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Abstract

dovel,

A Chebyshev-based state rep hod is d for solving
optimal control problems involving unconstrained linear ume-mvarumt
dynamic systems with quadratic performance indices. In this method, each
state variable is represented by the superposition of a finite-term shifted
Chebyshev series and a third order polynomial. In contrast 1o solving a
two-point boundary-value problem, here the necessary condition of
optimality is a system of Imear algebnuc equations which can be solved by
a method such as G i The results of .nm.ulaaon studies

these approaches, in similarity to the state transition matrix approach,
employ algorithms that convert the TPBVP into an initial value problem

The initial value problem is then reduced to a static optimization prot
represented by algebmc equauons by approximating the state and co-state
vectors by d orth Although the truncation results

in errors that can be xmnumzed by including more terms, the transition
matrix (needed to convert the TPBVP 1o an initial value problem) must
still be evaluated which, as ioned above, can cause instability problems
in high order systems.

This research is part of a broader effort toward the development of
eompuuuona] tools for solving optimal control problems via state

dem. ate that the proposed hod offers comp g An ad 2
relative to a previous Chebysh. hod and t0 a dard state tr
method.

1. Introduction

Optimal control strategies can be applied to achieve the optimal control
and the associated opumal state traj of linear, 1
dels of dy Y These optimal trajectories are often
determined from the necessary condition of optimality, which can be posed
as a two-point boundary-value problem (TPBVP) using variational
methods. By applying the Hamilton-Jacobi approach the TPBVP can be
converted to a terminal value problem involving a matrix differential
Riccati equation. Although this approach casts the optimal solution in
closed loop form makmg it a preferred approach for physical
it can be comp lly and difficult

:pply in solving high order systems.

P

For ume mvanlm systems, a more efficient solution method for
] traj P g is the open-loop transition matrix approach
(Speyer. 1986). Thxs pproach, which req the calculation of a matrix
exponermal converts the TPBVP into an initial value problem. The
matrix approach can also a problem, that of ical
instability, in determining the optimal control of high order systems (Yen
and Nagurka, 1990). This problem has been a!mbmed principally to d'le
error associated with the putation of large state
matrices. An and lined approach for
calculation of state transition mamces of hlgh order systems remains a
research challenge (Moler and Loan, 1978).
To circumvent these numerical difficulties, which often complicate and
in some uses prevent the solution of the TPBVP, trajectory
hods have been proposed. In general, these
apprmches approximate the control, state, and/or co-state trajectories by
finite-term orthogonal functions whose unknown coefficient values are
sought giving a near optimal (or sub-optimal) solution. For example,
approaches employing functions such as Walsh (Chen and Hsiao, 1975),
block-pulse (Hsu and Cheng, 1981), Laguerre (Shih, Kung and Chao,
1986), Chebyshev (Paraskevopoules, 1983; Vlassenbroeck and Van
Dooren, 1988), and Fourier (Chung, 1987) have been suggested. Many of

of state parameterization is that boundary
condmon requirements on the state variables can be satisfied directly. A
second advantage is that the state equations can be ireated as algebraic
equations in @ ining the corresponding control traj y. This

that no on the control structure prevent an arbitrary
representation of the state trajectory from being achieved.

Earlier work on parameterization of the state vector via Foarier-type
series (Yen and Nagurka, 1988) has shown that the necessary condition of
optimality for an unconstrained linear quadratic (LQ) problem can be
formulated as a system of linear algebraic equations. To ensure an
arbitrary representation of the sme m_pecrory and hence overcome the
potential difficulty of trajectory ibility (due to
preventing an arbitrary state trajectory), artificial control variables were
proposed. These physically non-existent variables are driven small by
being heavily penalized in the performance index. Simulation results
indicated that the approach is accurate, computationally efficient, and
robust relauve to standard methods.

of p ization hods for prediction of the optimal
control of linear time-invariant sy have & of
expmmsmmmofﬂ»byshevﬁmmsmm:pansmmwmblock
pulse, Hermite, Laguerre, and Legendre functions (Paraskevopoulos,
1983,1985). Chebyshev functions can nearly uniformly approximate a
broad class of functions, making them computationally attractive
(Vlassenbroeck and Van Dooren, 1988).

This paper explores a method based on a finite-term Chebyshev

represenmmn of the state trajectory. By applying this method, the

Yy of lity is derived as a system of lincar algebraic
equauonsfromwh:chthemknownnnepamnemvecmrmbesolved
[neompmsontolpr:kusChebyshev-hsedmemndmdwlmte
transition matrix method, the proposed app is comp
efficient, especially for high-order systems.

ionally

2. Methodology
2.1 Problem Statement
Given a lincar dynamic system with the state-space model
x(1) = A@)x®) + Bu@®) , x(0)=xg a
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with known initial condition, the design goal is to find the control u(t) and
the corresponding state x(t) in the time interval [0,T] that minimizes the
quadratic performance index L,

L=L1+L2 °)

where

L; =X’ (T)Hx(T) + hx(T) 3)

T
Ly =f 7 OQ@x® + uT OR®u() + xT(©S(u(t)
(1]
@)
+ qT(Ox@® + rT(OuE)dt

It is assurned that x is an N1 state vector, u is an Mx1 control vector, A
is an NxN system matrix, B is an NxM contro} influence matrix, H and Q
are real NxN ic and positi ighting matrices, R is
an MxM symmetric and positive definite weighting matrix, S is an NxM
weighting matrix, and h, q and r are Nx1 weighting vectors. In addition,
it is assumned that the lengths of the state and control vectors are the same
(i.e., M=N) and B is invertible.

e
nite

2.2 Chebyshev Polynomials

Chebyshev polynomials are defined for the interval &e{-1,1} and
have the following analytical form:

@) =cosk coslE) ., k=0,1,2,.. )

or
[k72)

_ i k! igk—2i
oxl&) = .Z:o ( l)(—Zi)!(k_Zi)!(l-i)i

k=0,1,2,.. (6)
where the notation [k/2] means the greatest integer smaller than k/2.

The domain of the Chebyshev polynomials can be transformed to values
between 0 and T by letting & = 2¢/T-1 giving the shifted Chebyshev
polynomial yy(t), where

i@ = 9x(€) = e(2/T-1) Y]

From Equations (6) and (7), the first few shifted Chebyshev polynomials
are

vo®=1 , wi®=21-1 , w0)=8t>8t+l (8a<c)
where nondimensional time t=t/T. From Equations (5) and (7), the
initial and final values of the shifted Chebyshev polynomial and its first
time derivative can be obtained as
w@=CDE . W) = DRI
(9a-d)

wiM=1 , W(D=2%HT)

2.3 Chebyshev-Based State Parameterization

2.3.1  State Parameterization In this Chebyshev-based state
parameterization approach, each of the N state variables xpn(t), n=1,2,... N,

is approximated by the sum of a third-order auxiliary polynomial and a
(K—4) term shifted Chebyshev series.

K-1
Xa(t) =bno +ba1T+ b2t + b3 + 3, anuwi(®) (10)
k=t

A motivation for this rep is that the boundary values of the state
variables can be decoupled from the unknown state parameters enabling the
state initial condition to be satisfied directly. The derivative of xa(t) is then

K-1

o] .

£a(®) = {bat + 25027+ 300372 + T ankict) an
k=4

The mm b’s can be determined by substituting the initial and final
values of time (0 and T) into Equations (10) and (11), using Equations
(9a-d), and manipulating.

K1 K-1
boo=xg-DX Y anr . oy = TiggH-1K T 2%y,
k=4 k=4

K-1
ba2 = -3x00-2T4a0+ 3x4T-Txar+ 3 [(-3+ 2+ (-1 (342 ay
K=

K-1
bz = z‘no*TinO'ZXnT‘*TX‘nT‘*z_; [(Z—ZKZ)—(-IP‘(Z—Zszan k
(12a-d)
where Xn0, X0, XnT» and X, are the values of the state variable xp and its
derivative x,, at the boundaries of the time seg [0,T], i.e., xa0 = x5(0),
Xp0 = Xn(0), XaT=xn(T), and Xgr =Xa(T). By substimting Equations
(12a-d) into (10), x,(t) can be rearranged as

K
xa0 =Y cx(®ynk 13)
k=1
where
c1=1-3t%4283 | ¢y =Th-212+7%) (14a,b)
c3=312-2 | cq=T|-1%+13) (15a,b)

g = (1% = 2(=1)k(k—121+[2k2 - 4k —1+ (-1 &(4k2-8k + 1)]12

+ &)1+ DIB+yia®)  k=5,6,....K) a9

and where

Yol =%p0 - Yn2=%p0 + Yn3=XuT » Yn4 =XaT (17a-0)

Yok =3n(k-1) (k=5.6....K) (18)
Equation (13) can be written more compactly as

x50 = Ty, a9)
where

0 =[c;0) ¢ --- k() 0)

¥o={¥n1 Y2 - Yak] @1

Vector yn is the state parameter vector for the n-th state variable. (Except
for yn1, the state parameter vector yn k K )

The N state variables of the state vector can be written in terms of a full
state parameter vector y, i.e.,

x(t) = C(t)y (22)
where
Jw 0
cw= @ N @3)
0 @)
NxNK
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1 yn vy i)’
2 yn 2 yxIT
y= = (24)
T
YN ym N2 yNK! -
Similarly,
x(1) = D)y 25)
where
aT® 0
. a’@)
DH=CH= . (26)
T,
0 LC) -
aT® =[&610 &0 - &) @n

The coatrol n(t)m-kobeemsedunﬁnwdmofy. From Equation
).

u()) = BLOx()-BOA®®) (28)
From Equations (22) and (25),
u(® =[B1ODO-BOAWCOly 29

Thus, the state vector, state rate vector, and control vector can be
wwduﬁmctionsoﬁhemwnmcrvedor.

. versi The d LQ probiem can be
converted to a quadratic programming (QP) problem via the proposed
Chebyshev-based state parameterization. The first step is to rewrite the
performance index as a function of the state parameter vector y. The

Here, P is an NKxXNK matrix, p is an NKx1 matrix, and @ is the
Kronecker product sign (Brewer, 1978). From Equation (35), the integral

part of the performance index can be ex| as
T
Ly= f (y7Py+yTpldr = yTP y+yTp" (8)
0
where
T T
P*= f P& , p'= f pdt (39a-b)
o [

Substituting Equations (30) and (38) into (2) gives the performance index
L as a quadratic in terms of ¥, L.e.,

L=y'Qy+yTe (40)

where

Q=CMTHCM+P" , o=CMTh+p* (41a-b)

For time-invariant problems, F1, F2, F3, f; and f2 are constants and
can be removed from the integral bling the ining integral parts of
P* and p* to be evaluated analytically. That is, Equation (3%a-b) can be
rewritten as

T
P'= F,@U (ccT)dt}tkl’-‘z@ r (ddr)dt}i-l-‘g@U“ (dcf)dx}
0 0 (1]
. . (42a2-b)
Pt = rleU cd(}-i IZQU ddt]
0 0

The solutions of the integral parts of P*and p* (i.e., the terms in the
brackets) have been determined in closed-form and have been summarized
as recurrence formulas.

terminal state vector x(T) can be expressed from Equation (22) and then 233  Solution Procedure The problem can be viewed as an
substituted into Equation (3) giving the terminal cost Ly as & quadratic in upﬁminrionpmblcminvolvingmesurchfortheunkmwnooefﬁcicmsof
terms of y. the state parameter vector y that minimize Eq ion (40) subject to the
equality constraints of Equation (17a). To isolate the free variables, a new
L1 = yTC(DTHC(T)y+h7C(N)y (30)  stawe p vector z is introduced as
z
Similarly, by substituting Equation (28) into the integrand of Equation (4), z= [I;Lxx’ 43)
xT Qx+u” Ru+x” Su+q” x+r7u = <7 Fyx+x7 Fax where
T [T oT T
. z; =la’ x5 xT X ., B=Xg (44a-b)
+3T Fax+xTr+x71; ey ! [ d
with
where F1, F2, and F3 are NXN matrices and fi and fz are NXI vectors xgs[xw X20---%NQ) > ig=[ilo X20 - - - kN0J
given by (452-d)
xT=[x1-r XZT--'XNT] irtlin' ‘ZTXNT]
Fi=Q+GTRG+SG ., F=BTRB’! (32a-b) T T
T = .. o .o - Y - -
Fy= 2BTRG4BTS @3 aT =[ag4 a1s-- - 21k-1) 324 225 - - - 82(K-1) - - - IN4 - - - EN(K nl
f,=q+GTr , f=BTr (34a-b) =[y15 ¥16---YIK Y25 ¥26---Y2K---¥N5--- yNk]  (46)
where G =-B~'A and superscript -T d iny P By Vector £ contains the known initial values of the state vector and vector )
substituting Equations (22) and (25) into (31), the integr d of Eqt is the ining subset of the parameter vector y. The two vectors z and y
(4)anheexpmwdaslqumﬁcinmmsofy.i.e., are related via a linear transformation:
T Qx+uT Ru+x? Su+qT x+rTu =y Py+ yp (35 y=0z @7
where where ® is an NKxNK matrix with elements 1 and 0.
P = Fi®ccT +F,@dd7 +£:0dcT 36) Given Equation (47), L in Equation (40) can be rewritten 2s a function
of z.
p = ®c+H®d an



L=2T0"z2+7 0* 48)

where

a*=0’Q0 o*'=0To (49a-b)

Byexpandingﬁquaﬁm(“),ﬂnepuformmcehdexmheexmdas

b o

Q;, sz

7
(50)

2

or, equivalently,
=z{0;, N +z{(ﬂ{2+%ﬂzz+g%zz+:{mr+r;o; (51

The necessary condition of optimality can be obtained by differentiating L

with respect to the unknown state parameter vector 2. This leads to
T - T *

(011 *Qfl)'l “‘912*9;1)‘2‘ ; (52)

which represents a system of Jinear algebraic equations from which the
unknown vector z] can be solved.

2.4 Chebyshev-Based Approach for General Linear Systems

The ap h p d above is applicable to sy with square
mdmvembleconmlmﬂummamws For general linear systems, B is
an NxM matrix where N is greater than M. To apply the Chebyshev-based
approach, Equation (1) is modified to

x(1) = A(D)x(t) + B'(u'@t) (53)
where
. , Tov-MpeN-M)
B = BNXN BNXM (54)
Onxn-M)
. Sn-Myx
v@=uy = (55)
UMx1

where 1 is an antificial (i.c., fictitious) control vector.

It can be guaranteed that B’ is invertible if the last M rows of B are
nonsingular. However, if the last M rows are singular, the first (N-M)
columns of B’ in Equation (54) can always be modified to make it
invertible. In order to predict the optimal solution, the performance index
is modified to

L=L+L) (56)
where L; is given by Equation (3) and where
T
L= f TOQWx()+u” (R @' @)+xT S (Ou'@)
o ()
+qTx+rT Ou©la
with
o Plovmpvny  Oavm
R@®= RN XN =[ M
.Mx(N-M) Rysom
. , PLoMpN-M)
S =Sy n ={ Snxm (582-c)
OpMx(N-M)

T

r’(l)=l';‘m=[p e p

where p is a weighting constant chosen to be a large positive number. If
§=0, q=0 and r=0, then Equation (56) simplifies to

T
L'=1, +j TOQ@x+sTmR@uMId +p | [BTmaw)ar (59)
0 0
By penalizing the artificial coatrol vector, the magnitude and influence
of the artificial control variables can be made small and the solution of the
modified optimal control problem can approximate the solution of the
original LQ problem.

3. Simulation Study

‘This example considers an N input N-th order linear time-invariant

dynamic system exp d in ! form.
(1) =Ax@®) +Bu@) , xT@)={1 2...N] (60)
where
01 0
X1 :' 00 1 o
X: -
x= 2 ,u= 2 A= . . B=kuw
00 - 1
X
N uN 12 e (DMiN
(61a-d)
The problem is to find u(t) that minimizes the performance index
1
L=xT(H x@) + f {(x"Qx + uRu) dt 62)
0
where
H=10Iyn . Q=R=Iny (63a-b)

One of the most efficient methods for solving this unconstrained LQ
problem is the transition matrix approach (details can be found in (Speyer,
1986)). The approach converts an optimal control problem into a lincar
TPBVP. By evaluating the transition matrix of this boundary value
problem, the problem can be converted into an initial value problem. In
this study, the transition matrices were computed numerically using the
algorithm presented in (Franklin and Powell, 1980).

Table 1. Comparison of Simulation Results for Exnmple1

Traasition Matrix Other Chebyshev Chebyshev-based
N
Perf Timne 2 2
b | oy | ®Eror? | %Time’ | %Emor?| %Time
2 53591 050 1.29¢-03 144.0 3.21¢-05 156.0
4 44249 242 2.56e-03 1719 7.67e-04 67.8
6 153.75 7.06 3.67¢02 187.0 5.23¢-03 4384
8 373.02 15.86 1.56¢-01 193.8 1.84e-2 407
10 741.61 29.04 1.76e-01 202.8 44102 382
12 1299.3 50.44 1.74e-01- 204.0 8.32¢-02 35.1
14 2086.3 81.46 1.61e-01 1983 1.34¢-01 332
16 31428 12454 1.48¢-01 197.0 1.94e-01 308
18 4505.0 174224 13901 199.6 2.61¢-01 304
20 62254 24150 1.36¢-01 1918 3.31e-01 287
ISix-term series for Other Chebyshev-based approach,

Chebyshev spproach.  For
four terms are used in polynomial and two terms in Chebyshev series.
2Mngmnu‘kdpuwnmhnvemuof0)=byshevpa'fmmemhxvnhuspu:t
to Transition Matrix performance index
3Percent of time of Chebyshev app

h relative 0 execution time of
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An alternate approach is a Chebyshev approach adapted from
(Paraskevopoulos, 1983). It also converts an optimal coatrol problem into
an initial value problem. Then, the state and costate vectors in the linear
homogeneous differential equations are expanded in Chebyshev series with
unknown coefficients. By integrating the differential equations and
‘niroducing a2 "Chebyshev operational matrix”, the unknown coefficients of
the Chebyshev series may be determined. The state and control vectors may
then be obtained. (In this study, the linear algebraic equations were solved
by an LU-decomposition routine.) For ison, this approach -
benceforth referred to as the “other Chebyshev™ approach - was
implemented.

In addition to the transition matrix approach and the other Chebyshev
approach, the proposed Chebyshev-based approach of Section 2.3 was
implemented to solve this problem A GaussJordan climination routine
was used to solve the linear al ing the conditions
of optimality in Equation (52) A two-lexm shxfwd Chebyshcv series in
conjunction with a third-order polynomial was assumed.

Efforts were made to optimize the speeds of the computer codes, all of
which were written in "C” and executed on a SUN-3/60 workstation.
Simulation results for N=2,4,...,20 are summarized in Table 1. For the
transition matrix and Chebyshev-based approaches, the execution time
includes the time to evaluate (i) the system response (state and control
vectors) at 100 equaily-spaced points and (ii) the performance index. For
the other Chebyshev approach, the execution time includes only the time to

I the sy P (The table reports execution time for the
transition matrix ap h in ds, and p time relative
wthenmeofthe u'msmonmamxapproach for the other and Chebyshev
methods.)

The results show that the Chebyshev-based approach is the

ionally most ive app h with the relative error of the
pafmmmoemdexlusthznuzpcmmt In comparison to the transition
matrix approach, the Chebyshev-based approach is increasingly more
efficient for N>2. For N=20, the Chebyshev-based results suggest greater
than 70 percent savings in execution time. For N=2, the Chebyshev-based
method is less efficient than the transition matrix approach since the time to
evaluate the integrals in Equations (42a-b), a fixed time for any order
system, is a significant fraction of the overall computation cost. For high
order systems the principal computational cost is due to the solution of the
linear algebraic equation (52), which is less intensive than the solution via
the transition matrix method.
" The other Chebyshev approach is comp lly more costly than the
ition matrix app h. In this app h the relative error of the
performance index does not grow significantly when the order of the
system increases. The execution time is approximately twice the time of
the transition matrix approach.

3
2
A
=
<
> X2
m
I &
15
X1
0 v v . v
00 02 04 06 038 1.0
TIME

Figure 1a State Variable History for Example

The time histories of the state and control varisbles for the case N=2 are
plotted in Figures 1a and 1b, respectively. The resp curves from the
transition matrix and the Chebyshev-based approaches drawn in these
figures overlap for the scale shown. Hence, the Chebyshev-based solutions
achieve convergence on the trajectorics of the state and control variables as
well as on the value of the performance index.

4. Conclusions

This paper p a state p ization d based on a finite-
term Chebyshev ion for predicting the (near) optimal state and
control ies of d linear time-invariant dynamic systems

with quadratic performance indi In the proposed thod, the time
history of each state variable is represented by the superposmon of a
shified Chebyshev series and a third order poly The Yy
condition of optimality gives a system of lincar algebmc equations from
which the unknown state paramelers can be solved. The results of
imulation studies d I ad ges of the proposed

Chebyshev method relative to a pmvmus Chebyshev method and a standard
state transition matrix approach.
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