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ABSTRACT

This research focuses on an optmal control approach to simulate kmb segment
motions of a planar mechanical walking model In this approach the optimal segment motions
are a function of a performance index (such as mechanical energyl which is minimized and
physically—based system constrants which must be satsfied A Fourier—based approximation
technique is apphed to convert the optima! control problem intc a ncnlinear programming
problem which can be solved using well-deveioped optmization algorithms. The set of
noniinear sigebraic eguations subject to constraints is solved for the suboptimal histories of
joint angles, velocies, accelerations. and torques By investigating different performance
indices and comparing the resulting moton histories with human walking data. the approach
can be used to study strategies that humans use in selecting dynamic patterns of mb
motions during locomotion

INTRODUCTION

Three different approaches used to study bipedal locomotion are the direct dynamic,
the inverse dynamic. and the optmal control methods The direct dynamic approach views
generalized forces (forces and moments) as system inputs By solving the equstions of
motion of a bipedal locomotion model, the tme history of generalized coordinates (joint
angles) and their derivatives (veiocities and accelerations) can be obtained There are obvious
difficulties with measuring the generalized forces. and in using this method the predicted
trajectories typically contradict those of the real system

The inverse dynamic approach uses the tme history of the generalized coordinates and
their derivatives as inputs From the equations of motion, the corresponding generalized
forces can be obtaned This approach is computationally efficient and has been widely used
in bipedal locomouon research The major disadvantage of the inverse dynamic approach is
its sensitivity to measurement noise which is problematic when differentiating measured joint
displacements to obtain joint velocities and accelerations [1].

The optmal control approach assumes a “principal of optmality”™ such as minimum
energy expenditure during human locomotion as suggested by oxygen consumption data [2).
Once a performance index and system constraints are identified, the optimal trajectory of a
mode! of known parameters can be determined . One difficulty with the optimal control
approach is associated with selecting (and expressing analyticallyl the performance index A
second difficulty is related to computer implementation Standard optimal control aigorithms
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are typically very sensitive to numerical errors and/or require a very large amount of
computer memory.  As a8 result, previous optimal control approaches applied to bipedal
locomotion have been limited to single leg models [3.4].

This paper proposes an optimal control algorithm for predicting segment trajectories
during normal locomotion of a mechanical model Many of the implementation difficulties
encountered in applying optimal control theory to high-order, nonlinear models are avoided
by approximating the generalized coordinates and their rates by finite terms of Fourier series

METHODOLOGY

Bipedal Locomotion Model

The human musculoskeletal system is represented by a two-dimensional, five-link,
rigid-body model, as shown in Figure 1, driven by ideal torque actuators at the articulations
The head, arms, and torso (HAT) are modeled by a single link. Each leg is modeled by tweo
links. representing the thigh and the shank. with a massless foot attached rigidly to the shank
The dimensions and mass inertial properties of all links are assumed known

Normal bipedal locomotion is considered to be a sequence of walking cycles. with
each cycle consisting of two steps Each step inciudes two “phases™ — - a single and
double stance phase - - defined according to the number of legs in contact with the
ground Here, the single stance phase of step k consists of time interval t_ S t <t | the
double stance phase consists of time interval t S t St . The initial time t, corresponds
to “toe-off” of one leg. while the onset of double stance. time t . corresponds to “heel-
strike” of the same leg The final time t_ coincides with “toe—off” of the other leg Thus,
the tme to complete one walking step k is t -t .

Performance index

The process of optimizing the motion histories involves minimizing a scalar
performance index (or objective function), J,

" - -

s=(Tomm. . dn. Fv. v e -
1
k0

where g represents a general function, T is the vector of joint (and ground pivoting) torques,
Bt 610, and (1) are the vectors of joint angular displacements, velocities, and accelerations,
respectively, and t is time. For example, g = T (t§(t , where the superscript = represents
transpose, if the performance index is the mechanical energy associated with step k Since
the behavior of the bipedal locomotion model is governed by the dynamic equations of
motion for which T(8f) , 8t , (U), the integrand of equation (1) can be written as a function
of joint angles, velocities, accelerations, and time.

Kinematic Constraints.

Kinematic constraints can be divided into those that are necessary to represent normal
human locomotion (#1 to #4 listed below). and those that are not actually necessary but sre
assumptions imposed to simplify the problem (#5 and #6).

160 2910 B0 260  fort St

This constraint guarantess that the angular displacement of sach thigh is not less
than the angular displacement of sach shank

2yM>0___fort StsSt,

Displacement y _represents the vertical clesrance of the “toe” of the swing leg
Thus, this constraint ensures that the "toe” of the swing leg clears the ground

Ay=0,yM=0,ym=0_fort StSe,
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Displacement y, represents the vertical clearance of the "ankie” of the leg that
has just entered stance Thus. this constraint guarantees that during the double
stance phase. the foot is in contact with the ground

4 x (U = const , xam =0, x It = 0 for t,sts t,

Displacement x_ is the horizontal distance between the “toe” of one leg and the

“ankie” of the other leg This constraint ensures that the "pivoting” on the
centers of pressure of both feet occurs during the doubie stance phase.

5 6w =80° __ for oSt
This simplifying assumption, that the HAT link is fixed vertically, is based on the
fact that the angular motion of the HAT is normally much smaller than the
motions of the lower limbs

6 xft=V _ fort <ts t,

Velocity iJm represents the absciute velocity of the hip. Thus, this constraint
dictates that the model moves with a constant forward speed, V,. which is
reasonable during normal steady walking

Trajectory Generation Algorithm

The foliowing trajectory generation algorithm (for step k) converts the optimal control
problem into a nonlinear programming problem using a Fourier-basec approximation
technique We start by letting the nth joint angle € (U be expressed as

6 =ct+ gt )

where ¢ tt is a fifth—order auxiliary polynomial
= 2 3 A
sN=d,+d t+ d.t + O *o iy d---srB (3)

and £ (t) is a Fourier-type series

" 2mr @t = t ) 2ms ft -t )
. L) - k0
At = { a_ co{ T ] +b mr{ W ]} 4)
m (3] ] &t kO
Equations (2)~(4) apply for n = 1, . . . N where N is the number of joint angles (or

generalized coordinates)] and M is the number of terms in the Fourier-type series
approximation.  For finite M, the formulation represents a truly optimal control approach: for
finte M. the method provides a suboptimal solution The six coefficients of the auxiliary
polynomial can be selected to satisfy the initial and terminal conditions on fit) . i) . fn )
LB, B, Bt .

The process of optimizing the motion histories invoives minimizing the performance
index J (A, B, fu). 6n). 6it) . t) where A and B represent M x N matrices with
elements 8 and b__ . respectively. without violating the constraints (We can assume gt ).
fi) . and 81t} are known initial conditions or can guess their values and let the mode!
continue until steady conditions are achieved) Since J is not a function of t. we have
converted a time dependent optimal control problem into a standard nonlinear programming
problem Here, the performance index is numerically integrated using a routine method such
as Simpson's composite integral method In solving the nonlinear programming problem, we
can draw upon the wealth of existing nonlinear optimization aigorithms such as direct search
and penalty function methods. The resulting (subloptimal vaives of A . B , ). e ), )
. and t  uniquely determine the (subloptimal joint variables (angular displacements, rates. and
torques) which can be caiculated by straight-forward aigebra



DISCUSSION

The proposed approach offers efficient utilization of computer memory. The time
history of each of the joint angular displacements is approximated by a single fynction and
the optimality is found by adjusting a relatively small number of parameters for each of
these functions As such, computational and dimensionality problems typical of the traditional
optmal control impiementation are avoided

The effectiveness of the suboptimal control approach has been tested by a series of
computer simulations From the simulation results. we have found that satisfactory results
can usually be achieved by using two or three terms of the Fourier—type expansion
functions.

CONCLUSIONS

This paper proposes an optimal control approach for studying bipedal locomotion A
Fourier—based approximation scheme for obtaining the suboptimal trajectories of a bipedal
model has been formulated This scheme offers a2 new means to handle high order. nonlinear
bipedal models. which previous optimal control studies have not investigated The algorithm
reguires specification of model parameters, a performance index, system constraints, and no
additional experimental data Currently, we are simulating the optimal segment trajectories of
the given model and results will be reported in the future
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Figurs 1. Bipedal Locomotion Modal.



