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In the proposed method, the difference between each state variable and its initial
condition is represented by a finite-term shifted Chebysheuv series. The representation
leads to a system of linear algebraic equations as the necessary condition of opti-
mality. Simulation studies demonstrate computational

ges relative to a stand-

ard Riccati-based method, a transition matrix method, and a previous Fourier-based

method.

Introduction

Determining the optimal control of linear, lumped parameter
models of dynamic systems is one of the principal ‘“state space”’
design problems. The challenge is to find the optimal trajec-
tories of the control and associated state giving the best tradeoff
between performance and cost of control. Toward this end,
variational methods can be used to cast the optimality con-
dition as a two-point boundary-value problem (TPBVP). The
most well-known solution is achieved via the Hamilton-Jacobi
approach that converts the TPBVP to a terminal value problem
involving a matrix differential Riccati equation. The Riccati
equation provides the optimal solution in closed-loop form
with natural advantages for physical implementation, although
it is computationally intensive and sometimes difficult to em-
ploy in solving high order systems.

A preferred alternative for determining the optimal control
of time-invariant problems is the open-loop transition matrix
approach (Speyer, 1986). This approach converts the TPBVP
into an initial value problem. It can be susceptible to numerical
problems in seeking the optimal control of high order systems
(Yen and Nagurka, 1991). In particular, numerical instabilities
are attributed principally to the errors associated with the com-
putation of large dimension matrix exponentials.

In contrast to Riccati-based and transition matrix methods,
approximate solution strategies such as trajectory parameter-
ization methods have been investigated. In general, these ap-
proaches approximate the control, state, and/or costate
trajectories by finite-term series whose coefficient values are
sought giving a near optimal solution. For example, ap-
proaches employing Walsh (Chen and Hsiao, 1975), block-
pulse (Hsu and Cheng, 1981), Chebyshev (Paraskevopoulos,
1983; Vlassenbroeck and Van Dooren, 1988), Laguerre (Shih
et al., 1986), and Fourier (Chung, 1987) series have been sug-
gested. Like the transition matrix approach, many of these
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approaches convert the TPBVP into an initial value problem.
By approximating the state and co-state vectors by truncated
series, the initial value problem can be reduced to a static
optimization problem represented by algebraic equations.
However, procedures for finding the transition matrix (needed
to convert the TPBVP to an initial value problem) can, as
noted, encounter instability problems in high order systems.

State parameterization offers two important advantages for
solving optimal control problems. First, the state initial con-
dition can be satisfied directly. Second, the state equation can
be treated as an algebraic equation in determining the control
trajectory (since the state and hence state rate are known).
This assumes that no constraints on the control structure pre-
vent an arbitrary representation of the state trajectory from
being achieved.

This paper extends the work of Yen and Nagurka (1991) for
solving optimal control problems via Fourier-based state par-
ameterization. Their work has shown computational advan-
tages of a Fourier-based state approximation for solving linear
quadratic (LQ) optimal control problems relative to standard
methods. For systems with different numbers of state and
control variables, artificial control variables were introduced
to overcome the potential difficulty of trajectory inadmissi-
bility.

The particular focus of this paper is to explore a simplified
parameterization approach employing a finite-term Chebyshev
representation of the state trajectory. Chebyshev functions can
nearly uniformly approximate a broad class of functions, mak-
ing them computationally attractive (Vlassenbroeck and Van
Dooren, 1988). Following the Fourier-based development, it
is shown that the necessary condition of optimality can be
derived as a system of linear algebraic equations from which
an unknown state parameter vector can be solved. In contrast
to the earlier work, a simplified state representation is adopted
involving a constant term and shifted Chebyshev terms. This
representation guarantees satisfaction of the state initial con-
dition and enables the linear transformation of the unknown
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parameter vector in the solution procedure. The result is an
accurate, robust, and computationally attractive method es-
pecially suited for high-order systems.

Chebyshev-Based Approach

Problem Statement. The optimal control problem involves
finding the control u(z) and the corresponding state x(7) in
the time interval [0, 7] that minimizes the quadratic perform-
ance index L,

L=L,+L, (0}]
where
L =x"(TYHx(T) +h'x(T) ()

T
L= S X" (1)Q)x (1) +u” (HR(NHu (1)
0

+x7(OSur) +q (Ox () +r (Hu()ldt  (3)
for the linear system
X () =A()x(t) +B(f)u(1) (&)

with known initial condition x(0)=x,. The state vector x is
Nx 1, the control vector u is M X 1, the system matrix A is
Nx N, and the control influence matrix B is NxAM. It is as-
sumed that the columns of B are independent, weighting mat-
rices H, Q, R, and S and weighting vectors h, q, and r have
appropriate dimensions, and that H, Q, R, and S are real and
symmetric with H and Q being positive-semidefinite and R
being positive definite.

State Parameterization. The optimal control problem can
be converted to an optimization problem by approximating
each state variable by

K
X (1) =Xn0+ D) Cel1) Yok
=

k=1,2,...,Kandn=1,2,...,N (5)
where X0 =x,(0) and y, is the kth unknown coefficient of the
basis function cx(¢) for the nth state variable. A variety of
basis functions is available with the requirement that the sum-

mation vanishes at ¢=0 such that the initial condition x, is
satisfied. Here, the proposed basis function is
a) =Y+ (D" k=1,2,....K (6
where Y, () is a shifted Chebyshev polynomial. In general,
Chebyshev polynomials are orthogonal on the interval £€[—1,
1] with the weighting function (1—£7)~"/? and have the fol-
lowing analytical form:
. /2] ) k! s
@, =cos(kcos™ '§)= — 1) —————(1— %) -2
() 3] 22( Y eyt 9%
k=0,1,2,... (1
where the notation [k/2] denotes the greatest integer smaller
than k/2. In a shifted Chebyshev polynomial the domain is

transformed to values between 0 and 7 by introducing the
change of variables £ =2¢/T—1 giving

V() = (§) =2/ T-1) ®)
For example, the first few shifted Chebyshev polynomials are

Yo(t)=1; 1 ()=2/T-1;
U (1) =8(t/T>—8t/T+1 (a0
Equation (5) can be written alternatively as
Xau{1) =Xno+ €7 (£)¥n (10)

where
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() =[a(t) alt) - - - (]

Yo=Dm ez - - yaxdT (1D), (12)

Vector vy, is a state parameter vector (containing unknown
coefficients) for the nth state variable.

The state vector containing the N state variables can be
written in terms of a full state parameter vector y, i.e.,

x (1) =x9+C(1)y 13)
where
(1) o
c(= U (4)
o ’ o(7)
Nx (N) (K)
Vi Dy yil”
y=| Y= b Yo Y2kl @1s)
YN by ym yaxl T
(NYK) X1

In Egs. (14) and (15), the matrix dimensions are identified and
the notation (N) (K) denotes N times K. From Eq. (13), the
state rate vector can be written as

x(1)=D(t)y (16)
where
d7(n) o
. T
D(t)=C(1) = am amn
o a7 ()
Nx (N)(K)
a7 () =[e1(0) e2(2) - - - éx()] (18)

The control vector u(t) can also be expressed as a function
of y. From Eqgs. (4), (13), and (16),
u(t)=B 1 ()D()-B I (1)A()C(N)]y

~BTH(NDA(NX  (19)
Equation (19) assumes that B! exists and implies that the
lengths of the state and control vectors are the same. This
requirement is later relaxed (see subsection on General Linear
Systems).

Approximation of Performance Index. The performance
index can now be approximated as a function of the state
parameter vector y. First, Eq. (13) with ¢ = T is substituted into
Eq. (2) giving the cost L; as a quadratic function of y
L=y H®c(D)c"(T]y+y [(2Hxo +h)

®c(N+x3(Hxo+h)  (20)
where ® is a Kronecker product sign (Brewer, 1978), e.g.,

iz - Vin
Vo Z

V®Z= (21)
VaZ < Vo

where V is an n X n matrix and Z is an arbitrary matrix. From
Eqs. (13) and (19) the integrand of Eq. (3) can be also expressed
as a quadratic function of y, i.e.,

xQx+u"Ru+x"Su+q"x+rTu=y Py +y'p+xjpo  (22)

where, for convenience, the time-dependent notation (¢) has
been dropped and
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P=F,®cc’+F,®dd" +F;®@dc” (23a)

P=CFX+f)®@c+Fxo+H)Qd; po=Fixg+fi (235, ¢)
In Egs. (23a-¢) F,, F,, and F; are Nx N matrices and f; and
f, are Nx 1 vectors given by

F,=Q+AB"'RB"'A-SB"'A; F,=B 'RB"'
F;= -2B"'RB'A+B”’S;

fi=q-AB"'r; £,=B r (24c-e)
and superscript — T denotes inverse transpose. Hence, P is an
(N) (K) X (N) (K) matrix, and p and pg are (N) (K) x 1 vec-
tors. From Eq. (22), the integral part of the performance index

can be expressed as
T

Lz=§ Py +yp+xipdi=yP y+yTp" +xip; (29
0

(24a, b)

where
-
P’ = S Pds; p*=
o

Vpd’; Po = Srpodt (26a-0)

Jo o
can be integrated numerically for time-varying problems. Com-
bining Egs. (20) and (25) gives the performance index L as a
quadratic function of y, i.e.,

L=y'Gy+y"g+x{[Hxo+h+pg) @7
where
G=H®c(Nc(N) +P*;
g=(QHxo+h)®c(T) +p" (284, b)

For time-invariant problems, F,, F,, F;, f; and f, are con-
stants, and Eqs. (26a-¢) can be written as

T T
P'=F,® [ SO (ccT)dt] +F® [ Sﬂ (dd’)dr]
T

+F;® S (dcT)dt} (29a)
0

T T
P =(QFx+)® I: S cdt} + (Fyxo+f2)® [ S ddt} (29b)
0 0

Po = T(Fixo+1;) (29¢)

Closed-form relations for the bracketed terms in Egs. (29a, b)
have been developed (Wang and Nagurka, 1992).

Optimality Condition. The necessary condition of opti-
mality can be obtained by differentiating Eq. (27) with respect
to y. The resulting optimality condition is

(G+GNy=-¢g 30)

representing a system of linear algebraic equations from which
the unknown vector y can be solved. Note that the state initial
condition is embedded only in the right-hand side of Eq. (30).
The coefficient matrix remains the same for problems with
different initial conditions.

General Linear Systems. To apply the Chebyshev-based
approach to systems with different numbers of state and con-
trol variables, a penalty function technique is proposed. The
state-space model for Eq. (4) is modified to

x()=A)x(t)+B (Hu’ (1) (€1))

where it is required that the new control influence matrix B’
be invertible and the modified excitation B'u’ be as close to
the column space of B as possible. This can be done by choosing
a square, well-conditioned B’ and penalizing the orthogonal
projection of B u’ onto the left-nullspace of B in a modified
performance index,

L' =L+pE (32)
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with
T

E=5 [(B" (r)u’ (1)
0

—B(O)u()T(B" (Hu' (1) -B()u(1)ldr  (33)

Here, L is the original performance index of Eq. (1), p is a
weighting constant chosen to be a large positive number, and
E is the integral of the orthogonal projection. E can be viewed
as an error index indicating the proximity of the modified state
equation to the original state equation. By equating Bu and
B'u’ and applying least squares approximation, the original
u can be reconstructed as
u=Wu’ (34)

where

W=(B'B)"'B'B’ (35)
With u from Eq. (34), the modified performance index L' can
be rewritten as

L =L+ \ XOx+u'R'u+x"'S"u+q'x+r Tuldr  (36)
o
where L, is given by Eq. (2) and
R =W'RW +p(B' —BW) (B’ - BW);
S =SW; r'=r'W (37a-c)

Equations (31) and (36) represent a modified LQ problem
solvable by the Chebyshev-based approach. Matrix B’ can be
chosen arbitrarily as long as it is invertible. A convenient choice
is the identity matrix which minimizes function evaluations in
Eqgs. (19) and (24a-¢).

The procedure for solving a general time-invariant LQ op-
timal control problem is summarized in the following

INPUT: initial state xo; system matrix A;
control influence matrix B; termi-
nal time 7; coefficient matrices H,
Q, R, S; coefficient vectors h, q, r;
number of Chebyshev-based poly-
nomial terms, K.

Step 1 If M#=N

then pick B’; compute W from Eq. (35);

replace B by B'; replace R, S, and
rbyR’,S’, andr’ from Egs. (37a-
c).

Step 2 Compute F,, F,, F3, f; and f, from Eqgs. (24a-
e).

Step 3 Compute P”, p* and p; from Egs. (29a-c).

Step 4 Compute G and g from Egs. (28a, b).

Step 5 Compute y from Eq. (30).

Step 6 Compute performance index L from Eq. (27)
Step 7 Evaluate  state and state rate from Eqs. (13)
and (16).

Step 8 Evaluate  control from Eq. (19).
Step 9 If M%=N,
then evaluate original control from Eq.
(34).
OUTPUT: performance index L; state trajec-

tory x(7) and control trajectory

u(?).

Simulation Studies

Example 1: Sage and White (1977) consider the one-di-
mensional diffusion equation
ax ¥x
o, a2t , 1), 0=st=<T, O=y=<Y 38
%y u(y, 1) y (38)
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with boundary conditions and initial condition
X 0 = (¥, =0, x(0)=1+y (39), (40
—©,0)=—-(Y,)=0; x(», 0= ,
% 3y ¥y y (40)
The performance index to be minimized is
1 T »Y
L=5§ S B (y, )+ (p, N]dy dt (41
0 0

Using a finite difference approximation, this distributed pa-
rameter system can be approximated by the Nth order system

X =Ax+Bu (42)
where
-2
1 - 1 o
A=y : ;
=0 . H
@) (4] i -2 1
2 -2 NxN
Y
B=Inxw; Ay:N__— 1 (43a-¢c)
x=lx. .. xall X () =x((n—1Ay, 1),
n=1,2,...,N (43d)
u={uy uy. .. upl), Uty =u((n—-1Ay, 1),
n=1,2,...,N (43e)
with initial conditions
x0)=1+(n-DAy, n=1,2,...,N 44)
The performance index can then be approximated by
Ay (T
:%S (x"Qx +u’Ru)d: (45)
o
where
. 1 1
Q=R=diag [—,1,“.,1,—] (46)
2 2 NxN

Simulation studies were conducted using a Macintosh IIcx.
The optimal value of the performance index and the optimal
.- trajectories of the state and control vectors at 101 equally-
spaced points were solved by a Riccati equation solver (Speyer,
1986), a transition matrix approach (Speyer, 1986), a Fourier-
based state parameterization approach (Yen and Nagurka,
1991), and the proposed Chebyshev-based approach.

The value of the performance index and the execution time
(in seconds) for T=1, Y=4 and N=5, 8, 11, 14, 17, and 20
are summarized in Table 1. The Riccati equation solver pro-
vides accurate solutions in all cases, although it is time-con-
suming for the higher order systems. The transition matrix
approach is accurate and computationally more efficient than
the Riccati equation solver but it encounters numerical diffi-

culties and fails to provide reasonable solutions for N>14. In
the Fourier-based and Chebyshev-based approaches the num-
ber of terms in the state approximation was selected to provide
accurate solutions, defined (arbitrarily) as having a relative
error of less than one percent. To achieve this high accuracy,
two Fourier-type terms, in addition to the fifth-order auxiliary
polynomial terms, are required in the Fourier-based approach
and six shifted Chebyshev terms in addition to the constant
(initial condition) term are needed in the Chebyshev-based
approach. Both state parameterization approaches are com-
putationally more efficient than the transition matrix approach
for N=8.

It is possible to interpret the resuits of the state parameter-
ization methods in light of the number of equivalent linear
algebraic equations. A K-term Chebyshev-based approach in-
volves (N) (K) linear algebraic equations representing the con-
ditions of optimality. In comparison, a K-term Fourier
approach involves N(2K +3) linear algebraic equations (see
Yen and Nagurka, 1991). The results suggest that the six-term
Chebyshev-based approach is more accurate and computa-
tionally more efficient than the two-term Fourier-based ap-
proach in all cases. In particular, for N= 20, the Chebyshev-
based method (involving 120 equations) enjoys greater than
34 percent time savings in comparison to the two-term Fourier-
based approach (with 140 equations). For N>17 in both ap-
proaches, the performance indices increase slightly as the sys-
tem order grows, while the solutions from the Riccati equation
solver indicate that the performance index should decrease.
Adding terms to the series improves the accuracy of the so-
lutions.

The control variable histories for N=35 obtained via a tran-
sition matrix approach and a 6-term Chebyshev-based ap-
proach are plotted in Fig. 1. The solutions from both
approaches coincide for the scale shown indicating that con-
vergence has been achieved.

Example 2. This example, adapted and modified from
(Meirovitch, 1990, Example 6.3), considers a series arrange-
ment of Jmasses and J springs. As shown in Fig. 2, it represents
a 2J order system with a single force input acting on the last
mass, m,. The displacement of mass m; is denoted by g;. The
mass and stiffness matrices are

my (0]
M= e @7
(0] ' my
k+ks —k
—ky katks —ks o
K= (48)
(0] —k; 1 kjtki—k;

ky

Table 1 Simulation results for example 1

Riccati” Tﬁgi;ti;:m Fourier-based Chebyshev-based

N Perf. Time Perf. Time Perf. Time Perf. Time
index (s) index (s) index (s) index (s)

5 15.180 12.22 15.180 1.83 15.180 2.05 15.180 1.63
8 15.056 64.18 15.056 6.60 15.056 5.23 15.056 3.77
11 15.027 212.97 15.027 16.78 15.031 10.77 15.030 7.40
14 15.016 520.32 15.440 33.42 15.030 19.20 15.029 12.73
17 15.011 1100.50 unstable - 15.042 30.62 15.042 20.28
20 15.008 4797.15 unstable - 15.061 46.73 15.061 30.68

* For N=5 to N=17, the Riccati equation is integrated backward using a fourth-order Runge-Kutta
routine with a time step of 0.01s. For N=20, the time step is reduced to 0.005s to ensure a numerically

stable solution.
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The state equation of this system is given by Eq. (4) with

x=bax- - x =lqa-@qi g2~ ql (49)

A=|:—MO"K (')] ; B={00...01/mJ]” (50), (51)

The initial conditions are

X(0) = [x,(0) x(0) - - - x2,(O)}” (52)
where it is presumed
x0=1 x0)=0, j=1,2,...,J-1,
J+1,...,2J (53a,b)

indicating that the last mass only has been displaced from rest.
The problem is to find the optimal control history, u(t),
that minimizes the performance index

10 KO
= T . -
L—§o (x'Qx+u) dt; Q—[OM (54, 59

The integrand term xTQx represents the sum of kinetic and
potential energies of the system. The inclusion of the integrand
term 1 reflects the desire to minimize the force (as well as the
total energy).

Using the values m;=10kg and k;= IN/m(j=1,2,...,J)
for three different systems, J=3, 5, 7, the optimal solutions
were determined using a Riccati approach, a transition matrix
approach, and the Chebyshev-based approach. In the latter
approach an eight-term series (i.e., initial condition plus seven
Chebyshev-type terms) was selected, the weighting constant

CONTROL VARIABLE

-4.0 T T - T
0.0 0.2 0.4 0.6

TIME
Fig. 1 Control variable history of exampie 1

Q® gt Q) Q)
r ™ ™~
ka0 kg ik
my e my o Wmy, S my —_—
i - i i ! 1

Fig. 2 2J Order system of exampie 2

p=10° was used, and B’ was chosen as the dentity matrix.
The resulting values of the performance index and the exe-
cution time are summarized in Table 2. For J=7 there is less
than a 0.21 percent error in the value of the performance index
and a time savings of greater than 52 percent relative to the
transition matrix method (and over a 96 percent savings relative
to the Riccati solver).

To verify that the penalty function technique is successful,
the error index, E, is evaluated by substituting back the state
and control trajectories into Eq. (32). The results are
E=7.64x10" for J=3, E=8.09x10"7 for J=5, and
E=8.09x10"7 for J=7, indicating that the modified state
equation closely approximates the original state equation. Fig-
ure 3 compares the time history of the control variable from
the Chebyshev-based approach to the control variable of the
transition matrix approach for J=3, and shows close approx-
imation.

Discussion

Selection of Chebyshev-Based Terms. The proposed ap-
proach generates near optimal solutions. Increasing the num-
ber of terms of the series improves the accuracy while sacrificing
computation time. A recommended procedure for selecting the
number of terms is to solve the problem using a K terms series
and a K + I term series, and to then check whether the relative
error of the performance index is within a desired tolerance.
When the difference 7 is arbitrarily large, the relative error
essentially represents the error between the approximate and
exact solutions. If the relative error is within the required
tolerance, the K term series is acceptable.

Selection of Weighting Constant. An important factor af-
fecting the solution accuracy of general systems is the choice
of the penalty function weighting constant. To ensure that the
modified excitation B u’ closely approximates the original
excitation Bu, the weighting constant is chosen to be a large
positive number. However, if the weighting constant is too
large, the magnitude of the original performance index can
become insignificant relative to the approximated performance
index. On the other hand, if the weighting constant is too
small, (B'u’ — Bu) is not driven small enough to approximate
the original system. When an exact solution is not available,
it is useful to plot L versus p and E versus p to help determine
an appropriate weighting constant. Figure 4 shows these re-
lations for Example 2. It reveals that the performance index
is least sensitive in the range 10° <p<10’. Thus, p=10’ is an
appropriate choice, and the corresponding E of less than 10~¢
indicates a satisfactory approximation of the state equation.

Comparison of Approaches. Vlassenbroeck and Van Do-
reen (1988) proposed a combined state and control parame-
terization approach employing Chebyshev series for solving
nonlinear optimal control problems. In their approach, the
system dynamics are transformed from time interval [0, 7] to
[-1, 1] and then converted into equality constraints (with
tedious analytical formulation). Since both state and control
parameterization is employed, the optimal control problem is
converted into an optimization problem with constraints. In
contrast, the proposed Chebyshev-based approach employs
shifted Chebyshev polynomials directly on time interval [0, 7).

Table 2 Simulation results for example 2

J=3 J=5 J=1
Method Perf. Time Perf. Time Perf. Time
index s) index (s) index (s)
Riccati* 7.6205 29 7.6204 145 7.6204 511
Transition matrix 7.6205 3.75 7.6204 13.2 7.6204 347
Chebyshev-based 7.6055 233 7.6049 7.70 7.6049 16.6

* The Riccati equation is integrated backward using a fourth-order Runge-Kutta routine with a time step

of 0.1s.
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-0.2

transition matrix

CONTROL VARIABLE

'0-8 T T T T

2.0 4.0 6.0 8.0
TIME

le history of le 2

10.0

Fig.3 Control

By applying state parameterization only, fewer unknown pa-
rameters are needed. The state equation is used to represent
the control as a function of the state, circumventing equality
constraints, and the LQ optimal control problem is then con-
verted into an unconstrained optimization problem cast as a
system of linear algebraic equations. In summary, Vlassen-
broeck and Van Doreen’s approach is capable of solving non-
linear and constrained optimal control problems, while the
Chebyshev-based approach of this paper provides a direct and
fast solution procedure for unconstrained linear optimal con-
trol problems.

Compared to the Fourier-based approach (Yen and Na-
gurka, 1991), the Chebyshev-based approach offers a simpli-
fied solution procedure with concomitant computational
advantages. Although the Chebyshev-based approach is com-
putationally more attractive, the Fourier-based approach is
more flexible in that it can deal with a broader class of prob-
lems, namely those with general boundary conditions. It is
capable of solving optimal control problems with known initial
states, initial state rates, terminal states, and/or terminal state
rates by isolating the known boundary conditions from the
unknown parameters in the state parameter vector y.

Conclusion

This paper has presented a robust and computationally ef-
ficient Chebyshev-based algorithm for solving LQ optimal con-
trol problems. A key reason underlying the computationally
streamlined nature of the approach is that the necessary con-
dition of optimality can be written as a set of linear algebraic
equations. Another advantage of the approach, especially im-
portant for time-invariant problems, is the availability of
closed-form formulas for the integrals of shifted Chebyshev
polynomial terms needed in establishing the linear algebraic
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Fig.4 Performance and error indices versus h for le 2

equations. Finally, a penalty function technique is promoted
as a means to make the approach tractable for systems with
different numbers of state and control variables. Simulation
results demonstrate computational advantages of the proposed
approach relative to a Riccati approach, a transition matrix
approach, and a previous Fourier-based approach.
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