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TECHNICAL NOTES

AN INTERACTIVE GRAPHICS PACKAGE FOR CALCULATING
CROSS-SECTIONAL PROPERTIES OF COMPLEX SHAPES*

INTRODUCTION

The cross-sectional properties of complex shapes are required
in many studies of loskeletal bi hanics. To cal-
culate these properties, many previous investigators have
used regular geometries such as circles or ellipses to represent
biological cross-sections. However, this approach involves a
degree of simplification which often does not adequately
reflect the complexity of the actual shape. As a result, the
subitle changes in cross-sectional properties that can occur in
adaptive biological systems have been inadequately studied.
In particular, the mechanisms involved in the stress-related
adaptive response of bone have remained obscure. The
obvious limitations and inaccuracies of modeling irregular
geometries by circles, ellipses, triangles and rectangles, all of
known geometric properties, have led to more refined, but
more painstaking and time-consuming, approaches. For
instance, placing a grid over the cross-section and summing
the subsequent enclosed blocks and noting their distribution
has been used to estimate the area and area inertial
properties (Lovejoy er al, 1976; Uhthoff and Jaworski, 1978 ;
Piotrowski and Kellman, 1978). In this method, greater
accuracy requires more refined gridding, which in turmn
requires more work and time. In another approach, polar dot
paper has been used in place of the gridded overlay, but the
basic limitations of the poini-counting method remain (Mar-
tin, 1975). In a refinement of the block-gridding technique,
finite-element programs with automated mesh generation
have also been used to calculate area inertial properties
(Piziali er al., 1976).

The purpose of this note is to provide an interactive
computer graphics software package for calculating the area
cross-sectional properties of irregular, two-dimensional
shapes. The program requires input of the boundary coordin-
ates of muluple, planar regions, each of which may be multi-
ply connected. The program then calculates the area, centroid,
area moments of inertia, and principal moments and their
orientations. The approach thus allows rapid analysis of the
section properties of complex biological cross-sections and
facilitates both the mechanical analysis of musculoskeletal
components and the quantification of biclogical changes in
cross-sectional geometry due to aging, metabolic bone di-
seasc, or the presence of an internal fixation device. In the
following, the basic algorithm used for these calculations is
described and the FORTRAN implementation of the tech-
nique is outlined. Examples of the application of the method
are then discussed.

ANALYTIC METHODS

The software package described in this note is based on a
simple algorithm for generating area cross-sectional proper-
ties from perimeter coordinates (Wojciechowski, 1976 ; Hew-
lett Packard HP-97 ME Pac). The method divides a cross-
sectional area into a series of trapezoids (or rectangles) and

* Received 7 March 1979 ; in revised form 22 May 1979,

then adds or subtracts the properties of the elemental areas to
determine the composite properties of the total area. This
technique replaces integration with the summation of contri-
butions of finite regions, and assumes linear segments be-
tween consecutive perimeter coordinates.

Consider the problem of calculating the area and area
inertial properties of the shaded region in Fig. 1. This shaded
region represents the region below the assumed lincar
scgment connecting consecutive perimeter coordinates (G
and E) of an entire cross-section boundary. To calculate the
area under the straight line GE,

AA = (x--vl - xn’(yrrl + Y2
The static moment of A4 (defined by trapezoid ABEG) about
the x axis, AM,, can be considered to consist of contributions
from rectangle ABCD and triangle FCE minus the contri-

bution from rectangle GFD. Using the areas and centroids
(from basic formulae) yields

AM, = [(X,., — X,)/8]
x [(Yl"-l + "J‘ + (YIQi - .}lﬂ]-
Similarly, the moment of inertia Al, of A4 about the x axis
consists of contributions from rectangle ABCD and triangle
FCE minus the contribution from triangle GFD. Existing

formulac for the moments of inertia and the parallel axis
theorem give
Al = [(X,4; = X NY,4y + ¥,)24]

X [(Yaur + Yo + (Yeuy — Y.)’],
The individual results are summed to arrive at the total area,
A, the static moment, M, and the moment of inertia, I,, of a
plane cross-section:

A=LAA M,=ZAM, I,=LZAl,.
The y centroid coordinate, §, is
F= M,JA.
¥
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Fig. 1. Area section properties under line GE.
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The moment of inertia about the axis through y parallel to the
x axis is
I; =1, -7 A.

Using the same approach, expressions can be derived for the
moment of inertia about the y axis (1,), the product of inertia
(1,,). the x coordinate of the centroid (X), and the moment of
inertia about the x axis translated 10 the centroid (/5). In
addition, by standard formulae, the angle between the
translated and principal axes (¢}, and the moments of inertia
about the translated and rotated principal x and y axes (I3,
and I}, respectively) can be determined. These equations are
presented in detail in the referenced Hewleti-Packard HP-
97 ME Applications Pac.

FROGRAM SLICE

SLICE is the FORTRAN impl tion of this hod
which was developed and executed on a DEC System-10 at
the University of Pennsylvania Medical School Computer
Facility. Using a Tektronix 4010 graphics terminal, the
program graphically displays the cross-section with super-
imposed veclors which represent the principal moments of
inertia and their orientation. On the same display, section
propertics are reported to four significant figures. The output
variables (and FORTRAN names) are the area (AREA); the
x and y coordinates of the centroid (XBAR,YBAR); the
moments of inertia about the x and y axes (IX,1Y); the
product of inertia (IXY); the moments of inertia about the x
and y axes translated to the centroid (IXBAR,IYBAR); the
product of inertia about the translated axes (IXBYB); the
angle between the translated axis and principal axis (PHI);
and the moments of inertia about the translated and rotated
principal x and y axes (IXBPH,IYBPH). Thus, the cross-
section picture and section property information are output
on one display “page” (screen), allowing for rapid correlation
between changes in cross-section geometries and resulting
changes in section properties.

Figure 2 shows the general programming flowchart of
SLICE. The beart of the program is subroutine SLICER,
which incorporates the algorithms described in the Analytic
Methods section of this note. The FORTRAN listing of
subroutine SLICER, complete with a list of variables, appears

Stop

Fig. 2. SLICE flowchart.

in the Appendix. SLICER must be passed: (1) the total
number of perimeters for the cross-section ; (2) the number of
coordinate points for each perimeter (not necessarily equal
for all perimeters); and (3) arrays of the x, y coordinates for
each perimeter. As currently implemented, the cross-section
may have up to a total of 20 boundary perimeters, each
perimeter having a maximum of 500 coordinates, but the
arrays can easily be redi ioned to wdate cross-
sections with more boundaries and/or with more coordinateg,

To use SLICE, the cross-section musi be located entirely
within the first quadrant, that is, with all perimeter coor-
dinates greater than or equal to zero. The cross-section may
be multiply-connected, defined by an outer perimeter and
inner perimeters, denoting “holes™ or cross-section voids.
Quter perimeter coordinates must be inpul sequentially in a
clockwise path around the boundary. Coordinate points for
each inner perimeter must be input in a counter-clockwise
path. The program automatically closes a cross-section
perimeter (for outer or inner perimeters of the cross-section)
when the distance between a coordinate point and the first
input point of the perimeter becomes less than a tolerance
distance which is based on the first few input points. Once a
perimeter is closed, the program ignores all subsequent input
points until a point outside a circle of radius tolerance
distance is found. By this means, the program can distinguish
between cross-section perimeters after reading in a con-
tinuous string of coordinates of the boundaries. SLICE
accepts boundary coordinates of the outer and interior
perimeters by direct terminal keyboard input or from data
files. However, the program can easily be adapted 10 accept x,
y coordinates directly from a table digitizer.

AFPLICATIONS

A number of simple geometric shapes of known area
properties have been used as test examples to validate the
program and to verify its high degree of accuracy. With
simple geometric shapes, such as rectangles and triangles, the
program attains accuracy to 7 significant figures. For exe-
cution of both simple test examples and more complex bone
cross-sections, the program requires approximately 25 sec of
CPU time (at a cost of just over | dollar). Total cost per cross-
section run is relatively constant at approximately 3 dollars
with complete graphics output as shown in the following
examples.

A simple example of SLICE graphics outpul appears in
Fig. 3. It represents a triangular cross-section with a tri-
angular “hole™. Note that the principal directions are repre-
sented by vectors superimposed at the centroid, with their
lengths proportional to the principal moments of inertia. In
this case, the moment of inertia about the principal y axis
(IYBPH) is more than 5 times larger than the moment of
inertia about the principal x axis (IXBPH).

SLICE has been used as a basic subroutine in stress
analysis programs which calculate stresses based on elemen-
tary beam theory for pure bending and torsion. Figure 4
shows SLICE output for a cross-section of an orthopaedic
bone reamer which had failed in clinical use. (Note that the
reamer cross-section is a regular, albeit complicated, geomet-
ric shape. It would be possible—but painstaking—to cal-
culate its exact area properties by hand by considering the
cross-section as a combination of simple geometric shapes
such as triangles.) In this case, the stress analyses provide
both a reasonable explanation of the reamer’s failure and a

imple means for investigating design chang

SLICE has been incorporated as a subroutine in mass
properties prog , which calculate the mass and mass
inertial properties of three-dimensional bodies (with any
number of different density interior sections). These programs
have been coupled with ized axial tomography
(CAT) scanning systems, which non-invasively and directly
construct cross-sectional pictures and mass densities at
multiple intervals along a limb or body segment, to directly
generate mass and mass inertial properties.
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Fig. 3. Testexample for program verification. Perimeter coordinates for outer triangle are (3,1),(3,7), (14,7).
Inner triangle coordinates are (4,4), (9,6), (4,6).
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Fig. 4. Distal cross of orthopaedic reamer.

Cross-sectional changes in bones subjected to different
environmental conditions have also been studied quanti-
tatively with the program. Using microradiographs provided

quantified to better understand changes due to aging, meta-
bolic bone disease, and the presence of fracture fixation
devices. Since the approach is highly automated and makes

by Slatis er al. (1978), cross-sections of rabbit tibias ined
1 day-36 weeks afier compression plate implantation were
input to the program 10 monitor cross-sectional changes and
to optimize placement of the plate (Fig. 5). Results of this
analysis will be reported scparately. They emphasize, how-
ever, the advantages of an automated method for comput-
ing the cross-sectional properties of musculoskeletal
structures.

In summary, a simple algorithm for computing the cross-
sectional properties of complex geometric shapes has been
programmed for automatic data acquisition and analysis.
The program can be used to analyze the area properties of
multiple, complex biological cross-sections. Specifically,
biological changes in cross-sectional geometries can be

* Address for reprints: Orthopaedic Biomechanics labo-
ratory, Beth Israel Hospital, 330 Brookline Avenue, Boston,
MA 02215, US.A.

use of extensive graphics output, area property changes can
easily be investigated. The program has been completely
verified using known cross-sectional geometries and repre-
sents an advance over previous methods in ease of use, time,
cosl and accuracy.
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Fig. 5. Cross-section of rabbit tibia after removal of compression plate.
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APPENDIX

Subroutine SLICER
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# & % % VARTADLES * & = »

ARFA = CRNSS=SECTING ARFA
I = X,Y COORDINATE INDFX
IX = MOWENT OF INERTIR AHULUT X=A¥IS
TXHAR = w0OMERT OF INFHTIA AROUT X=AXTS TKARSLATFD 70 CFMTROID
IXBPH = WOYENT NF INERTIA ARDUT THANSLATED, WDTATFI ,
PRINCIPAL X=AXIS .
IXPRY = X %)MENT UF INFRTIA ARANT AKRRITRAFY A¥IS
1XY = PHODIUCT NF LNFRTIA
IXYPR = BRODICT AF 14ERTIA AROUT ARRITRAPY AXIS
1Y = ®OMENT OF INERTTA ABOUT Y=RXIS
TYRAR = wnmENT NF IMERTTA ARULT Y=AXTS THFAMSLATED 1r CFATROLD
IYHPH = MOMENT OF INERTTA ARCUT THANSLATED, KOTATED
PHTHCIFAL Y=AXIS
1YPRY = Y “OMENT NF INEPTIA AROUT ARKITHAFY AXIS
J = POLAR &0%ENT NOF TRERTIA ARGUT AFHITRARY RAX1S
NPER = NUmHER OF PERIMETERS
NERINT(TPER) = WUMRER OF PLINTS 1IH SECTION (IPEFR)
PHT = ANGLE BETWFEN TRANSLATED AXTS AmD PRINCIPAL AXIS
THETA = ANGLE BETEEN ORIGINAL AXIS AND ARRITRAPY AXIS
X(I) = X COORDINATE OF PREVINIS VEPTEX POINT
X(T+1) = X COORDINATE OF CURMELT VEHWTEX POINT
XRAR = X CODRDINATE OF CENTROID
XRARA = X CONRDIATE OF CENTRNID TIMES AREA
XVECT(IPER,1) = ARRAY OF X(I) FOR SECTIUN IPFF
Y(T) = Y CONRDINATE OF PREVIODUS VEKTEX PUINT
Y(T+1) = Y CONRDINATE NF CURRENT VERTEX PODINT
YBAR = Y CNORDINATE OF CENTROID
YBARA = ¥ COORDINATE OF CENTROID TIMES AREA
YVECT(IPER,T) = ARRAY NF Y(1) FOF SECTION IPEFK

L L ]

SUBRDUTINE SLICER REDUCES SECTIUN PEFIMFTEF TNFD
TN AFEA AND AREA TANERTIAL PRNPERTIES OF SFCTIUM,

SURRUVUTINE SLICER

COMMNNZTN/XVFCT(20,5090) ,YVECT(20,500),P01RT(20),FPFE,
1THETA
COMMON/NNT/ARFEA XAAR, YBAR, TX,TY,1XY, IXnEF,1YRAL,
11XRYR,PHT , LXePR,TYRBPH, TXPPM,TYPFY,J, 1XYPH

DIMENSTNN X (500),Y(500)
RFEAL MAG, 1X,1Y,1XY,TXRAR, TYRAR, TXI\YA ,PHT ,TXFPH,
11YRPH, I XPHM, 1YPRY, [ XYPP,J, TNFNT

THITIALIZE
AREA = 0,0
ARRRA = 0,0
YHARE = 0,0

TY = 0,0
1y = a,0
1XY = 0,0

TFINPRH.EY,1) TPER=1
1F(NPER.EQ,1) GOTO 10
nn SO0 1PFR=1,%PER

FILL X,Y VECTNORS FOFR EACH SECTLON PEFIMFIFK
NISNPOISTOIPER)+1

no 20 T=1,n1

X(T)=XVECT(IPER,T)

YCIVSYVECTITIPFR, L)

COMTINIE

CALCULATIONS

no 40 I=1,NPOINT(IPER)
AREASAREA=((Y(I+1)=Y(T))®(X(I+1)+X(1)))/2
XRARPASXHARA=(C(Y(T+1)ey (1)) /B)0CC(R(I+1)4X(1))n%2
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1+0(XC(141)=X(1))*%2)/3))
YRARASYRARA+(((X(T+1)=X(1))/B)*(LY(1+41)4Y(1))%22
1+0(Y(141)=Y(1))%22)/3))
IX=TX4((X(T+1)=XCIIRCYITI+1)4Y(1))/24)%
TOCYCI41)4Y (1)) *#24(Y(141)=Y(1))%27)
IY=1Y=CCY(I+1)=YCI)I#CXTT1+104X(1))/24)%
FCOXCE+1)4X(I) )22+ (X(I+1)=X(1))222)
TFCEX(T+1)=X(1)).ED,0) GOTU 40
TXY=IXY+(CCY(T41)=Y(I))¥#2)# (X (T+1)4X(1)0#
TC(NC(TI+1))®*2+(X(T))¥*2)/R+

20Y(I+1)=Y (1)) S (X(I+1)¥Y(T1)=X(T)*Y(1+1))%
3((X(l*i))"2‘!(!+1)'K(I)Q(K(lll‘*z)f!*
ACIXCT+1I2YCII=XCT)#Y(T+1))%22)"
SEX(T+1)+4X (1)) /4)/(X(1+41)=X(1))

CONTINUE

CNNTINUE

EXTRA CALCULATIONS

XRARSXRARA/Z/ARFA

YBARPEYBARA/ZRREA

IXRAREIX=ARFA*YRAR®®2

IYRARSIY=AREASXBAR®#2

TXRYB=IXY=AREA®XXBAR*YBAR

BIG=TXRAP

IF(IYRAR ,GT,IXRAR) RIG=IYBAR
IF((ARS(IXRAR=TYRAR)/RIG)IF.1K=5) GNTO &0
PHIS(ATAN(=2*%TXBYB/(1XBAR=IYBAF)))/2

GoTtn 70

PHT = =N,78539816

TYBPH=TXRARY (COS{PHT))**2+IYHAF*(STH(PH]I))##2=
1IXYRYRASTIN(2¢PH])

T1YRPHSTYBAR®(CNS(PHI))**#2+ TXBART(SIN(PHTI) ) %2+
1TXRYB*SIN(Z#PHI)

CALCULATIONS ABUUT ARRITRARY AXTS
IF(THETA.EQ.N.D) GOTD RO

IXPRM=TXRARS (COS(THETA) ) ® 2+ JYBARS(SIL(THETA))*%2

1=TXRYB¥SIN(2%THETA)

IYPRMSTYHAR® (COSITHETA) IS 2+ IXHAR® (SINITHETR))*%2

1+4IXAYBXSIN (23 THETA)
J=TXPRM4TYPRM

IXYPRSISIN(2#THETA) )# (IXBAR=IYHAR) /24 1XFYRR(CNS(23THFIR

1)

RETURN
NN



