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INTRODUCTION

Human walking is a very complicated dynamic behavior.
There is strong interest in the medical and engineering
communities to understand the dynamic patterns of limb segment
motions during locomotion to help identify normal and abnormal
gaits, to help people with gait pathologies (e.g.. by rehabilitation
or corrective surgery), and to build better orthotic and
prosthetic devices.

In this research, we develop a methodology for simulation
of optimal motions of a planar mechanical walking model. The
approach involves minimization of a performance index subject
to system constraints and is formulated as a problem in calculus
of variations using the Raleigh-Ritz technique. The result is a
set of nonlinear algebraic equations which is solved using the
simplex search direct optimization algorithm for optimal histories
of joint angles, rates. and torques. The method is designed to
help uncover strategies that play a role in the coordinated
management of limb motions during human locomotion.

BACKGROUND

Studies [ 1] suggest that during locomotion humans minimize
oxygen consumption. As a result, it has been a classical
argument that the mechanism for selection of limb segment
motions during gait is predicated upon a criterion of minimum
energy consumption.

There are two principal approaches for studying human
locomotion. The typical approach, called the inverse dynamic
approach, is to collect human movement data and apply classical
principles of mechanics to a linkage model to predict the
resultant joint forces and moments that "caused’ the movement.
In obtaining the required kinematic data, difficulties with
numerical differentiation of displacements are often encountered.
The second, less popular approach is a direct dynamic approach
in which joint initial conditions and joint loads are measured
directly and used to calculate joint angles and velocities of a
linkage model by integration of the governing equations of
motion. To simulate a typical gait pattern without violating
physically-based system constraints (such as ground clearance
during swing), trial and error perturbations of the input torques
are usually required due to imperfect models.

The inverse and direct dynamic approaches rely heavily on
experimental data, provide limited insight into optimality, and are
not well suited to incorporate system constraints. This paper
describes an alternative scheme to determine the optimal limb
segment motions (in terms of joint angles, velocities, and
accelerations) of a bipedal model during each “"step” of straight-
line, level locomotion.

METHODOLOGY

Model. A two-dimensional, articulated, five-link, rigid—body
model is used to represent the human body. As shown in
Figure 1, one link represents the iumped upper body which
includes the head, arms, and torso, two links represent the
upper legs, and two links represent the lower legs. (In the
figure, the link connecting the "hips” is rigidly attached at right
angles to the upper body link) There are no links representing
the feet nor elements representing stiffness and damping
properties. The mass inertial properties of all links are assumed
known. The links representing the two legs have identical
dimensions and inertial properties. The stance leg pivots at its

contact with the ground. The linkage model is driven by pure
torque actuators at the joints representing the effect of
muscles. For the stance leg. a torque is applied at the
supporting joint representing the ankle/foot '

The behavior of the model i;_ governed by the dynamic
equations of motion given by:
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where T is the vector of joint torques, #(t), 4w, and é(t) are the
vectors of joint angles, velocities, and accelerations, respectively,
and t is time.

Assumptions of Bipedal Locomotion. Walking is considered
to be a sequence of steps, with two steps constituting one gait
cycle. During each step one leg is in a stance phase while the
other leg is in a swing phase. The legs alternate between
stance and swing phases, with “toe-off" of the stance leg
corresponding with "heel-strike” of the swing leg both occurring
at an instant of double stance. At this instant, the initial time of
step k, t, . coincides with the final time of step k-1, t .. The

step time is At.l =4, T t“.

Performance Index. The process of optimizing the motion
histories involves minimizing a scalar performance index (or
objective function), J,
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where g is an arbitrary function. For example, g = T'(t) )
where ° represents transpose, if the performance index is the
mechanical energy associated with the motion in step k.

System Constraints. To achieve bipedal locomotion, the
mechanical model must satisfy physically-based system
constraints, five of which are identified below:

(i) Desired Forward Velocity. The horizontal velocity of a point
on the upper body link is constrained to be a known function of
time. Here, we assume the uppermost point of link 3,
representing the head, is a known constant forward velocity, V .
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where li represents the length of link i

(ii) Desired Upper Body Attitude. The attitude angle of the
upper body link is constrained to be a known function of time.
Here, we assume the link is perfectly vertical during each step.

............ telt .t ] (4)

ko' ki

(iii) Swing Leg Clearance. The foot of the swing leg must not
go below the ground.
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(iv) Swing Leg Vertical Displacement at Heel Strike. The foot
of the swing leg must have zero vertical displacement at heel
strike.
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(vl Hip Forward Velocity at Heel Strike. The horizontal
velocity of the hip must be the same (i.e., continuous) for both
legs at heel strike.
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Raleigh—-Ritz Approximation. The Ra'eigh-Ritz scheme [2] is
employed to approximate each joint angle as follows:
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where m equals the number of terms in the series and n equals
the number of joint angles (i.e., n = 5). In eq(8) the Ci’ are
unknown weighting coefficients, the ’.“’ are approximating shape
functions assumed here to be
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such that ¢ (t ) = g(t ) = 0 and ¢ (1) is a function chosen to
satisfy initial and final conditions at each step. Here
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where r = 4 for 6, and O'i specified at t =t _and t = t “The
coefficients b.l are determined from joint angles and velocities
att =t (assumed known data for k = 1 and obtained from the
final conditions of the last step for k > 1) and from system
constraints (6) and (7). In summary, the vector of joint angles
can be approximated as:

gm = £t C At) (11

where f represents a vector of functions and Cis the n x m
matrix of C”. It follows that the joint velocity and acceleration
vectors are 6t = fi(t C At) and f) = fit, C At)
respectively. where f, and f, represent vectors of functions.

Optimization Strateqy. With the Raleigh-Ritz approximation,
the performance index can be rewritten as a system of
nonlinear equations:

J = JC. At) (12)

The problem that remains is a numerical one. /j.e., we need
to find C and At that minimize J and satisfy system constraints
(3). (4), and (B) not used above . We use the simplex search
direct optimization algorithm [3] to solve this problem. With
this approach divergence is almost impossible and there is no
need to evaluate derivatives. Equality constraints (3) and (4) are
included by reducing the system order and inequality constraint
(5) is included by introducing a penalty function. Once we solve
for C and At, we can reconstruct the optimal joint vectors A\
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DISCUSSION

A technique has been developed to generate the optimal
motion histories of a planar, articulated linkage model simulating
bipedal locomotion. (The algorithm can also be used to generate
optimal motion programs for bipedal walking robots) The
predicted joint motions can be compared with clinically measured
joint data. Thus, the method enables one to investigate gait as
an "optimal solution” with respect to energy, stability, etc. By
testing and adjusting different performance indices until the
predicted and measured data match, a plausible model of the
performance index that humans minimize in normal bipedal
progression can be identified.

It is hypothesized that in abnormal walking, the model of the
performance index is the same as the model identified for
normal locomotion but the system constraints are different For
instance, the maximum torque at one joint might be limited due
to injury. In general, the formulation is flexible in that it can
incorporate a variety of constraints, including anthropomorphic
limits on joint angles and torques, patient-specific constraints,
ground reaction data, and non-level walking constraints.

Finally, the method can be used to study different
mechanical models of human locomotion, such as models with
additional links (for the feet, arms, etc.) and with elements
representing stiffness and damping properties at the joints.

SUMMARY

We offer a variational approach that. deals directly with
optimality and system constraints to study bipedal locomotion. In
addition to predicting limb segment motions during walking, the
method represents a useful analytical tool to explore dynamic
characteristics such as joint torque histories, ground reaction
loads, and center of gravity behavior. It is hoped that the
method will contribute to the understanding of limb segment
motions during bipedal locomotion.
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