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Abstract

Trajectories (of generalized coordinates and control variables) of lumped-
parameter, dynamical systems are simulated using a suboptimal control approach. The
approach is a Fourier-based approximation technique that converts an optimal control
problem into a nonlinear programming problem that can be solved using well-developed
optimization algorithms. Results of simulation studies show that the approach can be
used to predict suboptimal trajectories of high dimension, nonlinear systems with
constraints. '

1 Introduction

The application of optimal control theories to many physical systems, including
robotic manipulators and structural systems, has been driven by the demand for systems of
high performance, coupled with the availability of ever more powerful digital computers.
However, the implementation of optimal control theories, especially for high dimension,
nonlinear systems, has been hindered by numerical difficulties (as discussed below.)

In the classical development, the optimal control of unconstrained, linear systems
with quadratic performance indices can be determined via the solution of the Riccati
equation. However, for general dynamical systems (i.e., systems with nonlinearities
and/or constraints) analytically tractable approaches, such as offered by the Riccat
equation, are usually not available. For the general case, the variational method of
optimal control theory must be applied to determine a set of necessary conditions for
optimality [1-3]. These necessary conditions lead to a (generally nonlinear) two-point
boundary-value problem (2PBVP) of state-costate equations that must be solved to find an
explicit expression for the optimal control.
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There are two principal difficulties in solving the 2PBVP. First, the boundary
conditions for the state-costate equations are given at separate ends (initial conditions are
known for state equations, terminal condition are known for costate equations). As a
result, the state-costate equations often must be solved by iterative integration algorithms.
Second, different types of constraints or penalty functions on the terminal States and/or
terminal time lead to different types of 2PBVP which, in general, require different
numerical solution methods. As a result, there is usually a significant demand on
programming effort.

Various numerical techniques, represented by gradient-based methods and dynamic
programming methods, have been proposed to help overcome the above problems.
Gradient methods include algorithms such as steepest-descent and variation of extremal
(Newton type) techniques. A drawback of these methods is their sensitivity to
computational errors, which often leads to their failure in solving high order optimal
control problems. Dynamic programming represents another class of methods. However,
its application is often limited due to dimensionality problems [4].

The approach employed in this paper draws upon the power of nonlinear
programming to determine suboptimal (i.e., near optimal) trajectories of general
dynamical systems.

2 Methodology

Consider a dynamical system represented by a coupled set of nonlinear, second-order
differential equations:

FIX(n), X(1), X, 11 = U@) 1)

where X(z) is an N dimensional vector of generalized coordinates, U(r) is an N
dimensional vector of control variables, and superscript dot represents differentiation with
respect to time, . Many dynamical systems have the same number of generalized
coordinates and control variables, and can be represented by equation (1). Typically,
initial conditions on X(0) and X(0) are specified.

The optimal trajectory, X*(z), X*(z), and X*(z), is defined as the admissible
trajectory that minimizes the performance index, J,

7 = EXGp X, 51 + [T GIX(, X, U, A @

subject to constraints, where [ 0, 1,] is the time interval of the trajectory, I, being the
terminal time. Two different types of constraints can be identified, i.e., inequality
constraints:
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CIX(1), X(1), U] 20 3)

and terminal constraints: -
DIX(1), X(1), X(1), 11 =0 | “@

It is assumed that (i) an optimal trajectory exists and is unique, and (ii) )_(*( t) and )_(* (1)
of the optimal trajectory are continuous and X"(¢) is piece-wise differentiable.

2.1 Fourier-Based Approach

Without resorting to variational methods, Yen and Nagurka [5] have proposed a
Fourier-based approach to generate the suboptimal trajectories of dynamical systems. The
basic idea is to approximate each generalized coordinate by the sum an auxiliary
polynomial and finite terms of a Fourier-type series. For example, the i-th generalized
coordinate is represented by ‘
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X;(t) = P(1) + Y a,,cos + 3 b, sin
m=1 m=1

where M is the number of terms included in the Fourier-type series, and P;(t) isa
fifth-order auxiliary polynomial

Pi(t) =[=6(Pio=Pip)=3(Pio + B )t= 2 (By = F 15
L4 - 3.. b id
* [15(Pig =Py + (8P + TP Y1+ 5P~ Py f10t
+ [-IO(P,-O-Pif)—(6Pio+4P,-f)tf--2-(3P,-o—Pif)t)%]‘c3

s 2 :
+ [SPof]1T + [Ppglt + Py ©

where © = ¢/ I, and P, = P;(0), Py =P, (1), and similarly for their time derivatives.
The .bf)undaxy values for the auxiliary polynomial are determined from the boundary
conditions of the generalized coordinates and their rates applied to equation (5) as
follows:

PiO = XiO - zaim ’ P,f = le - Za‘-m (7a,b)
1
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. . M * * M

Py = X;p + Zzﬂbim ’ Pif = X,'f + szbim (8a,b)
m=1 l:f m=1 tf

.o . M 2 ve . M 2

Py = X0 + 4Y T QG » Py = X, + 4Y mr i (a,b)
m=1 t} m=1 I]%

where Xy =X, (0), X;; = X, (1), and similarly for the corresponding time derivatives. In

general, X, isfree. Depending upon equation (4), X, X, and X‘-f may be free or
constrained.

The free boundary conditions and the coefficients of Fourier-type series of all
generalized coordinates, as well as the terminal time (if it is not fixed), are free variables.
These free variables are adjusted simultaneously by a nonlinear programming method
such that the performance index is minimized without violating the constraints (3). Inthe
simulation studies of this paper, a nonlinear Simplex algorithm implemented on a PC was
used to solve the nonlinear programming problem.

This method is a suboptimal (i.e., near optimal) approach that becomes truly optimal
only as the number of terms in the Fourier-type series used to represent the generalized
coordinate trajectories approaches infinity. As more terms are included, the suboptimal
performance index converges to its minimum value, i.e., the optimal performance index.

It is possible to relax the assumption above that the number of control variables is
equal to the number of degrees of freedom of the system. There are two possible
exceptions to this assumption, as follows:

1. The number of control variables is greater than the number of generalized
coordinates. A system with this characteristic is called "redundant." To apply the Fourier-
based method to a redundant system, the time history of each redundant control variable is
represented by a finite term Fourier-type series. The coefficients are then determined
together with the other free variables to minimize the performance index.

2. The number of control variables is less than the number of generalized
coordinates. A system of this type usually can be partitioned into a subsystem:

E [X(1), X(v), X(o), 1] = U®) (10)

involving a vector of control variables U(z) of dimension L, and a complementary
subsystem

FolX(1), X(1), X, 11 = 0 an

that is free of control variables. (This is the case of Example 2 below.) From equations
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(10) and (11) a set of L generalized coordinates is chosen such that the remaining
generalized coordinates (i.e., N - L of these variables) can be calculated from equation
(11) (e.g., by integration). Each of the L generalized coordinates is approximated by a
Fourier-type function (5), and the control variables are computed from egquation (10).
Note that the terminal conditions still must be satisfied simultaneously by equations (10)
and (11).

3 Simulation Studies

3.1 Example 1

This example is adapted from [2, Case A, pp. 198-202] . The dynamical system is a
linear, second order system described by:

X +X@) =U@) (12)
with initial conditions
X(0)=0 , X(0)=0 (13)

In [2] equation (12) is written as a system of two first order state equations in terms of
X,(t) = X(1) and X (1) = X(1).

The system is to be controlled such that its control effort, defined by the following
performance index, is minimized.

12
J = EjoUz(t)dt (14)

The terminal constraints are
X,(2)=5, X,(2)=2 (15)

The admissible states and control variables are not bounded. The closed-form optimal
solution (derived in [2]) is

X; (1)

]

7.2891-6.103 +6.696 ¢ —0.593 ¢ (16)

X;() = 7.289-6.696¢~0.593 ¢! a7

This problem was solved using the Fourier-based approach, i.e., X,(r)was
represented by equation (5) with a one-term (M = 1) Fourier-type series. The performance
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Table 1: Suboptimal Values for Example 1 -
and Comparison to Optimal Performance Index.

a -1.9564395E-03
g b 1.4421728E-03
S %,0) 6.1025137E+00
E x@ 5.0000000E+00
E‘ X,(2) 2.0000000E+00
@ %,(2) 3.4798053E+00

J 1.675072E+01

Optimal J 1.674543E+01

% Error < 0.04%

index was evaluated by means of Simpson’s composite integral formula with a step size of
1/30 (consistent unit of time).

The optimal values of the free variables and the performance index are listed in
Table 1. From the table it can be seen that the suboptimal solution achieves high
accuracy, although only a one-term series was used.

The time histories of U(t) and X,(t) of the optimal solution (from the closed-form
expressions) and the suboptimal solution are plotted in Figures 1a and 1b. The time
history of the auxiliary polynomial is also plotted in Figure 1b. These figures show that
the optimal and suboptimal solutions are essentially coincident. Furthermore, Figure 1b
shows that the auxiliary polynomial approximates the optimal (and suboptimal) solutions.
This phenomenon is typically exhibited for smooth optimal trajectories, which occur for
most optimal control problems.
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Figure 1: History of (a) Control Variable U, and
(b) State Variable X, and Auxiliary Polynomial P
for Example 1.
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3.2 Example 2

This example is adapted from [2, pp. 405-407]. The state equations of the system are
highly nonlinear and coupled: -

5(1(:)=-—2[X1(z)+o.25]+[X2(z)+o.5]exp[isf.’_(ﬁ]—[xl(r)+0.25]U(t)(18)
X, (1)+2

X,(£)=0.5-X, (1)~ [X, (£)+0.5 [ZSX‘(I) (19)

2L)=U, 2 2(1)+0.5]exp 5(-1_(1‘_):-—2]

and are derived from a model of a continuous stirred-tank chemical reactor described in
[7]. (Here, exp [y] = e¥.) The initial conditions are:

X,(0)=005 , X,(0)=0.00 (20a,b)

The performance index is
0.78
J=j0 [X2(2)+X2(1)]dtr @1

Two sets of constraints are imposed. The first set bounds the control as follows:

-10<sU@) <10 for t e [0 0.78] (22)

The second set of constraints fixes the terminal state as follows:
X,(0.78)=0.0 , X,(0.78)=0.0 | (23)

This example addresses a system with more generalized coordinates (X, and X,) than
control variables (U). To solve this problem, X, is approximated by the sum of a fifth
order polynomial and a two term Fourier-type series. X, (0.78) is known from the second
state equation with X, (0.78) = X, (0.78) = 0.0, whereas X, (0.78) is free.

The control variable is a function of X,(1), )'fl(t),. and X,(z). X,(t) can be obtained
explicitly in terms of the approximation for X,(t) and X,(t) directly from the second state
equation. X(z) can then be found by direct differentiation. Thus, the control variable can
be determined, its constraints can be checked, and the performance index can be
evaluated.

In [2] this problem was solved by the gradient projection method. The values of the
performance index as well as the terminal values of the generalized coordinates are given
in Table 2. The suboptimal values agree closely to the optimal results.
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Table 2:  Comparison of Results for Example 2.

METHOD J X,(0.78) X,(0.78)
Gradient Projection 0.0022 -6.167E-06 | -0.631E-06
Suboptimal Method 0.0021 < 1.0E-09 < 1.0E-09

The time history of the control variable and the history of the generalized coordinates
are plotted in Figures 2a and 2b, respectively. The control variable determined from the
gradient projection method shows two nondifferentiable points at the boundaries of the
saturation regions of the control variable. In contrast, the suboptimal control is
differentiable for the entire time, although it approaches the regions of saturation
associated with the optimal solution. Despite the differences in the control histories, the
generalized coordinate histories for the two methods are close.

This example demonstrates the application of the Fourier-based method for the
solution of a constrained, nonlinear, optimal control problem. The complete satisfaction
of the final boundary conditions as well as the close match of the performance index to
that of an- independent method (the gradient projection method) verify the method’s
effectiveness.

4 Discussion

In the Fourier-based method, the derivatives of the generalized coordinates are
obtained by analytical differentiation of equation (5), and thus the system equations (1)
are treated as algebraic equations in evaluating the control variables. As such, the
Fourier-based method is an inverse dynamic approach. It finds the optimal solution by
adjusting the trajectory itself and the control variables become the "outputs."”

In contrast, gradient-based methods are direct dynamic approaches. An important
consequence of this distinction relates to numerical error. The direct dynamic approach
involves integration of differential equations in which computational errors often tend to
propagate. In fact, it is the accumulation of errors that frequently leads to failure in
solving optimal control problems for high dimension systems. In an inverse dynamic
approach, the control variables are obtained by straightforward algebra. The only
significant computational error is due to the numerical integration of the performance
index. Usually, this error can be controlled and estimated easily.
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The Fourier-based method offers efficient utilization of computer memory. It is
distinct from dynamic programming methods in the way that it approximates the time
history of the trajectory. Dynamic programming methods typically divide the time history
of the generalized coordinates into a finite number of intervals. Optimality is achieved by
finding the optimal values of the generalized coordinates at each time interval. In
contrast, the Fourier-based method approximates the time history of each generalized
coordinate by a single function. Optimality is found by adjusting a (typically) much
smaller number of parameters for the function(s). The computer memory requirement is
therefore greatly reduced.

The quality of the Fourier-based suboptimal solution can be assessed by checking if
it satisfies the necessary conditions for optimality which are derived by variational
techniques. In practice, this verification can be done by substituting the suboptimal
solution into an appropriate, standard, optimal control algorithm and determining if the
termination criterion of the selected algorithm can be satisfied.

An alternative empirical approach to verify the optimality is to append another term
of the Fourier-type series to’ the previous solution and re-execute the algorithm.
Additional terms can be added, on a term by term basis, until the value of the performance
index converges, indicating that the optimal solution has been reached.

Finally, it is worth noting that simulation results [5] suggest that the Fourier-based
method is not suitable for exact solution of bang-bang control problems. However, the
suboptimal solution provides a continuous and therefore physically implementable control
law, - whereas bang-bang control is a mathematical idealization that can only be
approached in practice. The accuracy of the method can be improved by increasing the
number of terms of the series, although this increases the computational cost since the
speed of convergence for bang-bang control problems is slow.

5 Summary

This paper describes a conceptually simple method for producing suboptimal
trajectories of dynamical systems represented by deterministic, lumped-parameter models.
The method is based on a Fourier-type series approximation of each generalized
coordinate that converts the optimal control problem into an algebraic nonlinear
programming problem. Due to its inverse dynamic nature, the method avoids many of the
numerical difficulties typically encountered in solvin g standard optimal control problems.

The results of computer simulation studies demonstrate that the Fourier-based
approach (i) is easy to implement, requiring minimum analytical and programming effort,
(ii) is capable of handling various types of constraints, and (iii) is quite effective for
solving non-bang-bang type control problems. Perhaps the most significant advantage of
the approach is its ability to tackle linear as well as nonlinear high dimension systems.
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