The technique
exposes the explicit influence of system parameters, such as the
forward proportional control gain, on system response
characteristics, including natural frequency and damping ratio.
In particular, digital gain plots are proposed to elucidate the
connection between the control gain and stability/response
parameters. These plots provide useful design insight, as
demonstrated in two examples.

INTRODUCTION

For continuous, linear, time-invariant, dynamic systems, the
root locus method (Evans, 1948) has rightfully earned its place as
a mainstay tool for control system analysis and design. An
alternate representation of the root locus, called gain plots
(Kurfess and Nagurka, 1991), has been proposed for the
selection of control gain (or any system parameter) in continuous
systems. The premise of the gain plot concept is that eigenvalue-
based information, such as natural frequency and damping ratio,
is more naturally presented as an explicit dependent function of a
system parameter. The availability of the explicit connection
between system response characteristics and system parameters
enables designers to make selections that meet specifications and
uncover design tradeofs.

The root locus concept is extendible to digital control systems
(Franklin, et al, 1990; Houpis and Lamont, 1992; Kuo, 1980;
Palm, 1983). Although the mechanics of drawing the root locus
are exactly the same in the z-plane as in the s-plane, the pole
locations have different meanings, and interpretation for system
stability and dynamic response for digital systems is difficult.
This paper describes an alternate representation of the digital
root locus that lends itselt to an easier understanding of stability

and dynamic response. The proposed digital gain plots are
similar to the continuous time gain plots, and are useful as a
design tool in that they highlight the direct mapping between a
parameter, such as control gain, and the digital system response.
As noted, while root locus plots for continuous and digital
systems are plotted in the same manner, the interpretation of
closed-loop pole locations is different. In order to clarify these
differences, this paper first reviews the relationship between (i)
response parameters and (i) continuous and digital root loci.

MAPPING OF ROOT LOCUS FROM CONTINUOUS TO
DISCRETE TIME

The Z-transform variable, z, can be expressed in terms of the
Laplace variable, s, as z=exp(—sT) where T is the digital
sampling time. By substituting the definition of the Z-transform
in terms of the Laplace transform into expressions for roat
locations in the s-plane, root locations associated with particular
response characteristics can be mapped from the s-plane to the z-
plane. The mapping of system response parameters from the s to
the z planes is shown graphically in Figure 1. Key quantities
associated with stability and dynamic response are described
below. The important results are derived in the Appendix.

Jime constant

In the s-plane, the real part of the root is the negative
reciprocal of the response envelope time constant. In the z-plane,
the magnitude of the root is the exponential of the sampling time
multiplied by the negative reciprocal of the time constant.

In the s-plane, the damping ratio is equal to the cosine of the
angle of the root taken from the negative real axis. In the z-
plane. the relation is more complicated. By substituting

=exp(—sT) into the expression for damping ratio in the s-plane,
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Figure 1. Graphical representation of the mapping from the s-plane to the z-plane




an equation for the damping ratio in the z-plane can be obtained.
The resulting relation equates the magnitude of the root to a
function of the angle of the root and the damping ratio as follows:

le)=exp(-4.22/{1-CT°) M

When the angle of the root is increased while the damping
ratio is held constant, the magnitude decreases exponentially
with the angle. By considering different damping ratios, a set of
constant damping ratio lines can be found in the form of
concentric logarithmic spirals. ~ The positive real axis
corresponds to a unity damping ratio.

In the s-plane, the undamped natural frequency is equal to the
magnitude of the root. The corresponding relation in the z-plane,
not commonly presented in textbooks, can be obtained by
equating the angle of the root from the positive real axis to a
function of the magnitude of the root, the sampling time, and the
undamped natural frequency, as follows:

£z= [IT* - (in(z])* 2)

When plotted, the lines of constant natural frequency are
orthogonal to the lines of constant damping ratio.

Several of these quantities are difficult to determine by
inspection from the digital root locus since the relations between
root location and the response parameters are complicated. For
example, although for a particular root the stability, time
constant, and damped natural frequency are readily available
from the digital root locus, it is difficult to determine the
damping ratio and undamped natural frequency without drawing
an additional set of graduated lines. In addition, the lines of
constant natural frequency and damping ratio are very close
together near the origin and the circumference of the unit circle,
and are difficult to discern. Many textbooks (Franklin, et al,
1990; Kuo, 1980; Palm, 1983) contain design examples in which
a gain must be selected to obtain a desired response. The
response requirements are mapped onto the root locus, and the
appropriate areas are masked off, leaving an available design
"segment." The magnitude criterion is then used to determine
the range of gains for a viable design. This procedure gives
limited intuitive feel for the design and often camouflages design
tradeoffs.

GAIN PLOTS

As noted, gain plots have been proposed as an alternative
representation of the root locus plot for continuous time systems.
Gain plots depict eigenvalue locations in terms of polar
coordinates (magnitude and angle) as explicit functions of a
parameter, such as forward loop gain. In doing so, the plots
directly map the gains corresponding to particular system
response characteristics. In particular, since the magnitude of a

complex conjugate eigenvalue in the complex plane is directly
related to the natural frequency and the angle is directly related
to the damping ratio, reporting these quantities enables the direct
identification of the gains required to obtain particular
performance specifications. Other information is available from
these plots, including root semsitivity (Kurfess and Nagurka,
1992), robustness measures (Nagurka and Kurfess, 1992), and
design tradeofs.

It is possible to generate similar plots for discrete time
systems. By plotting the magnitude of the roots of the closed-
loop transfer function in the z-plane vs. gain, the stability and,
indirectly, the time constant are available. The angle of the roots
gives the damped natural frequency.

Since many design problems are stated in terms of the
damping ratio and undamped natural frequency, an altemate set
of plots is considered that show these quantities as a function of
gain. Since they are orthogonal on the z-plane, the damping ratio
and natural frequency are independent parameters that can be
used to completely describe root locations. It is also useful to
plot the reciprocal of the product of the damping ratio and natural
frequency. This quantity gives the response envelope time
constant, and is equivalent to plotting the sampling time divided
by the negative natural log of the magnitude of the root location.

MAPPING EQUATIONS

The natural frequency and damping ratio for a particular root
can be determined algebraically. They can be expressed in terms
of the angle and magnitude of the root location, z, and the
sampling time, T, as follows:

In(lz) o _ {2’ +(ulel) @)

J(£2)* +(all2])) ) T

=

These relations are derived in the Appendix.

In following the format of continuous time gain plots, the
independent variable, gain, is plotted on a logarithmic scale. The
damping ratio is plotted on a linear scale, for 1 S{ €1, and the
natural frequency and time constant are shown on logarithmic
scales. Mathematically, the time constant can be in the range
-0 £ T < +e0; negative values correspond to unstable systems.

EXAMPLES

Consider a first order plant with the continuous open loop
transfer function:

1
= em——— 4
G(s) = 4)



Figure 2. Continuous and digital root loci for example 1

With sampling time T=I, the corresponding digital open loop
transfer function is:

_ _0.632 5
0@ =206 ®

The root locus plots for the continuous and digital systems
embedded in proportional control loops are shown in Figure 2.
The plots indicate that the continuous system is stable for all
gains whereas the digital system is stable only for low gains,
eventually becoming unstable as the root locus leaves the unit
circle. In fact, all digital systems with more poles than zeros
become unstable at high gains since branches of the excess poles
migrate toward infinity. Another feature indicated in Figure 2 is
that the digital root locus crosses from the positive to negative
real axis with the response becoming oscillatory as it does. The
digital root locus plot does not indicate the gains that make the
system unstable nor that make the response oscillatory.

The gain plots for the digital system are shown in Figures
3ab. The natural frequency as an explicit function of gain is
plotted in Figure 3a. It shows a low gain asymptote of 1 rad/s, a
high gain asvmptote tending to infinity, and a "resonant peak" of
infinite frequency at a gain of 0.578. The damping ratio plot as a
function of gain is shown in Figure 3b. It shows that the system
becomes unstable (negative damping ratio) at a gain of 2.16
corresponding to the stability boundary. It also shows that the
damping ratio is unity for gains below 0.578 indicating that the
system is oscillatory only for gains above this value. Figure 3c is
a plot of the time constant vs. gain. The time constant is the
reciprocal of the product of natural frequency and damping ratio,
and, as such, this figure is deterinined from Figures 3a and 3b.
Figure 3c shows that the response time of the system dips to zero
at a gain of 0.578. This corresponds to the deadbeat gain, where
the system, when subjected to a step input, reaches steady state
after one time step. The deadbeat gain is easily identified from
the time constant piot.

Figures 4a-d show a series of simulated digital system unit
step response plots for different gains. Figure 4a is the response
for a gain of 0.2. As expected, the response is non-oscillatory.
From the time constant plot, the system has a time constant of
0.70 at this low gain. Since the system reaches 98% of the
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Figure 3. Digital gain plots for example 1
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Figure 4. Unit step responses for digital system in example 1

steady state value after about 4 time constants, the settling time
of this system is approximately 2.8 seconds.

Figure 4b is the response for the deadbeat gain, and shows that
the system reaches steady state after one time step corresponding
to the fastest possible system. Figure 4¢ is for a higher, bnt still
stable, gain of 1.5. As predicted from the gain plots, the system
response becomes oscillatory. The response of Figure 4d for a



gain of 2.5 confirms that the system becomes unstable at gains
above 2.16.

This example illustrates some of the basic properties of the
digital gain plots. In order to more fully demonstrate the value of
the digital gain plots, another, more complicated example is
presented.

This example considers a third order unstable plant
with the continuous open loop transfer function:

5+0.5

6
(s’+2s+2)(§—0.5) ©

G(s)=

With a sampling time of 0.2, the corresponding digital open
loop transfer function is:

(2+0.9352)(z—0.9048) o

G(@) = 7 T 60482 + 0.6703)z — L1052)

The root locus plots for the continuous and digital systems
with proportional control are shown in Figure 5. The continuous
time plot shows that the system is open-loop unstable, but
becomes stable above a critical (yet unidentified) gain. For the
digital system, the question of stability is not easily answered.
Again, the open-loop system is unstable, since one root starts
outside the unit circle. As the gain is increased, this root crosses
into the umit circle. However, the complex conjugate pair of
roots that starts inside the unit circle leaves the unit circle as the
gain is increased. The root locus plot does not identify the gain
at which the single root enters the unit circle nor the gain at
which the pair leaves the unit circle. If the pair leaves before the
single root enters, the system will never be stable, but if the
single root enters first, the system will be stable for a range of
gains. In summary, from the digital system root locus, it is not
clear what, if any, gains make the system stable.

The corresponding gain plots of Figures 6a,b show the natural
frequency and damping ratio of each root as a function of gain.
The single real root is represented by the solid line, while the
complex conjugate pair is represented by the dashed and dotted
lines. Figure 6¢c shows the time constant as a function of gain.
These plots give physical insight into the system that is otherwise
unavailable from the root locus. For example, the damping ratio
plot shows that the system is stable for gains between 2.0 and
11.5. Within this range of gains, the plots show that the natural
frequency of all roots increases and the damping ratio of the
complex pair decreases as the gain is increased. The plots also
show that there is a design tradeoff between damping ratio and
settling time in the range of gains between 2.0 and 5.88, and that
there is a minimum settling time at a gain of 5.88. In summary,
the plots are useful for selecting gains meeting specific design
requirements. This feature is examined in the system response
simulations of Figure 7.
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Figure 6. Digital gain plots for example 2

Figures 7a-f show a series of simulations of the unit step
response for various gains. Figure 7a shows an unstable
response for a gain of 1.5. Figure 7b shows a stable response for
a gain of 2.5 just above the lower stability boundary. ‘At this gain
the response is mainly non-oscillatory. The single real root is
dominant, as confirmed from the time constant plot, where, at a
gain of 2.5, the real root (represented by the solid line) has a
much longer time constant than the complex conjugate pair.

Figure 7c represents the response that is as quick as possible,
with the oscillatory part of the response decaying in less than 8
seconds. To meet this requirement, the time constant of the
complex conjugate pair must be at most 8/4=2 seconds. From
the time constant plot, this corresponds to a gain of 3.29.
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Figure 7. Unit step responses for digital system in example 2

The lines on the time constant plot cross at a gain of 5.88. At
this gain, the system has the shortest settling time. The response
is shown in Figure 7d for this fastest system. The single real part
and the complex conjugate part are equally dominant, and die out
after the same time. This response is quicker than the other
Tesponses.

Figure 7e is for a higher gains of 10 still in the region of
stability. The settling time becomes larger, and the oscillatory
root becomes more dominant. When the gain is increased to 15
outside the range of stability, the system becomes oscillatory and
unstable, as shown in the response of Figure 7f.

CONCLUSIONS

Digital gain plots are proposed as an alternate representation
of the digital root locus. The plots unfold the information of the
digital root locus in much the same way that the continuous gain
plots recast the information of the continuous root locus, i.c.,
useful (uantities are calculated from the root locations and
plotted as an explicit function of gain. In the case of the digital
gain plots, these useful quantities are natural frequency, damping
ratio, and time constant.

The work reported here has not taken into account variations
in the sampling time. It would be useful to develop a design tool
to help determine both the gain and the sampling time required
to meet a set of design requirements for a digital system.
Including the sampling time as a parameter adds another
dimension to the problem. Three-dimensional gain plots can be
generated with the sampling time and gain as the independent

variables. These plots contain a large amount of information and
provide a good intuitive feel for the system, but may be difficult
to read. Alternatively, multiple 2 dimensional plots can be
generated either as a set of layers of a 3 dimensional plot, or with
each giving specific information such as the location of the
stability boundary for a range of gains and sampling times.

The digital gain plots used in conjunction with the digital root
locus enrich the information presented to the controls design
engineer in the sense that the gains corresponding to the stability
boundaries, natural frequency and damping ratio can be
determined by inspection. From the time constant plot, it is clear
which roots are dominant. For simple systems, the deadbeat gain
can be determined, and for higher order systems, the gain at
which the response will be fastest can be identified by
inspection. Most importantly, since these parameters are
available directly, the digital gain plots serve as a useful design
tool in selecting gains to meet response requiremnents and in
uncovering design tradeofls.
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APPENDIX - DERIVATIONS

Based on the relation z=exp(-sT), roots in the s-plane,
s=a+bi, can be mapped to the z-plane.

Stability Regi
In the s-plane: s =a+bi
stable if a<0
In the z-plane:  z = exp((a+bi)T)
z = exp(aT ) cosbT+isinbT)
So exp(aT) is the magnitude of the z root. Then if a<0,

izl =exp(aT) <1 (A-1)

Lines of constant damped natural frequency, o,
In the s-plane: s =atbi
b=,
In the z-plane:  z=exp(aT ) cosbT+isinbT)
So bT is the angle of the z root, measured from the positive
real axis. Then, if b=m,,

Lz=a,T (A2)

Lines of constant response envelope time constant, ©
In the s-plane: s =a+bi
a=-=1/t
In the z-plane:  z=exp(aT ) cosbT+isinbT)
So exp(aT) is the magnitude of the z root Then, if a =~1/7,

|z] = exp(T/t) (A-3)

Li ¢ tant dampi tio, ¢
In the s-plane: s =a+bi
¢ = cos(Ls) = cos(tan"1 (b/a))

{=-a/a"+b? (A4)

Lines of constant natural frequency, o
In the s-plane: s =a+bi
® =|s|

®, =+/a* +b? (A-5)

Multiplying equations (A4) and (A-5) together,
=l
Substituting into equa?io;‘l (A4), and solving for b,
b=o J1-C
Substituting these expressions for a and b into s = a+bi,
8= Lo, +iw, 1~
In the z-plane:

z = exp(~{o, T)(cos(w, Tf1 - {?) +isin(w, T1-{*))
In tenms of the angle and magnitude of z,

|4 = exp(-{0,T) (A6)
Lz=0,T1-*

Now, to obtain lines of constant damping ratio, first rewrite
equations (A-6) in terms of &, .

o, =In(z)/(-{T) (AT)

0, = L2/ (T{1-C)

Equating, and solving for |z,

2| = exp(~{ - 22/ \1-TF) (A-8)

This represents a logarithmic spiral as § is held constant and
angle is varied.

Now solve equation (A-8) for &.

In(1-C =tz

(£2)* +In(lz))

This is the first mapping equation.

To obtain lines of constant natural frequency, plug equation
(A-9) into the first of equations (A-7)

V(£2)* +In(z)’ indd))

) In(z)T
o < V(22 +in)? | (A-10)
: T

This is the second mapping equation.

Or, solve for the angle to obtain an expression in terms of the
magnitude and the natural frequency

£z =(0,T) -In(z) (A-11)

This represents a line orthogonal to the lines of constant { as
magnitude is varied and @ is held constant.



