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that converts the optimal control problem into an algebraic nonlinear programming
problem. Due (o its inverse dynamic nature, the method avoids many of the
numerical difficulties typically encountered in solving standard optimal control
problems. Furthermore, the method is easy to implement, capable of handling
various types of constraints, and quite effective for solving non-bang-bang type con-
trol problems. The results of computer simulation studies compare favorably to op-

timal solutions obtained by closed-form analyses and/or by other numerical

schemes.

Introduction

Optimal control theories are playing an increasingly impor-
tant role in the design of modern systems. This role has been
spurred by the demand for systems of high performance,
especially as more powerful computers become readily
available. However, serious analytical and numerical dif-
ficulties, such as accumulation of roundoff and truncation er-
rors, need to be overcome before optimal control approaches
will find widespread practical implementation, especially for
high order, nonlinear systems.

In the classical development, the variational method of op-
timal control theory, which typically consists of the calculus of
variations and Pontryagin’s methods, can be used to derive a
set of necessary conditions that must be satisfied by an op-
timal control law and its associated state-costate equations
(sometimes called state-adjoint equations) (Athans and Falb,
1966; Kirk, 1970; Sage and White, 1977). These necessary con-
ditions of optimality lead to a (generally nonlinear) two-point
boundary-value problem (2PBVP) that must be solved to
determine an explicit expression for the optimal control.

There are two principal difficulties in solving the 2PBVP.
First, the boundary conditions for the state-costate equations
are known at separate ends (initial conditions are given for
state equations, terminal conditions are given for costate
equations). As a result, the state-costate equations often must
be solved by iterative integration algorithms. Second, dif-
ferent types of constraints or penalty functions on the terminal
states and/or terminal time lead to different types of ZPBVP.
In general, the solution of these distinct problems requires dif-
ferent numerical methods, with the concomitant drawback of
increased programming effort.

Various numerical techniques, such as gradient-based
methods, have been proposed to overcome the above prob-
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lems. Gradient methods include algorithms such as steepest-
descent and variation of extremal (Newton-type) techniques.
For these methods, a termination criterion is usually found by
trial-and-error and convergence very often depends on the in-
itial guess. A more serious drawback of gradient methods is
their sensitivity to computational errors, which often leads to
their failure in solving high order optimal control problems.

Dynamic programming represents another class of
methods. From a computational perspective, dynamic pro-
gramming, which is based on the principle of optimality, is
particularly well suited for solving allocation problems and se-
quential decision problems. In contrast, it is not well suited for
solving optimal control problems, where it is necessary to
quantize the state and control variables into a finite number of
admissible values. The problem is that the computer memory
requirement becomes prohibitively large for high order
systems. Bellman (1957), the father of dynamic programming,
called this problem the ‘‘curse of dimensionality.” In addi-
tion, dynamic programming is not effective in handling prob-
lems with free terminal time. Many strategies, such as quasi-
linearization, grid-manipulation, etc., have been proposed to
solve these difficulties, but in general they are successful only
in limited cases. In summary, the solution of optimal control
problems involving high order, nonlinear systems remains a
challenge.

In the area of optimization design, on the other hand, well-
developed nonlinear programming techniques such as
Powell’s method and the variable metric method have been
applied successfully in many engineering applications. There
exists a number of general purpose nonlinear programming
computer codes (e.g., Belegundu and Arora, 1985) which
design engineers have used to determine optimal equipment
specifications, optimal operating conditions, optimal features
of plant expansion, etc.

The approach proposed in this paper draws upon the power
of nonlinear programming to determine optimal trajectories
of high order, nonlinear systems. Central to the idea is the ap-
proximation of the time response of each generalized coor-
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dinate by the sum of a polynomial in time and finite terms of a
Fourier-type series. In this way, it is possible to formulate the
problem as an algebraic nonlinear programming problem with
the coefficients of the Fourier-type functions, the free bound-
ary conditions, and the terminal time, if it is free, as the
variables adjusted in minimizing the performance index, i.e.,
the objective function of the optimization. An important
benefit of recasting the problem as a nonlinear programming
problem is that it eliminates the requirement of solving a
2PBVP. In contrast to dynamic programming, the proposed
method does not require massive computer storage. It thereby
offers a streamlined approach for solving general optimal con-
trol problems.

Background

Fourier and polynomial approximation techniques are used
commonly in engineering. For instance, in the analysis of
structures, periodic forcing functions are often expanded in
Fourier series enabling the steady-state response of a struc-
tural model to be determined. Although theoretically a
Fourier series representation of a general periodic forcing
function requires an infinite number of terms, in practice the
forcing function may often be approximated with sufficient
accuracy by a relatively small number of terms as long as the
terms close to the resonant frequencies are not neglected.

In planning optimal motions of robotic manipulators,
Schmitt et al., (1985) have proposed an approach based on the
Raleigh-Ritz scheme. In this approach, the trajectory of each
degree of freedom of the robotic manipulator is approximated
by the sum of a sequence of known functions and a third order
polynomial whose coefficients are functions of the initial and
terminal conditions. The necessary conditions of optimality
are obtained by setting the first partial derivatives of the per-
formance index with respect to the coefficients of the known
functions equal to zero. This leads to a system of nonlinear
algebraic eguations which can be solved by any of several
numerical techniques.

In (Schmitt et al., 1985) the Raleigh-Ritz solution does not
necessarily converge to the optimal solution (since the approx-
imation functions are not all functionally complete) and the
approach does not handle non-fixed terminal state problems
effectively. Furthermore, the inclusion of system constraints is
not discussed and the approach is not generalized for applica-
tion to dynamic systems other than robotic manipulators.

This paper develops a Fourier-based method which
generalizes the approximation technique used in (Schmitt et
al., 1985) to solve for the optimal trajectories of nonlinear
dynamic systems. By implementing a nonlinear programming
algorithm, the requirement of finding a closed-form expres-
sion for the necessary and sufficient conditions of optimality
is eliminated. This minimizes the requisite analytical work. As
demonstrated by examples, the method can be used to
generate optimal trajectories of free, fixed, and constrained
optimal control problems.

A specialization of this approach to linear structural
systems with quadratic performance indices has been
developed (Yen and Nagurka, 1988). For such systems, the
necessary and sufficient conditions of optimality can be de-
rived as a system of linear algebraic equations, which can
readily be solved. The results of simulation studies suggest
that, in comparison to a standard Riccati equation solver, this
Fourier-based method is more efficient in computation and
more robust in handling heavily penalized terminal states
while maintaining satisfactory accuracy.

Methodology

Consider an N degree-of-freedom dynamic system described
by the following system of differential equations:
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F[X(1), X(), X(), 1=U(),
X(0)=X,, X(0)=X, (1

where X (7) is an N dimensional vector of generalized coor-
dinates, U(¢) is an N dimensional vector of control variables,
F is the set of ordinary differential equations used to describe
the system behavior, and superscript dot represents differen-
tiation with respect to time, f. Many dynamic systems, in-
cluding structural systems and robotic manipulators, have the
same number of generalized coordinates and control
variables, and can be represented by equation (1). Physically,
equation (1) represents a dynamic system which is actively
controlled, i.e., each degree of freedom is completely con-
trollable regardless of the coupling between generalized coor-
dinates, The control vector can be uniquely determined once
X (1), X(1), and X (1) are known. (The application of the pro-
posed approach to dynamic systems which cannot be
represented by equation (1) is discussed later.)

The optimal trajectory, X*(¢), X*(#), and X*(#), is defined
as the admissible trajectory that minimizes the performance
index, J,

J=E[X(t), X(tp), 1]+ Eo" G[X(), X(1), U(), fidt (2

subject to constraints, where [0, £] is the time interval of the
trajectory. Here, E represents the cost associated with the ter-
minal states and G represents the cost associated with the tra-
jectory. Two different types of constraints can be identified,
i.e., inequality constraints, C:

CIX(), X(1), U(n]=0 3
and terminal constraints, D:
D[X(z)), X(tp), X(tp), 1,1=0 )

It is assumed that (i) an optimal trajectory exists and is unique,
(ii) X* (¢) and X*(#) of the optimal trajectory are continuous,
and (iii) X*(r) is piecewise differentiable. As mentioned in the
Introduction, the necessary conditions for optimality can be
derived by variational methods, such as Pontryagin's
minimum principle, leading to a 2PBVP which is usually dif-
ficult to solve.

Proposed Approach

The optimal control problem specified above can be con-
verted into a nonlinear programming problem by directly
representing each generalized coordinate by a Fourier series.
In particular, by assuming the optimal profile of the ith
generalized coordinate, X7(r), to be continuous in the interval
[0, £/, its Fourier series, X;(¢), will converge to X7(¢) in (0,¢,),
ie.,

XN =X/ =ap+ Y afy cos 2ot
mw 'rf

+ Y blsin 2’:"“ 5)

m=1] '

This approach, however, has the following disadvantages:

1. Convergence is guaranteed only in (0,,) unless X} () has
identical boundary values (Tolstov, 1962, p. 20). To satisfy the
requirements on arbitrary boundary conditions (e.g., the
specified initial conditions), convergence should extend from
(0,17 to [0,2].

2. Although X/(t) converges to X7 (1), there is no guarantee
that the derivative of X/(7) will converge to the derivative of
X?t(t). Convergence on the derivatives is necessary since the
first and second derivatives of the generalized coordinates ap-
pear explicitly in the governing differential equations of the
dynamic system.
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3. The rate of convergence of the Fourier series depends on
the optimal solution, X (t). This rate can be quite slow.

One method to overcome the above difficulties is to append
to the series a linear function of time such that

t - 2mmt
X3(0) = X701 = X0 —+a5+ Y afcos -
o m=1 f
+ E b, sin e 1 (6)
mm=l i K
which can be rewritten as
= 2mwt o 2mnt
Y, () =ag+ E Qjm COS e E by sin st )
mal t m=1 ty
where
t
Y.-(f)=X?(f)—[XF(!,r)—X.-(0}]r— (8)
i
is a linear function of time with the property
Yi(0)=Y(z) ©9)

This property of identical boundary values implies the
following:

1. The convergence interval of the Fourier series of Y, (f)
extends from (0,¢) to [0,,] (Tolstov, 1962, p. 20).

2. The first derivative (calculated by term-by-term differen-
tiation) of the Fourier series of Y, () converges to Y;(¢) in the
interval of (0,¢7) (Tolstov, 1962, p. 133).

3. The rate of convergence is more rapid since Y;(¢) can be
viewed as a function with period , (Tolstov, 1962, p. 144).

It should be noted that equation (9) only guarantees that the
derivative of the Fourier series of Y;(f) converges to Y;(7) in
(0,¢/). This convergence interval can extended to [0,] if Y;(¢)
has the same value at the endpoints (see Tolstov, 1962, p. 133).
That is, higher order convergence on the boundaries can be
achieved by equating the boundary values of higher order
derivatives. In summary, by adding a suitable linear function
of time to X’(t), a new periodic function, Y;(¢), can be
generated which has equal values at the boundaries of [0./].
Consequently, convergence on the boundaries and term-by-
term differentiation can be guaranteed, and the rate of con-
vergence of the Fourier coefficients can be improved.

Similarly, by adding a suitable polynomial of time to X7(¢)
it is possible to make the function as well as several of its
derivatives have equal values at the endpoints of the interval.
By doing this, the order of convergence on the boundaries, the
order of the term-by-term differentiation, as well as the rate of
convergence can be increased. For example, if

Y (0)=Y(¢y) (10)
Yi(0)=Y;(t) (11
Y,0)= ¥, (1) (12)

then it can be shown that over the interval [0,¢/], the first and
second derivatives of the Fourier series of Y;(#) will converge
to Y,(r) and ¥,(r), respectively. The rate of convergence of
the Fourier coefficients of Y,(r) also becomes three orders
faster than the rate of convergence of the Fourier coefficients
of X7(¢) (Tolstov, 1962, p. 130).

Equations (10)-(12) can be satisfied by appending a third
order polynomial (without the constant term) to X7(i).
However, in the approach proposed here each generalized
coordinate is represented by the sum of a fifth order
polynomial and a finite-term Fourier-type series. A fifth order
polynomial is employed since a finite-term Fourier-type series
T uces a discrepancy between the true optimal trajectory
and jts Fourier-type approximation. This discrepancy, in
Beneral, violates the initial condition requirements on X; and
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)'(,- specified in equation (1). By raising the order of the
polynomial from three to five, the five coefficients of the
polynomial can be adjusted to satisfy equations (10)-(12) as
well as the constraints imposed by the initial conditions of the
generalized coordinate X; and its derivative X,. (There are on-
ly five coefficients since the constant term is not included in
the polynomial, but rather the Fourier-type series.)

Thus, the basic idea of the proposed approach is to approx-
imate each generalized coordinate by the sum of a fifth-order
polynomial and a finite-term Fourier-type series. For example,
the ith generalized coordinate, X (¢), is represented by

X (1) =P (1) + N (1) (13)
where
5
Pi(1)= Y, pyt (14)
i=0
and
M M
M= Y ay, cos 2?’" + Y by sin 2’:'” (15)
m=l f m=l] !

where M is the number of terms included in the Fourier-type

series. Here, the constant term of the Fourier-type series has

been included in the fifth-order auxiliary polynomial, P, (f).
The boundary condition requirements can be written:

X;(0) = Pi(0)+N(0) (16)
X, (t) = Pi(t;) +N(y) an
X,(0) = P0)+7(0) (18)
X.(ty) = Pity) +Adty) (19)
X000 = B(0)+X,0 (20)
X,ty) = By +Ny) (21

These equations can be used to determine the coefficients of
the auxiliary polynomial in terms of the coefficients of the
Fourier-type series and the boundary values of X, X, and X;.
Solving the above boundary condition equations gives the
following closed-form expressions of the six coefficients:

M
Pio=Xo— E Dim

(22)
m=|
" M
Pa=Xg— E mb, (23)
f m=1
1 272
pr'Z_TXﬂ"' Iz E me iy, (24)
i m=l
M
Pa=10(Xy—Xg)+20x 3, mb,,
m=1
M
—4x2 Y mag,|t7} — (6K +4X )72
m=l
3 1 .
- — e — =1
( 5 Ry XU,) t; 25)
M M
Pia=[15(Xo—X;) =307 Y mb, +27* ) m? ali7*
m=] mm=]
A . 3
+(8X o +TX 7 + (—2— Xy —X,-',) 1t (26)
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M
Pis=[6(X;— Xip) + 47 3 mb)t7*

m=1

= (3Xjp+3X 7t = % K- X3 @7
where Xy =X;(0), X;;=X;(,), and similarly for the corre-
sponding time derivatives. The advantage of such a formula-
tion is that the given initial conditions, X, and X, can be
embedded naturally in the Fourier-based approximation. This
feature also applies for problems with fixed (i.e., known) ter-
minal configuration variables and rates.

Characteristics of Proposed Approach

Simultaneous Adjustment of Free Variables. In the im-
plementation, the free boundary values, the Fourier-type coef-
ficients, a,,, b,,, and the terminal time, t, (if it is not fixed)
are adjusted simultaneously by a nonlinear programming
method such that the performance index is minimized without
violating the constraints. Note that the terminal time is treated
identically as other free variables. In contrast, variational
methods require the formulation of an additional necessary
condition for optimal terminal time. This further complicates
variationally based numerical algorithms.

Convergence. The approach is a near optimal method
since only finite terms of Fourier-type series are used to
simulate the trajectory. However, when the number of terms,
M, approaches infinity, the near optimal performance index
converges to a minimum value, i.e., the value of the optimal
performance index. In general, this also implies that the near
optimal trajectory converges to the optimal trajectory;
however, for the special case of bang-bang control, the near
optimal trajectory does not converge to the optimal solution at
the time(s) of control variable switching. Convergence is
guaranteed at all other times. (Example 2 explores this
characteristic.)

Appropriate Approximation Functions. Although full ex-
pansion Fourier-type functions have been suggested, half sine,
half cosine and other eigenfunctions can be used with the ap-
propriate auxiliary polynomial to approximate each general-
ized coordinate time history as long as the near optimal trajec-
tory converges to the optimal trajectory when the number of
terms of the eigenfunctions approaches infinity. Any or-
thogonal function which satisfies the requirements on con-
vergence at the boundaries and term-by-term differentiation
can be used as an approximating function.

Order of Auxiliary Polynomial. If X, (1) does not appear
explicitly in equation (1), the order of the corresponding aux-
iliary polynomial, P,(¢) can be reduced from five to three. In
this case, U;(#) and the performance index are not functions
of X,(r), and there is no necessity to achieve convergence in
the “‘acceleration”” profile X, (/).

Inverse Dynamic Method. Since the derivatives of the
generalized coordinates are obtained by direct analytical dif-
ferention of equation (13), the system equations (1) are treated
as algebraic equations in evaluating the control variables. The
computational scheme of the proposed approach is therefore
an inverse dynamic method. As a result, no integration of dif-
ferential equations (such as state and costate equations) is re-
quired. The computational cost is thus significantly reduced.
(More will be discussed about this later).

Generalization of Proposed Approach

It was assumed above that the number of control variables
is equal to the number of generalized coordinates of the
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system. There are two possible exceptions to this assumption,
as follows:

|. The number of control variables is greater than the
number of generalized coordinates. Systems with this
characteristic are called ‘‘redundant’ systems. To apply the
near optimal method to redundant systems, the time history of
each redundant control variable is represented by the sum of a
linear function and a finite term Fourier-type series (such as
equation (6)). The coefficients are then determined together
with the other unknowns to minimize the given performance
index.

2. The number of control variables is less than the number
of generalized coordinates. Systems of this type usually can be
partitioned into a subsystem:

F,[X(0), X(1), X(1), 1=U() (28a)
driven by a vector of control variables U(¢) of dimension L

equal to the number of control variables, and a complemen-
tary subsystem

F5IX (1), X (1), X (1), 1]=0 (28b)
that is free of control variables. From equations (28a,b) a set
of L generalized coordinates is chosen such that the remaining
generalized coordinate variables (i.e., N-L of these variables,
where N is the total number of generalized coordinates) can be
calculated from equation (28b) (e.g., by integration). Each of
the L generalized coordinates can be approximated by a
Fourier-type function (13), and the control variables can be
computed from equation (28a). Note that the computational
cost of solving equation (284) may depend upon the selection
of the L variables to be approximated. Furthermore, the re-
quirements on terminal conditions still must be satisfied by
equations (28a,b).

Nonlinear Programming Problem

The performance index of equation (2) can be approximated
quite simply using the trapezoidal rule by

K
J=EX (1), X (1), + Y GIX(kan,X(kan),U (kAn),kaal
k=1

(29)
where K is the number of steps or intervals, and Ar=1t,/K. If
each generalized coordinate is represented by the Fourier-type
approximation of equation (13), then equation (29) can be
rewritten as

J=6(Z) (30)

where © reprelsents a scalar function and Z consists of the
coefficients of the Fourier-type series for all generalized coor-
dinates, free boundary conditions for all generalized coor-
dinates, and the terminal time (if free). Note that time does
not appear explicitly in equation (30), and the problem has
been converted into a nonlinear programming problem of the
following general form:

Minimize ©(Z) subject to the constraints:
o[X(kAD), X(kan, U(kan)=0 for k=1, ..., K (31)

Constraints (31) represent constraints (3). The terminal con-
straints (4) have been included in the formulation of the aux-
iliary polynomial.

The constrained minimization problem is solved using
algorithms for the unconstrained problem with inclusion of
penalty functions on the violation of constraints (31). Since
the equations (30) are often nonlinear and complicated, an
analytical expression of the gradient of the performance index
is usually not available (or is difficult to obtain). For this
reason only nongradient optimization methods are con-
sidered. In the simulation studies of the following section, two
nongradient methods have been implemented on an 1BM
PC/XT (with 8087 coprocessor) to solve the nonlinear pro-
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gramming problem. These are the Powell (1964) and the
Simplex (Nelder and Mead, 1965) methods. Results obtained
from both methods have been found to be quite close. For a
more complete discussion of nonlinear programming and op-
timization, the reader is referred to (Beveridge and Schechter,
1970; Fox, 1971; Avriel, 1976; Siddal, 1982; Reklaitis, et al.,
Igtsi:ce variational-based numerical algorithms for optimal
control, nonlinear programming algorithms only guarantee
determination of a local minimum. The identification of the
global minimum usually requires the trial-and-error introduc-
tion of different initial guesses. (Another approach is to
employ algorithms which incorporate local minimum
avoidance mechanisms, such as recently developed by (Cornan
et al., 1987).) In the simulation studies reported below, the in-
jtial guess of the nonlinear programming problem was selected
by setting the Fourier-type coefficients to zero, i.e., the initial
guess was represented by the auxiliary polynomial whose coef-
ficients were determined assuming that unknown boundary
values of X;, X,, and X, were set to zero. Using this pro-
cedure, a near optimal performance index was identified for
each of the example problems studied.

Simulation Results

Example 1: This example is adapted from (Kirk, 1970, pp.
198-202) and is divided into three subproblems. The dynamic
system is a linear, second order system described by:

X +X()=U(r)

with initial conditions

X(0)=0, X(0)=0 33)
In (Kirk, 1970) equation (32) is written as a system of two first
order state equation in terms of X,(1)=X(1) and
Xy(t) = X(r). The system is to be controlled such that its con-
trol effort, defined by various performance indices, is
minimized. The admissible states and control variables are not
bounded.

The three subproblems (identified as Cases) and their
closed-form optimal solutions, derived in (Kirk, 1970), are
listed below.

(32)

Case A. Peformance Index:
1 2
J=— |, ewa 34
Terminal Constraints:
X1(2)=5, X3(2)=2 (35)
Solution:
X1(0)=7.289t—6.103 + 6.696e ' —0.593¢" (36)
X3(1)=7.289 - 6.696e~' —0.593 ¢’ (37
Case B. Performance Index:
1 1 1 2
J“T [X,{Z)—S]‘+—i- [.J\(z(z)—zlh-T L L2 (t)dr (38)
Terminal Constraints:
None.
Solution:
X1(6)=2.697t—2.422 + 2.560e ' — 0.137¢' (39)
X3(0)=2.697 — 2.560e~" —0.137¢' (40)
Case C. Performance Index:
1 2
7= |, o a1
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Terminal Constraints:

X, (2)+5X,(2)=15 (42)

Solution:
X;(1)=0.894r—1.379+1.136e " + 0.242¢* (43)
X3(1)=0.894 - 1.136e~" +0.242¢ (44)

_In Case A, the free boundary conditions are X,(D) and
X,(2), since the initial and terminal state variables are
specified. In Case B, the free boundary conditions are X,(0),
X,(2), X,(2), and X(2), since there is no constraint on the ter-
minal state. In Case C, the free boundary conditions are
X,(0), X,(2), and X,(2) or X,(2). Here X (2) is selected as be-
ing free while X,(2) is calculated according to X (2)=(15 -
X,(2))/5 to assure satisfaction of the terminal constraint.

The three cases of this problem were solved using the
Fourier-based approach with X () represented by equation
(13) with a one-term (M = 1) Fourier-type series. The perfor-
mance index was evaluated by means of Simpson's composite
integral formula with a step size of 1/30 (consistent unit of
time). The optimal values of the free variables and the per-
formance index are listed in Table 1. From the table it can be
seen that for all three cases the Fourier-based optimal solu-
tions achieve high accuracy, although only a one-term series
was used.

The time history of X,(¢) and U(¢) of the optimal solution
(from the closed-form expressions) and the near optimal solu-
tion (from the Fourier-based method) are plotted in Figs. 1-3.
The auxiliary polynomial is also plotted for the three cases for
comparison with X,. The figures show that the curves of the
optimal and near optimal solutions are essentially coincident.
The figures also show that the auxiliary polynomial approx-
imates the optimal (and near optimal) solutions. This
phenomenon is typically exhibited for smooth optimal trajec-
tories, which occur for most optimal control problems. There
are, however, situations in which the Fourier-type series

represents a significant deviation from the auxiliary
polynomial.
Example 2: This example considers a bang-bang control

problem, adapted from (Leondes and Wu, 1971), of the linear
second order system:

X, 0=X(0 (45)
X0=X(n-X,(0+U(1) (46)

with initial conditions
~X,(0)=0.231, X5(0)=1.126 47)

The control is bounded according to the following constraint:

-0.8=<U(1)=0.8 (48)
The performance index is:
1 3
J=— L DG (1) + X3 (D)t (49)

From simulation studies, values of the performance index J

Table 1 Fourier-based optimal values for example 1 and
comparison to optimal performance index

Case A Case B Case C

a —1.9564395E — 03 — 1.6720597E — 03 4.3833045E - 04
b 1.4421728E-03  5.7709717E—04 1.4015869E — 03
X, (0 6.1025137TE+00  2.4175164E +00 1.3739699E + 00
X, (2) 5.0000000E +00  2.3031333E+00 2.3530569E + 00
X,(2) 2.0000000E +00  1.3351959E + 00 2.5293861E +00
X,(2) —3.4798053E + 00 —6.7735566E — 01 1.9403533E + 00

1.675072E + 01 7.40B455E +00 6.708092E + 00
Optimal J 1.674543E + 01 7.405776E + 00 6.702766E + 00
% Error <0.04% <0.04% <0.08%
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were determined to be: (i) 10.34 for the near optimal solution
with a two term Fourier-type series, (ii) 9.25 for a three term
series, and (iii) 9.04 for a four term series. This compares with
a value of J of 5.86 for the optimal solution (Leondes and Wu,
1971). The Fcurier-bas_ed optimal performance index con-
verges slowly to its minimum value.

The time responses of the control and generalized coor-
dinate variables are plotted in Figs. 4(a-c). The control
variable time response shows that the Fourier-based method
predicts approximately the switching point (i.e., the finite
jump). In addition, the solution tends to converge to the op-
timal solution although the speed of convergence is slow. This
property of slow convergence is similar to the ‘‘Gibbs’
phenomenon" (Wylie, 1975, pp. 247-249), which occurs when
developing the Fourier series for a square wave function. The
state variable response demonstrates a similar phenomenon.
Although the state variable X, of the bang-bang solution ap-
pears smooth at the finite jump, its corresponding derivative,
X,, is not smooth.

The simulation results suggest that the Fourier-based op-
timal control approach is not suitable for solution of bang-
bang control problems (or for problems with similar rapidly
changing response characteristics.) However, bang-bang con-
trol is a mathematical idealization which can only be ap-
proached in practice due to the finite jump. [n contrast, the
Fourier-based optimal solution provides a continuous and
therefore physically implementable control law. The accuracy
of the method can be improved by increasing the number of
terms of the series, although this increases the computational
cost.

Example 3: This example is adapted from (Kirk, 1970, pp.
338-341). The state equations of the system are highly
nonlinear and coupled:

. 25X, (¢
X\()= =2[X, (£)+0.25] + [X; (¢) +0.5]exp [T(f-]%‘]
1
— X, (8 +0.251U(f) (50)
2 25X, (¢t
thr}=0.5—-Xz(r)ulxz(f)d-O‘S]exp[Tr;(‘é—] s1)
1

(Here, exp [¢] = €.) The equations are derived from a model
of a continuous stirred-tank chemical reactor described in
(Lapidus and Luus, 1967). The initial conditions are:

X,(0)=0.05, X,(0)=0.00 (52)
The performance index is
0.78
J=50 (X3 (0)+ X (1) +0.1U2 (1) dr (53)

In this problem there are two generalized coordinates (X, and
X,) and one control variable (), and the state equations can
be represented by equations (28a,b). To solve this problem,
X, (1) is first approximated by the sum of a fifth order
polynomial and a one-term Fourier-type series. The time
history of X, (¢) is obtained from the second state equation by
direct numerical integration using a fourth order Runge-Kutta
method. Finally, the control variable U(¢) is calculated from
the first state equation.

In (Kirk, 1970) this problem was solved using three different
numerical methods: steepest-descent, variation of extremals,
and quasilinearization. Results of these methods as well as the
Fourier-based method are listed in Table 2. The value of the
performance index from the Fourier-based optimal control
algorithm falls within the values from the other methods.

The time history of the control variable and the time history
of the two state variables are plotted in Figs. 5(a) and 5(b),
Fespectively, for the different methods. (The results of the
method of quasilinearization are not plotted.) From the
figures it is observed that the solution of the near optimal
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method approximates well the solutions of the method of
steepest descent and of the method of variation of extremals.
In summary, the results show that the Fourier-based approach
handles successfully this coupled, nonlinear problem.

Example 4: This example is adapted from (Kirk, 1970, pp.
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Table 2 Values of performance index from different

methods for example 3
Method J
Steepest descent 0.02668
Variation of extremals 0.02660
Quasilinearization 0.02660
Fourier-based 0.02662
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Fig.5 History of (a) control variable U, and (b) state variables X, and X
for example 3

405-407). The state equations and initial conditions are iden-
tical to those of Example 3. Here, however, the performance
index is independent of control U and is changed to:

0.8
J= 50 [X3 (1) + X3 (0))dt (54)

In addition, two sets of constraints are imposed. The first set
bounds the control as follows:

-1.0=U(t)=<1.0fort € [0 0.78] (55)

The second set of constraints fixes the terminal state as
follows:
X,(0.78)=0.0, X,(0.78)=0.0 (56)

As in Example 3, this example addresses a system with more
generalized coordinates than control variables. Here, the
problem is further complicated due to the constraints fixing
the terminal state. To solve this problem, X; is approximated
by the sum of a fifth order polynomial and a two term
Fourier-type series. X,(0.78) is known from the second state
equation with X,(0.78) = X,(0.78) = 0.0, whereas X,(0.78) is
free.
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Table3 Comparison of results for example 4

Method J X,(0.78) X,(0.78)
Gradient projection 0.0022 -6.16TE-06 —0.631E-06
Fourier-based method  0.0021 <1.0E-09 <1.0E-09
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Fig.6 History of (a) control variable U, and (b) state variables X, and X3
for example 4

_The control variable is a function of X,(1), X, (/), and
X,(1). X,(1) can be obtained explicitly in terms of the approx-
imation for X, (1), and X, (¢) directly from the second state
equation. X, (f) can then be found by direct dif’ ferentiation.
Thus, the control variable can be determined, its constraints
can be checked, and the performance index can be evaluated.

In (Kirk, 1970) this problem was solved using the gradient
projection method. The values of the performance index as
well as the terminal values of the generalized coordinates are
given in Table 3. The values from the Fourier-based optimal
control method agree closely to the results in (Kirk, 1970).

The time history of the control variable and the history of
the generalized coordinates are plotted in Figs. 6(a) and 6(b),
respectively. The control variable determined from the gra-
dient projection method shows two nondifferentiable points at
the boundaries of the saturation regions of the control
variable. In contrast, the near optimal control is differentiable
over the entire interval, although it approaches the regions of
saturation associated with the optimal solution. Despite the
differences in the control histories, the generalized coordinate
histories for the two methods are close.

This example demonstrates the application of the Fourier-

Transactions of the ASME



based method for the solution of a constrained, nonlinear, op-
timal control problem. The satisfaction of the final boundary
conditions as well as the close match of the performance index
to that of an independent method (the gradient projection
method) verify the method's effectiveness.

Example 5: This example demonstrates the performance
of the method in solving a variable terminal time, i.e., ¢, free,
optimal control problem. Here, a two degree of freedom
structural system is considered. The system model is described

by

[ [e]- [ ][]

o el L]
¥ = (Ep)]
-1 1] [x U,
with initial conditions
[Xl(o}:| ‘I} [X,(U)} [1}
=1 dn | - (58)
X,(0) L1 X,(0) 1

The performance index is

710 0
L 010

1
J=Tx7’(:,) ]X(r,)

y 30 20
+ X + U7 Uldr (59
¢ 03 02

Unlike the previous examples which have fixed terminal times,
the terminal time of this problem is constrained by 0<¢,=<1.

The value of the performance index as a function of ter-
minal time, ¢, is plotted in Fig. 7(a). Here, for every value of
b the corresponding optimal control problem was solved by a
linear quadratic solver based on exponential evaluation of the
Hamiltonian matrix (Speyer, 1986). The optimal ¢, was found
to be 0.18320 with a performance index value of 32.93968. For
comparison, using the Fourier-based approach (with two
terms), the optimal f, was found to be 0.18301 with the
associated near optimal performance index value of 32.93987.
The X, state trajectories obtained by both approaches, as
shown in Fig. 7(b), are very close. Similar agreement is found
!'pr the X; and control trajectories. In summary, by adjusting
simultaneously the free boundary values, the coefficients of
the Fourier-type series, and the terminal time, l;, the proposed
approach successfully predicts the near optimal solution of a
non-fixed terminal time problem.

Discussion

Comparison of Fourier-Based and Gradient-Based
Methods. In the Fourier-based method, the derivatives of
the generalized coordinates are obtained by analytical dif-
ferentiation of equation (13), and thus the system equations
(1) are treated as algebraic equations in evaluating the control
variables. As such, the Fourier-based method is an inverse
dynamic approach, It finds the optimal solution by adjusting
!h‘ m.t\c:‘.?ry itself and the control variables become the

In contrast, gradient-based methods are direct dynamic ap-
Proaches. In these methods, optimality is achieved by ad-
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Fig. 7 (a) Value of performance index as function of terminal time,
and (b) history of state variable X for example 5

justing the control variables (which are viewed as the
“‘unknowns’’) based on the results of integrating forward the
state equations and integrating backward the costate equa-
tions, i.e., solving a 2PBVP. The control variables are
modified such that a specified performance index is mini-
mized. Although different 2PBVPs can be posed to achieve
optimality, the integration of a system of differential equa-
tions (usually evolved from state and costate equations) is
indispensable.

An important consequence of the distinction between the in-
verse and direct dynamic approaches relates to numerical er-
ror. The direct dynamic approach involves integration of dif-
ferential equations in which computational errors often tend
to propagate. In fact, it is the accumulation of errors that fre-
quently leads to failure in solving optimal control problems
for high dimension systems. In an inverse dynamic approach,
the control variables are obtained by straightforward algebra.
The only significant computational error is due to the
numerical integration of the performance index. Usually, this
error can be controlled and estimated easily.

Comparison of Fourier-Based and Dynamic Programming
Methods. The primary difference between dynamic pro-
gramming and the Fourier-based method is the way each ap-
proximates the time history of the trajectory. Dynamic pro-
gramming typically divides the time history of the generalized
coordinates into a finite number of intervals. Optimality is
achieved by finding the optimal values of the generalized coor-
dinates at each time interval. The Fourier-based approach, on
the other hand, approximates the time history of each
generalized coordinate by a single function. Optimality is
found by adjusting a (typically) much smaller number of
parameters (i.e., the free coefficients of the functions), and
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the computer memory requirement is therefore greatly
reduced.

A further advantage of the Fourier-based optimal control
approach is its ease in handling problems with free terminal
time. In contrast, there does not seem to be an efficient im-
plementation of dynamic programming that addresses the free
terminal time problem. A possible advantage of dynamic pro-
gramming is its ability to guarantee identification of a global
minimum. However, nonlinear programming identified what
appears to be a global minimum without difficulty for each ex-
ample problem of the Fourier-based optimal control
approach.

Quality of Fourier-Based Solution. A direct way to verify
the quality of the Fourier-based optimal control law is to
check if it satisfies the necessary conditions for optimality
which are derived by variational techniques. In practice, this
verification can be done by substituting the near optimal solu-
tion into an appropriate, standard, optimal control algorithm
and determining if the termination criterion of the selected
algorithm can be satisfied.

For instance, the Fourier-based results of Case B of Exam-
ple 1 were substituted into the steepest descent method (Kirk,
1970, pp. 335-337). Whereas ‘‘true’’ optimality is represented
by

laH/3Ul =0 (60)

where H is the Hamiltonian, the norm for the near optimal
solution was less than 10~%, suggesting that the optimal solu-
tion had been closely approximated.

An alternative empirical approach to verify the optimality is
to append another term (i.e., increase M) of the Fourier-type
series to the previous solution and re-execute the Fourier-
based optimal control algorithm. Additional terms can be ad-
ded, on a term by term basis, until the value of the per-
formance index converges, indicating that the optimal solu-
tion has been reached. This empirical scheme, however, may
not be appropriate for bang-bang control problems since
under such circumstances the near optimal solution typically
has a slow convergence rate.

Summary

This paper develops a Fourier-based method for generating
near optimal trajectories of dynamic systems represented by
deterministic, lumped-parameter models. The method is con-
ceptually simple, computationally robust, and applicable to a
broad class of physical problems. Simulation studies
demonstrate the effectiveness of the proposed approach for
handling linear, unconstrained problems as well as nonlinear,
constrained problems, while sidestepping many of the
numerical difficulties typically encountered in implementing
optimal control theory. The results show that for all problems,
except bang-bang control problems, the near optimal trajec-
tories achieve optimality accurately and with high speed of
convergence.
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