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Two state parameterization methods based on finite-term
Chebyshev representations are developed to determine the optimal
state and control trajectories of unconstrained linear time-

invariant dynamic systems with quadratic performance indices.-

In one method, each state variable of a dynamic system is
approximated by a shifted Chebyshev series. In the second
method, each state variable is represented by the superposition of
a shifted Chebyshev series and a third order polynomial. In both
approaches, the necessary and sufficient condition of optimality is
derived as a system of linear algebraic equations. The results of
simulation studies demonstrate that the Chebyshev-plus-
polynomial method offers computational advantages relative to
the direct Chebyshev method, a previous Chebyshev method and a
State-transition approach.

1. Introduction

The optimal control, and corresponding state, trajectories of
linear, lumped parameter models of dynamic systems are often
determined from the necessary condition of optimality. Using
variational methods, this optimality condition can be represented
as a two-point boundary-value problem (TPBVP). One of the
most well-known solution approaches is the Hamilton-Jacobi
approach which converts the TPBVP to a terminal
problem involving a matrix differential Riccati equation.
Although the Hamilton-Jacobi approach casts the optimal solution
in closed-loop form making it a preferred approach for physical
implementation, it is computationally -intensive and sometimes
difficult to employ in solving high order systems.

For time-invariant systems, a more efficient solution method
for optimal trajectory planning. is the open-loop transition matrix
approach [1], which converts the TPBVP into an initial value
problem. The transition matrix approach can also encounter a
problem, that of numerical instability, in determining the optimal
control of high order systems [2].

To circumvent these numerical difficulties, and in the interest
of seeking alternative solution strategies, trajectory param-
eterization methods have been investigated. In general, these
approaches approximate the control, state, and/or co-state
trajectories by finite-term orthogonal functions whose unknown
coefficient values are souglit giving a near optimal (or sub-
_optimal) solution. For example, approaches employing functions
such as Walsh [3], block-pulse [4], Laguerre [5], Chebyshev [6-8],
and Fourier [9-10] representations have been suggested. Many of
these approaches employ algorithms that convert the TPBVP into
-an initial value problem whose state and co-state vectors are then
approximated by truncated orthogonal series. This technique
reduces the initial value problem to a static optimization problem
represented by algebraic equations.

Earlier work involving parameterization of the state vector via
Fourier-type series [10] has shown that the necessary condition of
optimality for an unconstrained linear quadratic (LQ) problem
‘can be formulated as a system of linear algebraic equations. To
ensure an arbitrary representation of the state trajectory and

value

hence overcome the potential difficulty of trajectory inad-
missibility (due to constraints on the-control structure preventing
an arbitrary state trajectory), artificial control variables were
proposed. These physically non-existent variables are driven
small by being heavily penalized in the performance index.
Simulation results indicated that the approach is accurate, compu-
tationally efficient, and robust relative to standard methods.

Studies of parameterization methods for optimal control of
linear time-invariant systems have demonstrated advantages of
expansions in terms of Chebyshev functions in comparison to
other functions [6]. Chebyshev functions can nearly uniformly
approximate a broad class of functions, making them computa-
tionally attractive [8]. ,

This paper explores two methods based on finite-term Cheby-
shev representations of the state trajectory. In one method, the
direct Chebyshev method, each state variable of a dynamic system
is approximated by a shifted Chebyshev series. The uncon-
strained LQ problem is then converted to an equality constrained
quadratic programming (QP) problem that minimizes the
performance index and satisfies state initial conditions via
Lagrange multipliers. In the second method, a modified and
improved Chebyshev method, each state variable is represented
by the superposition of a shifted Chebyshev series and a third
order polynomial. In both methods the necessary condition of
optimality gives a system of linear algebraic equations from
which the unknown state parameter vector can be solved.

2. Methodology

2.1 Problem Statemeﬁt

The behavior of a linear dynamic system is governed by the
state-space model

X(1) = A@x(t) + BOu(t) . (¢V)

with known initial condition x(0)=xo where x is an Nx1 state
vector, u is an Mx1 control vector, A is an NXN system matrix,
and B is an NxM control influence matrix. For now, it is
assumed that M=N and B is invertible. These assumptions will be
relaxed later.

The problem is to plan the tmjeétories of the control u(t) and
the corresponding state x(t) in the time interval [0,T] that
minimizes the quadratic performance index L, '

L=Li+L2 . @
where

L, = xT(T)Hx(T) + h'x(T) OB

T ' :
L= ] IXTOQOXO+uTOROu)+xT(OSOu®+gTOx()+rT(ulde  (4)
0

without violating the linear system constraints:
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E1()x(t) + E2(u(t) < e(t) )

It is assumed that H, Q, R and S are real NxN symmetric
matrices with H and Q being positive-semidefinite and R being
positive definite, h, q and r are Nx1 vectors, e is a Jx1 vector,
E1 is a JXN matrix, and E2 is a JXM matrix.

2.2 Chebyshev Polynomials

Chebyshev polynomials are defined for the interval £e[-1,1]
and have the following analytical form:

u®) =costkcos’E) , k=0,1,2,.. )
or
& ; ! ipk-2i
e = Z:o DRl 0% . k=0,1,2,.. )

where the notation [k/2] means the greatest integer smaller than
k/2. From Equation (7), the first few Chebyshev polynomials are

o0& =1, g8 =, g8 =2E%1
(8a-f)
03(8) = 48-35 , @u(8) = 8E*-8E%+1 , s(E) = 168-208%+5¢

The Chebyshev polynomials have several properties, such as
satisfying (i) the recurrence relations

ox+1(8) - 280k (&) + pr-18) =0 , k=1,2,..
(1-8%pu®) = -KEQUE) + keir®) , k=12, ..

where the dot indicates differentiation with respect to time, (ii)
the initial, final and midpoint values

(D=1 , QD=¢D*

(9a-b)

(10a-d)
Ox(0) = -1* * 92,1(0)=0
and (iii) the product relations
®O9® = Lo ©+e,00 , i2]
(11a-b)

RE) = 1+ ®)

The domain of the Chebyshev polynomials can be transformed
to values between 0 and T by letting

=124 12
§12T 12)

giving the shifted Chebyshev polynomial yi(t) expressed as

Vi) = 9, &) = m(l-z%) 13)

From Equation (13) the first few shifted Chebyshev polynomials
are
Vo) =1, yi(0) =-21+1 , (1) = 8t%-81+1
(14a-¢)
Vi) = -3203+481%-181+1 , (1) = 1281%-25613+16012-321+1

where nondimensional time T =t/ T. The initial and final values -

of the shifted Chebyshev polynomial and its first time derivative
can be obtained as

w0 =1 , W(0)=-2k¥T (15a-b)
VD = (DY V() = DYV T) (16a-b)

2.3 Direct Chebyshev-Based State Parameterization

2.3.1 State Parameterization A direct approach for

Chebyshev-based state parameterization is to approximate each of
the N state variables xn(t) by a K term shifted Chebyshev series.

K
Xa(®) = Y, ) Ynk an
k=1
for n=1,2,...,N where
o t) = Wi 1(t) (18)

In Equation (17) ynk is the k-th unknown coefficient for the n-th
state variable. Equation (17) can be written as

xn(t) = T(1) yn (19)
where
cT(t) =[cy@) cxt) -+ ck(®)] (20)

Yn=[yn ¥ro -~ yll (#3))

The state vector containing the N state variables can be written in
terms of a full state parameter vector y, i.e.,

x(t) = C(v)y 22)
where
cI(t) 0 23)
cw = @)
Tl
0 cl(t) NxNK
byn yo - yxl”
n 7
y=lr2| - [ya y? yX 4)
N T
[ynmp yn2 s oy .
Similarly,
x(t) = D(t)y 25)
where
L UO) 0
dT (26)
D=L = © )
T,
0 d’(v) K
d7 (O =[&() ext) -~ k() @7

The control vector u(t) can also be expressed as a function of y.
From Equation (1),

u(t) = BL0)x(1)-B-1()AD)x(1) 28)
From Equations (22) and (25),
u@® =[B()D®-BIHAOCH]y 29)

Thus, using the direct Chebyshev-based state parameterization
approach the state, state rate, and control vectors can be
represented as functions of the state parameter vector.

2.3.2 Conversion Process The first step in converting this

unconstrained LQ problem to a quadratic programming (QP)
problem via direct Chebyshev-based state parameterization is to
rewrite the performance index as a function of the state
parameter vector y. From Equation (22), the terminal state
vertor x(T) can be expressed as
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x(T) = C(M)y (30

By substituting Equation (30) into (3), the cost Ly is

Li= yTCT(THC(T)y + hTC(T)y én

Similarly, by substituting Equation (28) into the integrand of
Equation (4), '

x7 Qx+u” Ru+x” Su+q” x+rTu = xTFjx+ % Fox+x! Fax+xT f1+x7 f,

32)
where Fy,F;, and F3 are NxN matrices and f; and f, are
Nx1 vectors given by
F1=Q+G'RG+SG F,=BTRB' F;=2BTRG+BTS (33a-c)
f; =q+G'r . M= Br (34a-b)
where

G=-BlA (35)

and superscript -T denotes inverse transpose. By substituting
Equations (22) and (25) into (32), the integrand of Equation (4)
can be expressed as a function of parameter vector y, i.e.,

xT Qx+u” Ru+x" Su+q” x+rTu = yTPy+y7 p (36)

whefe

P = F;®ccT+F®ddT+f3®dcT , p =f®c+f,®d (37a-b)

In Equations (37a-b), P is an NKxNK matrix, p is an NKx1
matrix, and ® is a Kronecker product sign, e.g., if V is an nxn
matrix,

Viw ... Vpw
Vaw

VOw = (38)
Vpw o Vpw

From Equation '(36), the integral part of the performance index
can be expressed as

T
Ly= f (y"Py+yTp)dt = yP"y +y"p" (39)
0
where

T T
P'=] Padt , p‘=[ pdt
o o

Substituting Equations (31) and (39) into (2) gives the perfor-
mance index L as a quadratic function of parameter vector y, i.e.,

(40a-b)

L=y"Qy+yTw @n

where
(42a-b)

Q=CI(DHC(M +P* , w=CT(Dh+p*

For time-invariant problems, F;, Fz, F3, f; and f; are

constants and can be removed from the integrals, enabling the

remaining integral parts of P* and p* to be evaluated
analytically. That is, Equations (40a-b) can be rewritten as

T T T

f (ccT)dz} + F;@[ j (d dT)dt} + F,@[ f (dcT)dt}
T T

fo cdt]+ fg@U) ddt:!

The terms in the brackets have been determined in closed-form.

P'= FI®

(43a-b)

p' = f|®

The initial conditions of the state variables can be expressed as

xo = Coy (44)
where
xo=x(0) ,

Co=C(0) (45a-b)

Hence, the problem is to minimize Equation (41) such that
Equation (44) is satisfied.

2.3.3 Solution Procedure The above equality constrained QP

problem is converted to an unconstrained problem by appending
the constraints to the performance index via a Lagrange
multiplier vector A:

L(y,A) = y7Qy + yTo + A[Cay -xq] (46)
The necessary conditions of optimality are given by

V, Ly, M) =(2+Q )y +0+CTa =0 @n

ViL(y,A) = Cay -x0=0 (48)

representing a system of linear algebraic equations in terms of the
elements of y and A. Equations (47) and (48) can be written as

o+q"

Cg y -©
49
Co 0 A X0

from which the state parameter vector y can be solved.

2.4 Improved Chebyshev-Based State Parameterization

An improved Chebyshev-based state parameterization is
presented in this section. Here, each of the N state variables xp(t)
is approximated by the sum of a third-order auxiliary polynomial
and a (K-4) term shifted Chebyshev series. The motivation for
including the auxiliary polynomial is based on results for Fourier
series [11] that show that convergence on [0,T] can be guaranteed
for x, X, and x and that the speed of convergence can be
improved. By analogy, an auxiliary polynomial was employed
here to extend the "differentiability” of the representation and
improve the speed of convergence in comparison to a Chebyshev
series (e.g., as used in the previous direct method).

2.4.1 State Parameterization In contrast to the direct

approach of Section 2.3.1, the ¢ and yp vectors of Equation (19)
are redefined. First, consider a K term shifted Chebyshev series,
i.e., for n=1,2,....N

K-1
Xa(®) = 3, amWi() (50)

k=0
The state variable xp and its derivative x, at the boundaries of the
time segment [0,T] are

X0 =Xo0) , X = Xn(0) , Xnr =%Xx(T) , Xur = Xn(T) (51a-d)

By substituting Equations (14a-d) into (50), xp(t) and its time
derivative can be arranged as
K-1
Xn1) = by + By + brgT-+ byt + Y, aneyil)
k=4 (52a-b)
1 2.5
#n(1) = ={ba + 2brat + 3bgt) + Y amWi®)
T e
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where T = 1/T and the b's are new constants. They can be
determined by substituting the initial and final values of time (0
and T) into Equations (52a-b), using Equations (16a-d) and (51a-
d), and performing some algebraic manipulations.

K-1 - K-1
bo=%Xp— 2 &k , bu=Tiyp+ Y, 2kan
k=4

k=4
K-1
by = -3x0- 2T+ 3xar-Thar+ Y, [(3- 4k3)+ (- DX(-3+2k ] any (53a-d)
k=4 c
K-1
brs = 2%+ Thag- 2%ar+ Tar+ Y, [(-2+2k3+(-1)(2- 2k any
k=4

By substituting Equations (53a-d) into (52a), Equation (50) can be
rearranged as

K
() = Y Cx(Dynk - (54)
=1

where

c1= 13124213 | cp=T(1-21%1Y) , c3=312213 , cs=T(-1%1 (55a-d)

Ck = -1+ MpTHNAT NI+ (=5, 6,---K) (6)
with

M= 2(k-1)2

Mok = -4k 8k-1-(- 1K 2K24k-1) (57a-c)

N3k = 2k(k-2)[1+-1)9 '
and where

Yol =X 5 Y2 = Xn0 » Y3 =XiT » ¥nd = XaT > Yk = k1) (k=5,6,--K)
(58a-¢)

Then Equation (54) can be written as Equation (19) with different

‘definitions of yn's and cg's.

2.4.2 Conversion Process Using Equations (58a-¢) and (24),

the terminal state vector x(T) can be expressed as
x(T) = Oy (59)

where the elements of the NXNK matrix © are
1 j=G-DK+3 i=1,2;..\N )
;= . : (60)
0  otherwise )
By substituting Equation (59) into (3), the cost L1 is

L= yT6'HOy + hTey ©1)
The conversion process is similar to the -direct approacu except

- that Equations (30) and (31) are replaced by Equations (59) and

(61), respectively. Because the ci's in Equations (55a-d) and (56)
are redefined, the integrals of P*and p* change. For time-
invariant problems new closed-form expressions for the integral
parts can be derived. :

2.4.3  Solution Procedure This equality constrained QP
problem is solved by converting it into an unconstrained QP
problem. A new state parameter vector z is introduced as

z

2= {z;] ®
NKx1

where

T T T 7
z] =[a’ Xp XT xT] , TS X0 (63a-b)

Xg=[x10 XH ... XN()] N X'g=[i10 X'm X'N()]
X¥=[Xn‘ X ... XNT] y X'11-=[X1T xzrer] .

) : (64a-¢)
aT=[a14 aj5.. .8 K-1) ay ax...axyK-1n---aN4--. aN(K.1)] .

=[y15 Yi6-- - YIK Y25 Y26 - - - Y2K - - - YN5 - - - YNK]

Vector z, contains the known initial values of the state vector and
vector z, is the remaining subset of the parameter vector y. The
two vectors z and y are related via a linear transformation:

y:d)z (65)
where @ is an NKXNK matrix with elements
;=1 i=(n-DK+k i=1,2...,N; k=1,2...,K
NK-N+n k=1
. NK-4N +n k=2
J={ NK-2N+n k=3 (66)
NK-3N+n k=4
(n-DHEK-4)+k-4) k=56, ‘.,K

¢;;= 0. otherwise

The performance index L in Equation (41) can thus be
rewritten as a function of z

L=2TQ 2+ o (67)

where
Q=0"00 , 0=0"0 (68a-b)

By expanding Equation (67), the performance index can be
expressed as

L=[z{ zg]

or equivalently

* *
Qll Qll
*

Q Qp

m +[2] ] {m‘} (69)
z (0‘2

L=2 Q) zl+z{'(Q'u+Qg)zz+ L Qnzr+ 7 o)+ 24 @ 70

For an unconstrained LQ problem, the necessary condition of
optimality can be obtained by differentiating the performance

~index with respect to the unknown state parameter vector, zj.
This leads to

(@3 + Q)21 = (@) + @ )22 - 0} an

which represents a system of linear algebraic equations from
which z; can be solved.

2.5 General Linear Systems

The approaches presented above are applicable to systems with
square and invertible control influence matrices. To apply the
Chebyshev-based approach to the more common case of general
linear systems which have fewer control variables than state
variables, the state-space model of Equation (1) is modified to

x(t) = A(Dx(t) + B’ (Hu’(t) o
where
Lovmyxen-my
Bm=B, = Bnam ER)
oMx(N M) g
ﬁ\NM)\l
W) =u'na = CH

Unix]




where 1 is an artificial control vector.

It can be guaranteed that B’ is invertible if the last M rows of
B are nonsingular. However, if the last M rows are singular, the
first (N-M) columns. of B’ can always be modified to make it
invertible. In order to predict the optimal solution, the
performance index is modified to '

T
L'=L+pf OTIOL as)
o

where L is the performance index of the original LQ problem
and p is a weighting constant chosen to be a large positive
number. By penalizing the artificial control vector, the
magnitude and influence of the artificial control variables can be
made small and the solution of the modified optimal control
problem can approximate the solution of the original LQ
problem.

- 3. Simulation Study

To study the effectiveness of the approaches, the solutions of
unconstrained, time-invariant LQ problems have been obtained by
both the direct and improved Chebyshev-based state param-
eterization approaches and compared with solutions from other
numerical algorithms.

3.1 Example
This example considers an N input N-th order linear time-
invariant dynamic expressed in canonical form. .
%(t) =Ax@®) +Bu@®) , xX(@=[12--N] (76)

where

A=| I @ - : » B=Ina (77a-b)
00 .- 1

(DMIN

The problem is to determine the control u that minimizes

1 i
© L=xTMH xQ) + I (xTQx +u’Ru)dt , 78)
0 -

12 ..

‘where

H=10Iyn » Q=R=Iyn (792-b)

One of the most efficient methods commonly used for solving
this unconstrained LQ problem is the transition matrix approach
[1]. The approach converts an optimal control problem into a
linear TPBVP. By evaluating the transition matrix of this
boundary value problem, the problem can be converted into an
initial value problem which can readily be solved. In this study,

“the transition matrices were computed numerically using the

algorithm presented in [12].

~ An alternate approach is a Chebyshev approach adapted from
[6]. It also converts an optimal control problem into a linear
initial value problem. Then, the state and co-state vectors in the
linear homogeneous differential equations are expanded in Cheby-
shev series. By integrating the differential equations and
introducing a "Chebyshev operational matrix", the unknown
coefficients of the Chebyshev series may be determined which
enables the near optimal state and control trajectories to be
obtained. For comparison, this approach - henceforth referred to
as the "other Chebyshev" approach - was implemented.

" In addition to the transition matrix approach and the other
Chebyshev approach, the direct and improved Chebyshev-based,
approaches (with six term series) were implemented to solve the
example problem. These approaches are described in Sections 2.3
and 2.4. The Gauss-Jordan elimination routine was used to solve
the linear algebraic equations representing the conditions of
optimality in Equations (49) and (71).

Efforts were made to optimize the speeds of the computer
codes, all of which were written in "C" and executed on a SUN-
3/60 workstation. Simulation results for N=2,4,...,20 are
summarized in Table 1. For the transition matrix, direct and
improved Chebyshev-based approaches, the execution time is the
time to evaluate (i) the system response (control vector) at 100
equally-spaced points and (ii) the performance index. For the
other Chebyshev approach, the execution time is only. the time to
evaluate the system response. (The table reports execution time
for the transition matrix approach in seconds, and percent execu-
tion time relative to the time of the transition matrix approach for
the other, direct, and ’improved Chebyshev methods.)

The results show that the improved Chebyshev-based approach
is the computationally most attractive approach with the relative
error of the performance index less than one percent. In
comparison to the transition matrix approach, the improved
Chebyshev-based approach is increasingly more efficient for
N>2. For N=20, the improved Chebyshev-based results suggest
greater than 70 percent savings in execution time. For N=2, the
improved Chebyshev-based method is less efficient than the

Table 1. Comparison of Simulation Results.* ,
b Skmmfaom,nmuwwm
N Transifio_n . Other Direct Improved |
Matrix Chebyshev Chebyshev Chebyshev
PI V Time Pl%error %Time PI%error % Time Pl%error %Time

2 - 5.3591 0.50 -1.29E-03 144.0 3.21E-05 1200 3.21E-05 156.0

4 44.249 242 -2.56E-03 1719 7.67E-04 81.0 7.67E-04 67.8

6 153.75 7.06 3.67E-02 187.0 5.23E-03 73.4 5.23E-03 48.4

8 373.02 15.86 1.56E-01 193.8 1.84E-02 69.4 1.84E-02 40.7
10 741.61 29.04 1.76E-01  202.8 4.41E-02 70.0 4.41E-02 38.2
12 1299.3 50.44 1.74E-01 204.0 8.32E-02 67.4 8.32E-02 35.1
14 2086.3 81.46 1.61E-01 198.3 1.34E-01 64.8 1.34E-01 332
16 31428 12454 1.48E-01 197.0 1.94E-01 62.4 1.94E-01 30.8
18 45090 174.24 1.39E-01 199.6 2.61E-01 62.8 2.61E-01 304
20 6225.4 247.50 1.36E-01 191.8 3.31E-01 60.2 3.31E-01 28.7

269




transition matrix approach since the time to evaluate the integrals
in Equations (43a-b), a fixed time for any order system, is a
significant fraction of the overall computation cost. For high
order systems the principal computational cost is due to the
solution of the linear algebraic equation (71), which is less
intensive than the solution via the transition matrix method.

The direct Chebyshev-based approach offers less time savings
than the improved Chebyshev-based approach for high order
systems, but is still much faster than the transition matrix
approach. The direct Chebyshev-based approach is more efficient
than the improved Chebyshev-based approach when N<4 since the
integrals in Equations (43a-b) are easier to solve. Both the direct
and improved approaches have the same values for the
performance indices and control vectors because the terms of the
series used to approximate the state variables are the same.

The other Chebyshev approach is computationally more costly
than the transition matrix approach. The advantage of this
approach is that the relative error of the performance index does
not grow significantly when the system order increases. The time
is approximately twice the time of the transition matrix approach.

The time histories of the state and control variables for N=2
are plotted in Figures 1a and 1b, respectively. The curves from
the transition matrix and direct/improved Chebyshev-based
approaches drawn in these figures overlap for the scale shown.
Hence, the direct and improved Chebyshev-based solutions
achieve convergence on the trajectories of the state and control
variables and on the value of the performance index.

4. Conclusions

This paper presents two state parameterization methods based
on finite-term Chebyshev representations of the state trajectory.
Such representations are used for predicting the optimal state and
control trajectories of unconstrained linear time-invariant
dynamic systems with quadratic performance indices. In one
method, the direct Chebyshev method, the time history of each
state variable is approximated by a shifted Chebyshev series. The
unconstrained LQ problem is then converted to an equality
constrained QP problem that minimizes the performance index
and satisfies the state initial conditions via Lagrange multipliers.
In the second method, a modified and improved Chebyshev
method, the time history of each state variable is represented by
the superposition of a shifted Chebyshev series and a third order
polynomial. The inclusion of the auxiliary polynomial improves

State Variable

[ T T
0.0 0.2 0.4

L]
0.6 0.8 1.0

Time

Figure la. State Variable Histories of Example (N=2).
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the speed of convergence and the "differentiability” of the
representation in comparison to a standard Chebyshev series. In
both methods, the necessary condition of optimality gives a
system of linear algebraic equations from which the unknown
state parameters can be solved. The results of simulation studies
demonstrate computational advantages of the improved
Chebyshev method relative to the direct method, a previous
Chebyshev method and a standard state transition matrix
approach.
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Figure 1b. Control Variable Histories of Example.




