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Abstract

Based on the idea of state parameterization, this paper
develops a Fourier-based approach for solving unconstrained and
linearly constrained linear quadratic (LQ) optimal control
problems involving structural systems. It is shown that these
problems can be converted into quadratic programming problems
that can readily be solved. In particular, the necessary condition
of optimality for unconstrained LQ problems is obtained as a
system of linear algebraic equations. An example problem
demonstrates the approach for handling LQ problems with state
constraints.

Introduction

The optimal control of linear, lumped parameter, dynamic
systems is the subject of much theoretical and practical interest,
and is well covered in many textbooks'# Typically, the necessary
condition of optimality is formulated as a two-point boundary-
value problem (TPBVP) using variational methods. Except in
some special cases, the solution of this TPBVP is usually difficult,
and in some cases not practical, to obtain.

In contrast to variational methods, trajectory parameterization
approaches>1® offer an alternative strategy for solving optimal
control problems. In general, these techniques approximate the
control and/or state vectors by functions with unknown
coefficients, thereby converting an optimal control problem into a
mathematical programming (MP) problem. A near optimal
solution can then be obtained via various well developed
optimization algorithms.

A direct application of trajectory parameterization is to
represent the control variables by a sequence of eigenfunctions
with unknown weighting coefficients. Then, a linear or nonlinear
programming algorithm can be used to determine the values of the
coefficients (i.e., control parameters) such that a performance
index is minimized. A difficulty with control parameterization
occurs in determining the functional relationship between the state
variables and control parameters. The process of determining this
relationship often requires numerical integration of the state
equations, which can be computationally intensive and sensitive to
numerical errors.
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Approaches based on state parameterization have been
described'"’%. In these approaches, state parameters are adjusted
by an MP algorithm in order to minimize a performance index.
For example, it has been proposed™ 1o represent the time history
of each generalized coordinate of a dynamic system by an
auxiliary polynomial and a finite-term Fourier-type series. The
free variables (i.e., state parameters), such as the (free)
coefficients of the polynomial and the Fourier-type series, are
adjusted by a MP method. A challenge of state parameterization
involves the problem of trajectory inadmissibility, i.e., due to
constraints on the control structure an arbitrary representation of
the state trajectory may not be achievable.

Finally, combined state and control parameterization
approaches have been suggested. For example, in one approach'®
both the state and control variables are expanded in Chebyshev
series and an algorithm is provided for approximating the system
dynamics, boundary conditions and performance index. Although
an advantage of this approach is that it can handle linear as well as
nonlinear problems, a drawback is the tedious analytical
formulation required for different optimal control problems. In
addition, since both the state and control variables are
parameterized, the number of free variables is typically higher
than the number employed in either state or control
parameterization approaches.

Of the different trajectory parameterization approaches, state
parameterization offers two major advantages. First, boundary
condition requirements on the state variables can be handled
directly. Second, if the trajectory inadmissibility problem can be
overcome, the state equations can be used as algebraic equations.
As a result, the process of determining the functional relationship
between the state and control vectors is easier to implement in
state parameterization than in control parameterization.

This research is part of a broader effort toward the
development of a computational tool for solving optimal control
problems via state parameterization. As part of this effort, this
paper presents a specialized version of a Fourier-based state
parameterization approach!'® for determining the optimal
trajectories of linear structural systems with quadratic performance
indices and linear constraints. Such linearly constrained linear
quadratic (1.Q) structural problems are converted into quadratic
programming (QP) problems which can be solved by well
developed routines.
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Problem Statement

The behavior of a controlled linear structure is governed by the
_ equation of motion:

M@OX(@) + COX() + KOx(1) = B(u(r), x(0)=%o, X(O)=%, (1)

where X is an N x ] configuration vector (i.e., a column vector of
N configuration variables), v is aJ x J control vector, Mis an N x
N positive definite mass matrix, C is an N x N positive
semidefinite structural damping matrix, K is an N x N positive
semidefinite stiffness matrix, and B is an N x J control influence
matrix. (In this paper vectors are denoted by boldface lower case
letters and matrices are represented by boldface upper case
letters.) It is assumed that J is less than or equal to N, i.e., the
number of control variables is less than or equal to the number of
configuration variables. The derivation below considers the case J
= N with B nonsingular implying that every configuration variable
can be "actively” controlled. This assumption will be relaxed
later.

The design goal is to find the control u(?) in time interval [0,T]
such that the quadratic performance index, L,
T

(ZQz + u'Ru)dr

L = ZNT)Hz(T) +f (2)

0
is minimized while satisfying the equation of motion (1) and the
following system constraints

Ei(0x() + E2(0X(0) + E3()u() € e(r) 3)

In equation (2) superscript T represents transpose, whereas T
(italics) represents the terminal time. Vector z is a state vector
defined as:

H
z=
x )

/ Tt is assumed that H and Q are real, nonnegative-definite
symmetric matrices and R is a positive-definite symmetric matrix.
In addition, it is assumed that Q can be partitioned as

oo| @ Lo 5
%Qc Qb ©)
Thus, the performance index can be rewritten as
L =L+l (6)
where
Ly = 25(T) H«(T) (7a)
T T, * ot
Ly = fo X"Qax+ X'QpX + X Q. x+ u'Ru) d (7b)

L, is the cost associated with the terminal configuration and its rate
and L, is the cost associated with the trajectory. It is assumed that
the configuration and control vectors are not bounded, the
terminal time T is fixed and the terminal configuration x(7) is free
or fixed.

Fourier-Based Parameterization

The basic idea of the proposed parameterization approach is to
approximate each of the N configuration variables x,(¢) by the sum
of a fifth-order auxiliary polynominal and a X term Fourier-type

/”‘“\«kseﬂes, ie,forn=1,.,N,

5 K
0= Y dut*+ Y (au cosZhB + by sin2km ) @®)
k0 k=l T T

The inclusion of the auxiliary polynomial in this representation
improves the speed of convergence and differentiability in
comparison to a standard Fourier series expansion. 4

The six coefficients of the auxiliary polynominal can be
written as functions of the boundary values of the configuration
variables and the coefficients of the Fourier series. In particular,

introducing v; = 2k, then

X X
dpo=Xno- 3, Gnk | dny=Tino~ 3, Vibn (9),(10)
k=1 k=1
1 K
= T%no+ 3, Vian) an
k=1
dp3 = 10( -xpot Xar )+ ( 'Gino‘ 4.’-:'11' 7T +(- ‘;‘5110’4' %’gnT )Tz
K K
- Y Viau+10Y, viby a2)
k=1 k=1
dnt = 15(Xn0r Xa7 ) + ( kgt Ty )T +( %x K )T
1 X K
+EZ sza,,k—lsz Vi bu (13)

k=1 k=1

" dns = 6(-Xpo* XnT )+ 3(kno - dinT )T +0.5(<Kpo+ X1 )T 2
K

+62 kank
k=1

(14)

where X, Xp0s Xpo» Xnrs X, and X, are the values of the
configuration variable x,and its first and second derivatives at the
boundaries of the time segment [0,T], i.e.,

Xno = %(0) , Xno = Xp(0) , Xy, = X(0) (15a-c)

xn7 = Xn(T) o Xpr = XT) , Xpr = 3T ) (15d-f)
Following substitution of equations (9)-(14) into (8), equation (8)
can be rearranged in the form

xa(0) = p1Xpo + Pzina + P3ina + PaXpr + PS).‘nT + P6k.nT

K

+3 (Okanec+ Bebu) 16)
k=1

where
pi=(1 -1073 +1574 - 615) amn
p2=T(1 - 673 +87%-315) (18)
p3=TH0.572- 1.573 + 1.57% 0.575) a9
Pa=(107°- 157 + 675 (20
ps=(107%- 1574 + 675) Q@1
Ps= %Tz(ﬂ - 2744 15) 22
o = -1 +V4(0.572 - 73+ 0.57%) + cos(vi 7) (23
B = vi (-7 + 1073 - 1574+ 615) + sin(v, 1) 24
with
T= .;. 25)
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The parameters defined in equations (17)-(24) are configuration
variable independent and, since the terminal time T is known, are
functions of time ¢ only.

Equation (16) can be written more compactly as

xa(t) = PT() ¥x (26)
where

pT=[p1 p2 p3 ps Ps Ps @ Ok Pi---Px] @n
and

Yn=[ X Xmo Xno XaT Xar XaT Gmi -c- Gk bm - bux T

=[ Ya1 Ym2 . yuM]T 28

are vectors of dimension M = 6 + 2K. The first six elements of y.
are the values of x, , &, and ¥, at the boundaries of [0, T]; the
remaining elements are the coefficients of the Fourier-type series.
Vector y, can be viewed as a time-independent configuration
parameter vector for x,since it characterizes the trajectory of x,
over the time interval [0, T]. (Note that the first two elements are
known since they are the given initial conditions.)

From equation (26), a vector of the N configuration variables
can be written in terms of a full configuration parameter vector y,
ie.,

x(f) = p(n)y 29
where
oT
0 Y Die.oyml'
T
_ . ¥2 2. youl"
p= - , §y= . = .
g ' ’ (30a.b)
0 o N [ym .-l YNM]T
pT

Note that y is a time-independent column vector of dimension NM
and 7 is a time dependent matrix of dimension N x NM.
Similarly, the time derivatives of the configuration vector are

X =080y , X0 =70y (31),(32)
where
S=p1, Y=p®) (33),34)

Since x(f), (), and X(7) can be written as functions of y, the
control vector u(f) can be expressed from equation (1) as a
function of y:

u() = B0 M@ () + COX@) + KOx(0)] (35)
Substituting equations (29), (31), and (32) into equation (35) gives
u(r) = B ()[M@)y + C()G + K(ply (36)

Thus, using the Fourier-based parameterization approach the
configuration vector, (the first and second time) derivatives of the
configuration vector, and the control vector can be represented as
functions of the configuration parameter vector y. Itis shown in
the following sections that by employing this representation LQ
structural problems can be reformulated as QP problems with the
configuration variable parameters, Yom # = L., Nym = 1., M,
as variables.
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Unconstrained LQ Problems

Conversion Process

The first step in the conversion process from an unconstrained
LQ problem to a QP problem is to rewrite the performance index
as a function of the configuration parameter vector y. The
terminal state part of the performance index L, can be written as a
function of y by noting that the terminal state vector is linearly
related to y, i.e.,

z(T) =8y 37
where © is a 2N x MN transformation matrix with elements 1 and
0, specified according to

‘1 ,j=0 -DM+4 fori=1,..,N
j=G -N-D)M+5 fori=N+1,...,2N

0, otherwise

Oy= ‘ (38)

By substituting equation (37) into equation (6), the cost L, is
Li=y"(e™Ha)y 39)

Similarly, the trajectory part of the performance index L; can be
written as a function of y,although the process is somewhat more
complicated. Substituting equations (31), (32), and (36) into the
integrand of equation (7) gives:

Ly=yTAy (40)
where

T
A =f { FioyyT+F,900T+FaeppT+FeeysT+FseypT+FeecTpldr  (41)
0

with
F,=M'BTRB'™M , F2=C™B"RB'C+Q (42),(43)
F;=KTBRBIK+Q, , Fs=2M'BTRBC 44,45
Fs=2MBTRB'K , Fe=2C"BTRB'K+Qc (46),(47)

where superscript -T denotes inverse transpose. Matrices F, to F
depend on system parameters and performance weighting. (For
simplicity, the time-dependent symbol (?) has been omitted in the
above equations.) In equation (41), e is the Kronecker product
sign.!’

For problems with time-varying system parameters and/or
performance weighting, matrices F; to F, are functions of time
and, in general, the integral of equation (41) must be evaluated
numerically. For time-invariant problems, these matrices are
constants and can be removed from the integral; the remaining
integral parts of A can then be evaluated analytically. That is, for
time-invariant problems equation (41) can be rewritten as

T T T
A=F16U (yy"’)dt}q-erU (O‘G’T)dt]+F3® J (ppT)dt}
0 0 0
T T T
f (yeNa +Fs°f (Nt +Fs®f (cTp)dr | (48)
0 0

0
The integrals in the brackets of equation (48) have been evaluated

in closed-form. As a result, the Fourier-based approach is
numerically integration-free in handling time-invariant problems.
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In summary, by employing equations (39) and (40), the
performance index L can be written as a quadratic function of
parameter vector y, i.e.,

L=yTwyy (49)
where
v =A+ 8'HO (50)

The optimization problem can thus be viewed as the search for
Yam 1 = 1,., Nym = 1,..., M, that minimizes the performance
index of equation (49) subject to the equality constraints

Vnl=Xno s ¥n2=Xpo for n=1,.,N (51)

representing the initial conditions where X, is the initial value of
the n-th configuration variable and % is the initial value of the n-
th configuration variable rate.

Solution Procedure

The equality constrained QP problem (outlined above) is
solved by converting it into an unconstrained QP problem. To
accomplish this goal, a new configuration parameter vector v is
introduced, specified as

-
where
vi=[aT b7 & 5T 5l KT (53)
vi=[xT 7] (54)
with

Xo=[ x16 x20 - xno )T, Xr=[xir xar - v )T (55).56)

. Xo=[ %o X0 -+ Ao )T s xr=| x;r Zor - awr )T (57),(58)

Xo=[ 1o %o - iwo )T . Xr=[Fir Xor .. iwr]T  (59),60)
a:[an see BIK QI e AOK veeees aNl"'aNK]T (61)

b=[by . bix b3 - bog -e--- byy - bk ]T 62)

Vector v, contains the known initial values of the state vector;
vector v, is the remaining subset of the parameter vector y (e,
obtained by excluding v, from y).

The two vectors v and y are related via a linear transformation
y=0v (63)

where @ is a 2NM x 2NM matrix with elements 1 and 0. The
performance index L of equation (49) can thus be rewritten as a
function of v

L=vTQv (64)
" where
Q=0"vo (65)

By expanding equation (64), the performance index can be
expressed as

Qu Qg2 } vy
L=l T T
[+ 1] [ — v (66)
or equivalently
L = viQuvi+ v(Q + QF)va + viQav, 67
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The performance index of equation (67) is a quadratic function of
vi, theunknown part of the configuration parameter vector. For
an unconstrained LQ problem, the necessary condition of
optimality can be obtained by differentiating the performance
index with respect to this unknown configuration parameter
vector. This leads to

@u+ Q) vi=-(Qu+ )y, (68)

which represents a system of linear algebraic equations from
which the unknown vector v, can be solved.

If the terminal value of the configuration vector is known, the
same solution procedure can be applied. The only modification
required is to redefine the unknown vector v; as

T T . .

vi=[aT b7 5] i aT] (69)
and the known vector v, as

T .T

vi=[xr x 7] 70)

Similarly, problems with fixed initial and/or terminal
configuration variable rates can be handled.

An interesting feature of equation (68) is that the coefficient
matrix of v,is independent of known boundary values (i.e., v,).
Thus, for the same unconstrained LQ problem with different
boundary values, the coefficient matrix remains the same; only the
right-hand side constant vector needs to be recomputed.

Linearly Constrained LQ Problems

The Fourier-based approach is also applicable to linearly
constrained LQ problems. Here, the system constraints of
equation (3) are converted into a system of linear algebraic
constraints.

The approach is to substitute equation (35) into the inequality
constraints (3) giving

S1OX() + S2(0% () + S3(OX() < e(2) (71)
where

$10) = E1(1) + E3(0B (DK () (72)

Sa2(0) = E2() + Es()B ' (NC(n) 73)

83(t) = E3()B 1 ()M(2) (74)

Using the configuration variable parameterization of equations
(29), (31), and (32) in (71) gives

Gy < e@) 75)
where
G(r) = S1(0p (1) + 520850 + S1()7() (76)

The inequality constraints (75) are functions of time.
Consequently, they represent an infinite number of constraints
which need to be satisfied along the trajectory. For practicality,
these constraints are relaxed to be satisfied only at a finite number
of points (usually chosen to be equally spaced) in time. That is, it
is required that only a finite number (/) of algebraic inequalities

G()y< ety for i=1,.,1 an

- be satisfied. In terms of configuration parameter vector v, the

inequalities of (77) can be rewritten using equation (63) as
GU)vs e for i=1,.,1 (78)




4.,..;‘4%@”{5_\‘_‘“"‘ s e

where
G'(1) =GP 79)

By decoupling v into v, and v,, the inequality constraints of (78)
can be represented as

G Gt {v‘} s[e’("') ] for i=1.1 (80)

L Go(r) Gp) |LV2 ex(t)

Since v, is known, the corresponding terms can be moved to the

right-hand side of (80) giving

[ Gzl(’i) < {el(fi) - Gzz(ti)vz}
Goi(1) e2(t:) - G(ti)v2

Thus, the system constraints (3) can be approximated by the linear

algebraic inequalities (81).

i=1,..,1 81

In summary, by applying Fourier-based parameterization of
the configuration variables, a linearly constrained LQ problem can
be converted into a QP problem in which the quadratic function of
equation (67) is to be minimized without violating the system of
linear algebraic inequalities of (81).

General Linear Systems

The approach presented above is applicable to systems with
square and invertible control matrices. This section generalizes
the Fourier-based approach to the more common case of structural
systems which have fewer control variables than configuration
variables. The dynamic system of interest is again the linear
structural system described by equation (1). In this case, the
control influence matrix, B, is an N x J matrix where the number
of configuration variables, N, is greater than the number of control
variables, J. It is assumed that the rank of B is equal to J.

To apply the Fourier-based approach, the equation of motion,
equation (1), is first modified to

M(¥(r) + C(O%() + KOx(r) = B'@u ) (82)
where
. ) Lvayon-ny
B ([) = BNX.N = NxJ (83)
Oyv-n
and
, . a(N-J)xl
u(f) =ty = (84)
Uyey

with the subscripts representing the dimensions of the matrices.
By introducing an artificial control vector, ii, the new control
matrix, B', can be inverted enabling the calculation of the control,
u'(?), for any given trajectory (similar to equation (35)). Note that
it can be guaranteed that B is invertible if the last J rows of B are
nonsingular. However, if the last J rows are singular, the first (V-
J) columns of B in equation (83) can always be modified to make
it invertible since it has been assumed that B has rank J .

In order to predict the optimal solution, the performance index
is modified to

T
L'=L+ rf (8% i) ar (85)

[
where L is the performance index of the original LQ problem and r
is a weighting constant chosen to be a large positive number. The
integral term associated with r is used to represent the contribution
of the artificial control.

The advantage of using artificial control variables is that a non-
actively controlled structural system can be converted to an
actively controlled structural system to which the Fourier-based
approach is applicable. The trade-off is that the resulting solution
will not, in a strict mathematical sense, satisfy the trajectory
admissibility requirement due to the existence of artificial control
variables.’> However, by penalizing the artificial control vector,
the magnitude and influence of the artificial control variables can
be made insignificant and the solution of the modified optimal
control problem can closely approximate the solution of the

original LQ problem.

Example

This example problem, adapted from Evtushenko!©, p. 438,
considers a one degree-of-freedom system with a time-varying
configuration variable constraint. For the system described by

F+ 5@=u@ , x0)=0, (0)=-1 (86)
it is required to find the solution that minimizes the performance
index

1
L =] [x2+ %2+ 0.005u% ar @7)
0

without violating the constraint

X Le) (88)
where

e(r) = 8(t- 0.5 - 0.5 (89)

Previously‘o, this problem was solved using a control
parameterization approach. Here, the problem was solved using
the proposed Fourier-based approach, where the QP solution
algorithm of Gill and Murray'® was implemented to determine the
optimal configuration parameter values. The simulations were
executed on a SUN-3/60 workstation with the codes written in the
"C" language.

The resulting values of the performance index for three to nine
term Fourier-type series are summarized in Table I. As shown in
this Table, the performance index values decrease as the number
of terms of the Fourier-type series increases. In particular, the
Fourier-based solutions with series of six and more terms are less
than the minimum performance index of 0.17114 obtained by
Evtushenko'®. Furthermore, the differences between the Fourier-
based solutions are small (for example, the difference between the
eight and nine term Fourier-based solutions is less than 0.09
percent) suggesting that convergence has been achieved.

Table I Summary of Simulation Results
using K Term Fourier-Type Series
(Evtushenko's Solution is 0.17114)

Performance Index
0.17480
0.17268
0.17115
0.17069
0.17069
0.17028
0.17013

Oloollanjun] n|w X
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The response history for X(z) obtained with a three term
Fourier-type series is plotted in Figure 1. The constraint history
and the solution computed by Evtushenko'® are also plotted in this
figure. The Fourier-based solution satisfies the configuration
variable constraint and closely approximates the trajectory
predicted by Evtushenko. In fact, the Fourier-based solution
appears indistinguishable from Evtushenko's solution when the
configuration variable constraint is active.

In summary, this example demonstrates the applicability of the
Fourier-based approach for handling LQ problems with
configuration variable inequality constraints. For the problem
studied, the Fourier-based approach yields higher accuracy in
predicting the optimal solution in comparison to a previous result,
Future example problems will address the computational
efficiency of the method and investigate the artificial control
variable technique.

Discussion

An advantage of a parameterization approach, such as the
Fourier-based approach, is that it characterizes the optimal
trajectory (which, in theory, consists of an infinite number of
points) by a relatively small number of trajectory parameters. An
optimal control problem can thus be converted into an algebraic
optimization problem (i.e., a MP problem). In general, the
corresponding computations are much less complicated than those
involved in standard optimal control solvers.

For unconstrained LQ problems, the performance index, which
initially is written as a quadratic functional, is converted into a
quadratic function. By differentiating this quadratic function with
respect to the free parameters, the necessary condition of
optimality is derived as a system of linear algebraic equations
which can readily be solved.

For linearly constrained LQ problems, the system constraints
are relaxed to be satisfied only at a finite number of points
(usually equally-spaced) in time. Consequently, the linear system
constraints are replaced by a finite number of linear algebraic
inequalities. The optimal control problem is thus converted into a
QP problem.

In applying the Fourier-based approach, finite-term Fourier-
type series are employed. As a result, the Fourier-based approach
can be classified as a near optimal control approach. The
accuracy of the Fourier-based approach can be estimated
empirically by increasing the number of terms of the Fourier-type
series. Additional terms can be added, on a term by term basis,
until the value of the performance index converges, indicating that
the optimal solution is closely approximated.

Conclusion

This paper shows that by applying a Fourier-based state
parameterization approach linearly constrained LQ problems of
structural systems can be converted into QP problems.

- Preliminary simulation results show that the proposed approach is
an accurate design tool for determining the optimal solution of
such linearly constrained LQ problems.

15 :
N memeee— State Constraint /I

Evtushenko's Solution /]

1.0k \ Fourier-Based Solution /

STATE VARIABLE

TIME

Figure 1. History of Configuration Variable Rate
(With Three Term Fourier-Type Series)
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