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This paper promotes a new graphical
representation of the behavior of linear, time-invariant,
multivariable systems highly suited for exploring the
influence of closed-loop system parameters. The
development is based on the adjustment of a scalar
control gain cascaded with a square multivariable plant
embedded in an output feedback configuration. By
tracking the closed-loop eigenvalues as an explicit
function of gain, it is possible to visualize the
multivariable root loci in a set of "gain plots” consisting
of two graphs: (i) magnitude of system eigenvalues vs.
gain, and (ii) argument (angle) of system eigenvalues vs.
gain. By depicting unambiguously the polar coordinates
of each eigenvalue in the complex plane, the gain plots
complement the standard multi-input, multi-output root
locus plot. Two example problems demonstrate the
utility of gain plots for interpreting linear multivariable
system behavior.

INTRODUCTION

Since their introduction, classical controls tools
have been popular for analysis and design of single—
input, single—output (SISO) systems. These methods
may be viewed as specialized versions of more general
tools that are applicable to multi-input, multi—output
(MIMO) systems. Although modern "state—space"
control methods (relying on dynamic models of internal
structure) are generally promoted as the predominant
tools for multivariable system analysis, the classical
control extensions offer several advantages, including
requiring only an input—output map and providing
direct insight into stability, performance, and robustness
of MIMO systems. The understanding generated by
these graphically-based methods for the analysis and

design of MIMO systems is a prime motivator of this
research.

An early graphical method for investigating the
stability of linear, time—invariant (LTI) SISO systems
was developed by Nyquist (1932) and is based on a polar
plot of the loop transmission transfer function. The
MIMO analog of the Nyquist diagram is the
multivariable Nyquist diagram which is used in
conjunction with the corresponding multivariable
Nyquist criterion (Rosenbrock, 1974; Lehtomaki, et al.,
1981; Friedland, 1986). This criterion is complicated in
the MIMO case because it is expressed in terms of the
determinant of the return difference transfer function
matrix ([I + G(s)] where G(s) is the plant transfer
function matrix, rather than just 1 + g(s) for the SISO
case where g(s) is the plant transfer function). Despite
the complication, significant research has supported the
MIMO Nyquist extension for assessment of
multivariable system stability and robustness
{MacFarlane and Postlethwaite, 1977).

The Bode plots (Bode, 1940) recast the
information of the Nyquist diagram, with frequency
extracted as an explicit parameter. The MIMO analog
or extension of the classical Bode magnitude plot is the
singular value Bode—type plot that shows maximum and
minimum singular values of transfer function matrices
as a function of frequency (Doyle and Stein, 1981).
This generalized magnitude vs. frequency plot is useful
for analysis, providing performance insight in terms of
command following, disturbance rejection, and sensor
noise sensitivity, as well as for design, in terms of
frequency shaping (Doyle and Stein, 1981; Safanov, et
al., 1981; Athans, 1982; Maciejowski, 1989).

Although promoted as an SISO tool, Evans root
locus method (Evans, 1954) is also extendable to MIMO
systems, since it depicts the trajectories of closed—loop
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complex plane. However, the generalization to the
multivariable root loci has not made as significant an
impact as the MIMO versions of the classical frequency-
domain tools. In similarity to the multivariable Nyquist
diagram and Bode plot, the MIMO root locus plot does
not, in general, follow the straight—forward sketching
rules applicable to SISO systems. However, it does
provide insight into stability and performance of the
closed-loop system. Part of the complication of the
MIMO root locus relates to the fact that "multivariable
root loci live on a Riemann surface ... as compared with
the single~input, single—output case where the root loci
lie on a simple complex plane (a trivial, i.e., one
sheeted, Riemann surface)" (Postlethwaite and
MacFarlane, 1979). As a result, multivariable root loci
tend to have strange looking patterns when drawn in a
single complex plane. The possibility of loci being
multi~valued functions of gain can make the MIMO root
locus plot somewhat confusing.

To aid the controls engineer in extracting more
information from the multivariable Evans root locus
plot, we propose a set of "gain plots” that provide a
direct and unique window into the stability,
performance, and robustness of LTI MIMO systems. A
conceptual framework motivating the gain plots and a
discussion of their applicability to SISO systems has
been presented previously (Kurfess and Nagurka,
1991a).

MULTIVARIABLE EIGENVALUE
DESCRIPTION

i n
A LTI MIMO system can be represented in the
standard state—space form as

x(t) = Ax(t) + Bu(t) (1

y(t)=Cx(t) + Dult) 2)
where state vector x is length n, control input vector u
is length m, and output vector y is length, m. Matrices
A, B, C and D are the system matrix, the control
influence matrix, the output matrix, and the feed-
forward matrix, respectively, with appropriate
dimensions. The input-output dynamics are governed
by a square transfer function matrix, G(s),

G(s)=C[sI - A]'B+D (3)

The system is embedded in the closed-loop
configuration, shown in Figure 1, where the controller
is a static compensator, kI, implying that each input
channel is scaled by the same constant gain k. (Note that
the plant transfer function matrix and any dynamic
compensation may be combined in the transfer function
matrix G(s).) The control law is given by

u(t) = kIe(t) 4)

+ e(s)

r(s kI ues) > G(S)

>y(s)

Figure 1. MIMO Closed-Loop Negative
Feedback Configuration

where
e(t)=r(t)- y(t) (5)
is the error and r(t) is the reference (command) signal

vector of length m that y(t) must track. The closed—
loop transfer function matrix is

G (s) = [ T +k G(s]] 'k G(s) 6)

In the MIMO root locus plot, the migration of the
eigenvalues of Gcy(s) in the complex plane is graphed as
scalar k varies in the range 0 < k < . The eigenvalues
of the closed-loop system, s = A;(i=1,2,...,n), are the
roots of ¢c.(s), the closed-loop characteristic
polynomial,

¢ cL(s) = ¢ ov(s) det[I + kG(s) 0]
where 0oL(s) is the open—loop characteristic polynomial,
0 oL(s) = det[sI - A} (8)

The roots, or solutions of equation (8), are the open—
loop poles. By equating the determinant in equation (7)
to zero, the MIMO generalization of the SISO
characteristic equation (1 + kg(s) = 0) is obtained. The
presence of the determinant is the major challenge in
generalizing the SISO root locus sketching rules to
MIMO systems and complicates the root locus plot. For
example, the root locus branches "move" between
several copies (Riemann sheets) in the s—plane that are
connected at singularity points known as branch points
(Yagle, 1981; Athans, 1982). .

Although it is not generally possible to sketch
MIMO root loci by inspection, the closed—loop system
eigenvalues may be computed numerically from
equations (1) — (5) as )

Ai=eiglA -B{I+kDJ'kC|] , i=1,2,...,n (9)

In the examples, the loci of the eigenvalues are
calculated from equation (9) as k is monotonically
increased from zero.

High Gain_Behavior
As the gain increases from zero to infinity, the

closed—loop eigenvalues trace out "root loci” in the
complex plane. At zero gain, the poles of the closed—
loop system are the open—loop eigenvalues. At infinite
gain some of the eigenvalues approach finite
transmission zeros, defined to be those values of s that
satisfy the generalized eigenvalue problem
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Figure 2. Root Locus Plot of Example 1

the system becomes unstable, but fails to indicate the
gain at which instability occurs. Closer inspection of the
eigenvalues indicates that the closed-loop system is
never stable for positive gains.

The gain plots for this system, shown in Figure
3a,b, reveal this information about the closed-loop
system instability. For example, they show that as the
gain increases the eigenvalue at the origin initially
migrates along the positive real axis (i.e., £s = 0°),
indicating instability, until it reaches a maximum value
of s=0.010 at a gain k=0.018. As the gain increases, this
real eigenvalue reverses direction, crosses the imaginary
axis at a gain k=0.043, and continues to move along the
negative real axis (i.e., Zs = 180°). However, at
k=0.043 one pair of complex conjugate eigenvalues has
already moved into the right half plane (crossing the
imaginary axis at a slightly lower gain). The angle gain
plot of Figure 3b shows this behavior clearly. In
summary, the gain plots provide an unambiguous means
by which stability may be determined.

The gain plots highlight several other important
features. For example, they show the gains
corresponding to the complex conjugate eigenvalue pairs
breaking into the real axis and then proceeding to teo,
Complex conjugate eigenvalues are shown as symmetric
lines about either the 180° or 0° line with equal
magnitudes. Purely real eigenvalues possess equal
angles (180° or 0°) but distinct magnitudes. This
behavior is demonstrated in Figure 3a,b, from which the
gains at the breakpoints may be determined by
inspection.

The rates at which the eigenvalues increase
towards a magnitude of infinity is seen in the magnitude
gain plot of Figure 3a and in expanded form in Figure
4. The single eigenvalue that begins at the origin
proceeds towards infinity along the negative real axis at
a rate proportional to k (the high gain magnitude gain
plot slope is unity). This slope is characteristic of a first
order Butterworth pattern. The two complex conjugate
eigenvalue pairs proceed toward infinity at a rate
proportional to k1/2 (shown as a high gain magnitude
gain plot slope of 1/2), indicative of a second order
Butterworth pattern (Kurfess and Nagurka, 1991b).
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Figure 3. (a) Magnitude and (b) Angle Gain
Plots of Example 1

From Figure 4, the two complex conjugate
eigenvalue pairs at high gains have slope values of 1/2.
As k—oo, this group of four parallel lines separates info
two co—linear sets. An interesting fact is that the two
identical lines are comprised of an eigenvalue magnitude
from each of the original complex conjugate pairs. It is
as if the complex conjugate eigenvalues have swapped
partners. This phenomenon is not apparent from the
MIMO root locus; however, it must occur due to the
location of the centers of gravity for the two second
order Butterworth patterns. In fact, each set of co—

linear trajectories represents a Butterworth
configuration.

Example 2: Higher Order Svstem with
Feedforward Term

This example, from (Kouvaritakis and Edmunds,
1979), demonstrates the power of the gain plot
geometry in exposing multivariable system behavior. It
represents a three input, three output, seventh order
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Figure 4. Expanded Magnitude Gain Plot of
Example 1

system with three transmission zeros. The system is
given by the state space representation of equations (1)
and (2) where

(32 80 16 0 0 O
16 64 -16 0 0 O
0 0 48 0 0 O
A=l 0o 0 0 -32-8 0

0 0 16 64 0 O (13
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D'=|4-15 (16)
-8-210

The system is somewhat unusual due to the presence of
the feedforward term (i.e., the D matrix is non-zero).
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Figure 5. Root Locus Plot of Example 2

The root locus plot for this system is shown in Figure 5,
and the multivariable gain plots for the system are
depicted in Figures 6a,b.

From the root locus and gain plots, it is clear that
there are three sets of complex conjugate open—loop
eigenvalues at s = -3 * 2j, and a single real open—loop
eigenvalue at s = —3. There is also a set of complex
conjugate multivariable transmission zeros s = —2.84 *
1.31j and a real zero at s = —-124. As the control
configuration of Figure 1 is employed, the real
eigenvalue moves first in the negative direction and then
in the positive direction along the real axis. Inspection
of the gain plots shows that the real eigenvalue reaches a
maximum value of approximately —2.5 at a gain of
approximately 0.1. The eigenvalue then branches to a
different Riemann sheet and traverses along the real axis
towards the real transmission zero. By inspection of the
gain plots, pole/zero cancellation for the real zero
occurs at k = 104,

A set of complex conjugate eigenvalues moves
towards the transmission zeros as the gain is increased,
The remaining two sets of eigenvalue pairs travel ~
towards infinity in two separate second order
Butterworth configurations. By inspection of the gain
plots, pole/zero cancellation for the complex conjugate
zeros occurs at a gain k = 100,

To further highlight the enriched perspective
offered by the gain plots, a MIMO root locus plot for
higher gain values is shown in Figure 7. (Because of the
logarithmic scales used in the gain plots, expanded high
gain plots are not necessary.) From Figure 7 the
Butterworth patterns may not be clearly visible, yet
from Figures 6a,b two distinct patterns arise. From the
magnitude gain plot, the two separate configurations
may be separated into two second order patterns having
slopes of 1/2 (Kurfess and Nagurka, 1991b).

Further insight into the different patterns is
available from the information of the gain plots.
Although there are two sets of complex conjugate
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Figure 6. (a) Magnitude and (b) Angle Gain
Plots of Example 2

eigenvalues, the Butterworth patterns are formed from
one eigenvalue of each complex set. This is
demonstrated in both the magnitude and angle gain
plots. The angles of the complex conjugate eigenvalues
are approximately £115° and +65°. Thus, each member
complex pair is approximately 180° in angular distance
from its matching Butterworth partner in the other
complex pair. From simple geometric relationships, the
centers of gravity (sometimes referred to as pivots)
from the two second order Butterworth patterns may be
computed to be approximately 19.2+11.9j (Wang, et al.,
1991).

CONCLUSIONS

In typical MIMO root locus plots trajectories may
be camouflaged as some branches may overlap. Gain
plots are promoted as a means to "untangle” MIMO
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Figure 7. Expanded Range Root Locus Plot of
Example 2

eigenvalue trajectories. The major enhancement is the
visualization of eigenvalue trajectories as an explicit
function of gain (where the compensation has been
assumed to be the same static gain applied to all control
channels). The representation provides a unique
description of the eigenvalues and their trajectories as a
parameter, such as gain, is varied.

Research efforts, currently underway, may shed
additional light on gain plots for multivariable systems.
In addition, work by MacFarlane and Postlethwaite
(1977, 1979) and Hung and MacFarlane (1982) on
relating characteristic frequency plots to gain domain
geometry promises closer connections between gain plot
methods and singular value frequency methods.

In conclusion, gain plots enrich the multivariable
root locus plot in much the same way that singular value
frequency plots are an alternate and extended
presentation of the multivariable Nyquist diagram.
Their use in conjunction with the multivariable root °
locus provides a new geometric perspective on
multivariable systems that can result in clearer
understandings of such systems in both the research and
teaching realms of control engineering.
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