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ABSTRACT

Computational methods are described to predict wheelset steady-state
curving performance. A methodology is developed to compute various performance
measures including wheelset lateral excursion, angle of attack, lateral and
vertical wheel-rail forces as well as wheel-rail wear indices.

A discussion of the required degrees of freedom, appropriate coordinate
systems, and creep force representation of a nonlinear wheelset model is pre-
sented. In addition, assumptions required to characterize single-point and
two-point wheel-rail contact are described.

Equilibrium conditions for a wheelset result in coupled sets of nonlinear
algebraic equations; which are solved using nested iteration loops. Using this
numerical solution procedure, typical performance results are presented.

NOMENCLATURE

a half of track gage

ag longitudinal semi-axis of contact patch ellipse
Ar area of contact

be lateral semi-axis of contact patch ellipse

B proportionality constant

dc critical plastic displacement

fijN nominal creep coefficients

fll lateral creep coefficient

f12 lateral/spin creep coefficient

f22 spin creep coefficient

f33 longitudinal creep coefficient

Ec creep force vector (with components F v’ and MCP

in longitudinal, lateral, and normal contacg patch
directions, respectively)
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FCPX'FCPY ; creep force in longitudinal, lateral contact patch direction
' F! unlimited creep force in longitudinal, lateral contact patch
CPX CPY . .

direction

FCxi longitudinal track frame component of creep fcrce at i-th con-
tact patch; i = L (left), R(right) for single-point; i = LT
(left tread), LF (left flange), R(right) for two-point

FCYi lateral track frame component of creep force at i-th contact
patch; i = L (left), R(right) for single-point; i = LT
(left tread), LF(left flange), R(right) for two-point

FCZi vertical track frame component of creep force at i-th contact
patch; i = L (left), R(right) for single-point; i = LT
(left tread), LF (left flange), R(right) for two-point

Ff lateral flange force

Flat wheelset lateral force (in lateral track frame direction)
provided by suspension and body (cant deficiency) forces

Fui normal force at i-th contact patch; i = L (left), R (right)
for single-point; i = LT (left tread), LF (left flange),

R (right) for two-point

FNYi lateral track frame component of normal force at i-th contact
patch; i = L (left), R(right) for a single-point; i = LT
(left tread), LF (left flange), R (right) for two-point

FNZi vertical track frame component of normal force at i-th contact
patch; i = L (left), R (right) for single-point; i = LT
(left tread), LF (left flange), R (right) for two-point
1 il i £ £ i i

FrailL'FrailR ateral rail reaction force at left, right rail

Fé unlimited resultant creep force

Ft longitudinal thrust or drawbar force (in longitudinal track frame
direction)

F__,F net force in lateral track frame direction at left, right wheel

YL YR
(sum of lateral components of creep and normal forces)
Note: For lateral equilibrium: Fyy, + Fyp + Fy 4 =0

FYLF'FYLT net force in lateral track frame direction at flange, tread
contact patch of left wheel (sum of lateral components of creep
and normal forces)

FZLF'FZLT net force in vertical track frame direction at flange, tread
contact patch of left wheel (sum of vertical components of
creep and normal forces)

: -poi : + F -V, =
Note For two-point contact FZLF ZLT L 0

gi( ) function of ( )

hl thickness of wear particles

kr effective lateral rail stiffness

(L/v)1 + (L/V) r lower, upper bounds on maximum lateral-to-vertical

ower uppe force ratio at flanging wheel (from Nadal's limit)
p creep moment normal to contact patch
MCYi lateral track frame component of creep moment at i-th contact

patch; i = L (left), R (right) for single-point; i = LT (left
tread) , LF (left flange), R (right) for two-point
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MCZ' vertical track frame component of creep moment at i-th contact patch;
* i =1L (left), R (right) for single-point; i = LT (left tread),
LF (left flange), R (right) for two-point

M aw wheelset yaw moment (in vertical wheelset frame direction) provided by

¥ suspension forces
normal load (same as FNi)

- nominal normal load

in'Pout input, output power

R curve radius, often expressed in degree curve, D, where

360 -1 . .
D= 360 sin ( 0 ) with R in ft
T R

r, rolling radius measured from wheelset spin axis to i-th contact
patch; i = L (left), R (right) for single-point, i = LT (left
tread) , LF (left flange), R (right) for two-point

ry rolling radius for centered wheelset; nominal rolling radius

S sliding distance

Td wheelset drive/brake torque

v forward speed

VL,VR external vertical load acting on left, right wheel (in negative
vertical track frame direction) provided by body and suspension forces

WV wear volume

wl contact patch work per distance traveled (in force units)
Wl=FC-E

W2 contact patch work per distance traveled (Wl) divided by contact
patch area

Xy r Xy longitudinal displacement in track, wheelset frame

Yeo flange clearance

yrailL'yrailR lateral displacement of left, right rail

Yor¥y lateral displacement in track, wheelset frame

zT,zw vertical displacement in track, wheelset frame

B spin perturbation rate (from pure rolling angular speed)

Si contact angle at i-th contact patch; i = L (left), R (right) for
single-point; i = LT (left tread), LF (left flange), R (right)
for two-point

Axi longitudinal displacement of i-th contact patch from vertically
below wheelset axis

Az vertical distance between points of flange and tread contact

€ creep force saturation constant

H coefficient of friction

uf coefficient of flange friction

£ creepage vector (with components gxi' Eyi' and Espi in longitudinal,
lateral, and normal contact patch directions, respectively)

ER resultant creepage

£ . spin creepage in normal contact patch direction at i-th contact

spi
patch

i longitudinal creepage at i-th contact patch

Eyi lateral creepage at i-th contact patch
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0 wheelset spin speed per forward speed (or, wheelset pitch per distance

traveled) .
Q 1 B
= —— = — +
° v r v
o
¢d cant deficiency (lateral unbalance load)
R
d Rg SE
¢SE track superelevation (or bank) angle
qﬂ wheelset roll angle with respect to track plane
ww wheelset angle of attack, or yaw angle with respect to radial alignment
9] wheelset spin speed
INTRODUCTION

Rail vehicle steady-state curving analysis provides an evaluation of the
effects of vehicle design parameters, curvature, and cant deficiency (lateral
unbalance) on wheel-rail forces and geometry. Studies have indicated the value
of minimizing wheel-rail forces and wheelset angles of attack since large forces
and radial misalignment lead to increased wheel-rail wear resulting in wheel and
track deterioration (and noise), enhance the potential danger of derailment due
to wheel climb, and raise fuel consumption because of increased rolling resis-
tance in curves.

Analytic models of rail vehicle curve negotiation were reported over fifty
years ago (1,2). These early works assumed rigid frame vehicles negotiating
constant radius curves. They lacked an appropriate treatmert of the frictional
behavior that arises between a rail and wheel which is rolling with slip, known
as creep. It took thirty years before any significant theoretical progress was
made in developing the relationships between the creep mechenisms and the
associated wheel-rail shear forces (by Vermeulen and Johnsor (3) and Kalker (4)).
Kalker provided comprehensive mathematical models of the wheel-rail interaction
when slip is present assuming elastic deformation and elliptical contact zones.

Newland (5) and Boocock (6) each described simple lineer models to study
steady-state curving. Conical wheels, flexible primary suspensions, and wheel-
rail interaction effects due to creep and wheel-rail geometry were assumed.

By linearizing the analysis, each developed efficient computational tools which
were used to predict slip and flange contact boundaries that define regions of
"acceptable" curving performance as functions of cant deficiency and track
curvature. However, because of the imposed linearization, the results are ap-
plicable only to steady curving conditions involving large radius curves.

Bell, Horak, and Hedrick (7,8) exercised simple linear models to gain a
fundamental understanding of steady-state curving and stability mechanics of rail
vehicles running with conventional and radial trucks. They demonstrated that the
self-steering truck allows improved wheelset alignment in curves without a
sacrifice in dynamic performance on tangent track.

Nonlinear steady-state curving models were developed by Elkins and Gostling
(9) . They incorporated large wheel-rail contact angles and Kalker's nonlinear
c;éep theory while retaining linear suspension elements. Law and Cooperrider
(10) and Hedrick, et al. (1l1) explored the effects of nonlirear suspension com-
ponents. In doctoral research, Bell (12) developed a detailed nonlinear steady-
state curving model to study the effects of nonlinear suspersion and wheel-rail
profile on conventional, self-steering radial, and forced-steering trucks. Using
this model, Bell and Hedrick (13) showed that the curve negotiation capability
of forced-steered trucks is significantly improved over conventional and self-
steering radial trucks.

The majority of previous steady-state curving studies Lave assumed that each
wheel of the vehicle contacts the rails at a single point. For some wheel-rail
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profiles this is a simplistic view of the flange contact mechanism. The vehicle
curving performance studies of Marcotte, et al. (14) accounted for the possi-
bility of two-point waeel-rail contact by using a wheel profile composed of a
tread and flange segment each of constant (but different) conicity.

The basic element of the rail vehicle steering and support system is the
wheelset. The contact and friction mechanisms which develop at the wheel-rail
interfaces have a dominant effect on vehicle curving behavior. The curving per-
formance of a vehicle is a direct function of the ability of its wheelsets to
negotiate a curve.

This paper addresses the computational methods required to characterize
rail vehicle steady-state curving behavior by focusing on wheelset mechanics.
A number of performance indices, designed to measure the ability of a vehicle
or wheelset to negotiate a curve, are introduced. A detailed model of the non-
linear forces which act at the wheel due to contact at the rail is developed.
The model accounts for nonlinearities due to profile geometry and creep force
saturation, and represents single-point and two-point wheel-rail contact at the
flanging wheel. Steady-state curving conditions are achieved when the wheelset
satisfies force and moment static equilibrium. The equilibrium equations are
developed, and appropriate numerical solution procedures involving nested
iteration loops are described. In addition, a simple method to accommodate rail
flexibility is introduced.

PERFORMANCE INDICES

Several performance indices have been developed to represent the ability
of a rail vehicle to negotiate a curve. A number of simultaneous objectives
can be identified, such as perfect steering, prevention of derailment, minimum
wheel-rail forces, and minimum wheel-rail wear.

Optimal curve negotiation, or perfect steering, is achieved if each wheel-
set in a vehicle adopts a radial position and displaces laterally so that it
rolls without slip around the curve. As such, the wheelset lateral excursion
from the track centerline, Ywr and the wheelset angle of attack or yaw angle
with respect to radial alignment, yy, are natural performance indices. Dis-
placements y,, and Yy, are defined in Figure 1. BAn undesirable situation exists
when these indices reach large magnitudes. With significant wheelset lateral
displacement and radial mi§alignment, flange contact occurs.

The derailing tendencies of a vehicle are associated with the ratio of
lateral flange force to vertical wheel load. When this ratio exceeds a critical
value, there exists a situation conducive to a flange-climbing type derailment
(15,16) .

Several wear indices have been proposed to predict wear rates at the wheel-
rail interface. Due to the complex nature of modeling wear, these indices are
designed to relate to wear in a relative manner and are used for performance
comparisons, rather than to represent actual wear. A list of proposed wear in-
dices appears in Table I. The wheelset angle of attack, Y, the creepages (or
normalized rates of slippage), Ei, and the lateral flange force (for a flanging
wheel) , Ff, are related to the wear rate (5,6). The effect of increased iy, v
and/or F¢ is to increase wear at the wheel-rail contact point.

No comprehensive verification of the proposed wear indices has been con-
ducted. Limited tests by British Rail and I.I.T. have shown potentially useful
trends (19,21). Dry wear laboratory tests by British Rail (22) have suggested
that the wear rate can be expressed in terms of creep force, creepage, and
Hertzian contact area. Wide-scale experimental validation of wear models needs
to be undertaken to identify which indices can be related directly with wear.

In this paper the forces and creepages at the wheel-rail interface are
computed so that most of the indices listed in Table I can be predicted.
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Fig. 1 Definition of angle of attack and lateral wheelset excursion

*
Table I Proposed Wear Indices

WEAR INDEX SOURCE
v, Angle of Attack (5,6)
Ei Creepage
F £ Flange Force
F_ ) Flange Wear Index (14)

f'w 5 5 —
ufFf (Az/rLT) +(1bwtan6LF) Two-Point Flange Wear Index (14)
ViER Tread Wear Index (17)
W1=Fc-§ Contact Patch Work (18)

wl
W, = ——— Contact Patch Work/Area (19)
2 ma b =2
e e
B hlArS
W = Wear Volume (20)
v d.

*
Variables in Table I are defined in the nomenclature.
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GEOMETRIC CONSTRAINTS

A. Coordinate Systems

A free wheelset negotiating a constant radius curve is exposed to track
curvature and lateral force unbalance inputs. The track curvature is given by
1/R, where R is the curve radius assumed constant. The lateral force unbalance
is usually expressed in temms of cant deficiency, ¢4, defined as the angle be-
tween (1) the resultant of the "centrifugal force", mVZ/R, and the weight, mg,
and (2) the normal into the rail plane. When ¢d=0, a condition of "balanced
running” is achieved for which the components of centrifugal force and weight
parallel to the rail plane cancel each other. For comfort and safety the maxi-
mum cant deficiency loads are limited to low levels in the U.S. (about 6° of
inboard unbalance and 3° of outboard unbalance (12)). Track curvature is there-
fore considered the dominant curving input.

Assuming continuous wheel-rail contact, a wheelset negotiating a constant
radius track at constant speed has two independent degrees of freedom: lateral
and yaw displacements, y, and Yy, respectively. The convention for positive
vw and Yy, displacements is shown in Figure 1. In this paper, right-handed curves
are considered, and thus positive y, is associated with displacements toward the
left rail. Track and wheelset coordinate systems are introduced in Figure 2.
Contact angles (81,,6Rr), rolling radii (rp,rg), and wheelset roll angle relative
to the track plane (¢y) are defined in Figure 3.

Fig. 2 Track and wheelset coordinate systems

REAR VIEW
_eft Contact
\ Plane
Wheelset v
Spin Axis S W
P L [ Right Contact
- — — Plane
T — 5
—_— R
: QW f— T S
w R /
Track Plane

v |
NL

; |
l i FNR

Fig. 3 Wheel-rail geometry and normal forces assuming single-point contact
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B. Wheel-Rail Profile Geometry

For a wheelset which never loses contact with the rails, the rolling radii,
contact angles, and wheelset roll angle are functions of the net wheelset-rail
lateral excursion for a given wheel-rail profile. These functions (rolling
radii and contact angles) are shown in Figure 4 for a typical new wheel on worn
rail profile on standard gage (23). For this profile, the flange clearance is
Yeo = 0.32 in. When the wheelset lateral excursion minus the rail lateral ex-
cursion is less than flange clearance, tread contact occurs. Flanging at the
left wheel occurs when the wheelset lateral excursion with respect to the left
rail equals or exceeds flange clearance. Note that for severe flanging the con-
tact angle approaches 65°.

The rolling radii, contact angles, and roll angle are wheel-rail geometric
constraint variables since they are functions of the net wheelset-rail lateral
displacement. These variables indicate the nature of wheel-rail contact as the
wheelset is displaced laterally. If the rolling radii and contact angles are
single-valued functions of the lateral excursion, single-point contact occurs
at both wheels for all displacements. This represents a continuous single-point
contact approximation, shown in Figure 4 with solid lines. As the wheelset is
laterally displaced, the left wheel shifts from tread to flange contact, while
the inner wheel maintains tread contact. For other profiles (the dashed lines
in Figure 4) the left rolling radius and left contact angle have steep slopes
at net lateral excursions equal to flange clearance. This indicates the
possibility that multiple wheel-rail contact points exist at the flanging (left)
wheel. BAs before, single-point tread contact occurs for net lateral excursions
less than flange clearance, corresponding to the situation drawn in Figure 5a.
For net lateral excursions equal to flange clearance, it is assumed that two-
point contact occurs at the flanging wheel. This is depicted in Figure 5b, where
the rail head is shown to contact simultaneously both the tread and flange of
the flanging (outer) wheel. The inner wheel maintains single-point tread con-
tact. For net lateral excursions larger than flange clearance, a situation
conducive to derailment exists since single-point flange contact occurs at the
flanging wheel (Figure 5c) .

17.4 T T T T T T J ! |
17.2 |
. 7
5 Flange Contact ( Single-Point
- 17.0} ! - |
-4 1
H i
. 1 -
8 B i
A r, 27
T 16.8 | ; 1 -
& Two-Point '
o 1
o '
- » 1 -1
o~
'(_D‘ I
4 i
i -
16.6 - Tread Contact_ |
r
R —4
16.4 ! 1 | ! 1 13 1 | 1
0.0 0.1 0.2 0.3 Ve 0.4 0.5
Net Wheelset Lateral Excursion, yw_yrailL . yw_yrailR(m)

Fig. 4a: Rolling radii vs net wheelset lateral excursion for new wheel on worn
rail
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Fig. 5 Left wheel-rail contact

Some profiles are designed to achieve single-point wheel-rail contact for
all realistic values of lateral displacement., Many new wheel profiles, such as
the AAR 1 in 20, contact the rails at multiple points during normal use,
Naturally, wheel (and rail) profiles change with time due to wear during service
life.

WHEELSET EQUILIBRIUM CONDITIONS

For a wheelset negotiating a curve, a difference occurs between the actual
velocity and the velocity in pure rolling of the contact points resulting in
partial slip or creepage of the wheels relative to the rails. Normal loads
acting on a slipping wheelset result in the generation of creep forces. Due to
the action of creep, the lateral and yaw degrees of freedom of a wheelset are
coupled.

Each point of wheel-rail contact is a patch of finite area, where a state
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between pure-roll and pure-slip exists. During the last ten years there has
been a significant improvement in the understanding of this friction mechanism
and in computational programs to predict it. Kalker (4) developed linear,
simplified nonlinear, and exact nonlinear theories and programs. In this paper
a "heuristic" (3) creep force model is used which is computationally fast and
reasonably accurate. The creep forces and moment at each contact patch can be
resolved into longitudinal, lateral, and vertical components in the track frame.

Whereas creep forces act in the plane of each contact patch, normal forces
act perpendicular to the plane. These forces can be resolved into lateral and
vertical components in the track frame. For single-point wheal-rail contact at
the left and right wheels, the resolved normal force components from Figure 3
are

F__ o= - ; +
wyn T TEgp SR o)
FNZL = FNLCOS(GL + ¢w)
(1)
F__ = ' -
Nyr - TnpSinGg - o))
Fuzr = FnrSosg = &)

The sum of the lateral components of the normal force is sometimes referred to
as the "gravitational stiffness force".

The static equilibrium conditions for a wheelset negotiating a constant
radius curve can be expressed by eight algebraic equations, six for the wheelset
and one for each rail. The rail is assumed to only have a lateral degree of
freedom (Figure 6), i.e., overturning motion has been neglected. The equilibrium
equations are

IF = 0 (2)
*p
LF = 0 (3)
Yo
IF, =0 (4)
T
Wheelset M = 0 (5)
XW
M = 0 (6)
yw
M = 0 (7)
b4
w
Left Rail: IF = 0 (8)
Y
Right Rail: LF = 0 (9)
Yp

where external and inertial forces/moments are summed on the left. Equations (2)-
(4) are wheelset force equilibrium equations, (5)-(7) are wheelset moment
equations and (8)-(9) are the left and right rail lateral force equations.

In steady-state curving the rails can be modeled approximately as linear
springs as shown in Figure 6. Each rail displaces laterally a distance related
to the net lateral wheel force, i.e.,

F
o - (10,
rail, r
YR
- X 11
Yyail k (1)
R r

*
See Appendix A.
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REAR VIEW

y
Y rale

1
rail,

.

Fig. 6 Flexible rail model

where Fyg, and FYR ars the net lateral wheel forces and are composed of creep and
normal forces. The typical range of effective lateral rail stiffness values
(24) is 25,000 1b/in to 80,000 1b/in.

Two nonlinear models have been developed to predict the steady-state
curving behavior of a single wheelset. Both models assume that the wheelset is
in force and moment static equilibrium. The difference between the models is
that one assumes that single-point wheel-rail contact occurs at both wheels of
the wheelset; the other model assumes that two-point tread-flange contact occurs
at the outer wheel and single-point tread contact occurs at the inner wheel of
the wheelset. The following two sections formulate the equilibrium conditions
for these two models.

A. Single-Point Contact

A free-body diagram of a wheelset with single-point contact at each wheel-
rail interface is shown in Figure 7a. All forces and moments are resolved in
track coordinates, except for the wheelset drive/brake torque, Tq, which acts
about the spin axis. This drive/brake torque can be considered to be a speci-
fied input. Other inputs are: (1) the vertical loads on the left and right
wheels, Vi and Vi, respectively, acting in the negative Zp direction, (2) the
thrust or drawbar force, F¢, acting at the wheelset center of mass in the Xp
direction, (3) the wheelset lateral force, Fiatr acting in the track plane in
the yp direction, and (4) the wheelset yaw moment, M awr acting about the zy
axis. Figure 7b shows a rear view of the wheel and rail force equilibrium.

Va
F F
CY, NYL (;‘L’)
-— — F F M
/////;r NYR CYR CYR
P —~—
F Ilat /‘
CXL F

F
P CXR
CzZL F
CZR
MCZL

Fig. 7a Wheelset free-body diagram: single-point wheel-rail contact
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Fig. 7o Wheel and rail forces for single-point contact

REAR VIEW

Wheel Forces

Rail Forces

F
i1
R

Assuming single-point contact at the left and right whesl-rail interfaces

and small roll and yaw anglss, the following steady-state equilibrium con-

ditions apply:

LONGITUDINAL
IF. =

ROLL

SPIN

WHEELSET
F__ +F_ __ +F
cxt © Texr T Yt
+F__+F __+F__+F
v ¥ Forn t v T Fovr t Frae
+ +F_ -y -
Fazr * Fezn * Fyzr T Fozr TV T R
+ - - + -
Fyzr * Fogr ™ Fagr ™ Fgw'@ ¥ (Vg ~ V)2
- + + - + I
o Fox, ww{FCYL Fyve, = Fegr, + Fygr) t20 L}]
- + - + §
TplFexr ¥ wwiFCYR Fyvr © Fogr * Fygr) t2° R*l
¥ + +
Moyr, F Mayr % Megr * Mogr) * Tg
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YAW

- {
= = - (F - F - F +F - r_tan§
ZMzw 0= ~(Foyy, = Fexr?® 7 Wy 1Fyyy, ¥ Feyr) (2~ Tptanty)
- + - S+ M.+ M
(Fyyr * Foyr) (2 = rptandp) czL ~ TCZR
+ M + M + M 17
by My, cyr) yaw (7
RAIL
LATERAL LEFT
= = + F + F 18
zFy © FNYL CYL rail (18)
T L
LATERAL RIGHT
= = + F + F .
ZFy 0= Fyyr CYR rail (19)
T R
Here the lateral rail reaction forces, F__. and F__,. , are functions of
rallL rallR
- d - , respectively.
Yy yrailL an yw yrailR P ely
Equations (12) - (19) represent eight coupled nonlinear algebraic equations.

Assuming Vi, VR' F , and Myaw are known, the equations can be solved for the
following eight independent variables: Fi, Yyr Fygzrr Nngzrs O Uy Yraily,’
Yrailg- These variables can be used to calculate all wheel-rail forces. The con-
tact angle and roll angle are specified since vy - Yyaijlp @d Yw - Yrailgp are
known, and thus the resultant normal forces and the lateral components of the
normal forces can be calculated from Fygp and Fyyzr. The creep forces at the left
and right contact patches can be computed since the creepages (which are func-
tions of ¥y - Vrailps Yw ~ Yrailgs & and l,) and the normal forces are known.
Equations (12) - (19) can alternatively be solved for the following variables

if Vi, VR, Yy, and ww are specified: Fy, Fiz¢, Fnzns Fnzr: @/ Myaw' Yryaily,s
Yrailg® DLater in this article, the numerical technique required to solve for
this latter set of unknowns is described. Finally, for the case of rigid rails,
Yraily, = Yrailg = 0 and the wheelset equilibrium equations, equations (12) - (17),
decouple from the lateral rail force equations, equations (18) and (19), leaving
a system of six equations with six unknowns.

The thrust in the longitudinal track direction defines the drawbar force,
F,_, which must be applied to the wheelset for it to traverse the curve in steady-
state. The lateral force, Fjat, is provided by suspension and body (cant de-
ficiency) forces. It equilibrates the lateral components of creep and normal
forces to yield static equilibrium in the lateral direction. Suspension forces
also give rise to the yaw moment, Myaw’ which balances the moments in the yaw
direction due to creep and normal forces. The vertical loads which act on the
left and right wheels, Vi, and VR, respectively, are provided by suspension and
body forces. The sum and difference of the vertical and roll equations yield
the following equations for the vertical loads:

=F___ +
VL T Fyzn t Fezn (20)

v, =F + F
R NZR CZR (21)

The rotational velocity of the wheelset is determined by the spin equation,
which balances the moments about the wheelset spin (bearing) axis. The wheelset
drive/brake torque, Tz, is balanced principally by longitudinal creep forces.

B. Two-Point Contact

The wheelset model appropriate for two-point contact analysis assumes simul-
taneous tread and flange contact at the outer (flanging) wheel and single-point
contact at the inner wheel. The lateral displacement of the wheelset with
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respect to the left rail is fixed at flange clearance and thus the contact
geometry of the tread and flange contact points at the left wheel is fixed even
though the forces may vary. Figure 8 shows the free-body wheel and rail forces
for two-point contact. The steady-state force and moment equilibrium equations
for the case of two-point contact are similar to equations (12)-(19) with new
tems to account for the additional contact point. The two-point contact
formulation is statically-determinate due to the facts that (1) the net lateral
excursion at the left wheel is constrained to equal the flange clearance, and
(2) the normal forces have components in the lateral as well as vertical direc-
tions. This implies that the contact geometry at the tread and flange contact
points of the flanging wheel is known and that the normal force at the flange
contact point can be determined from the lateral force balance equation. The
complete equations are shown below:

REAR VIEW

Wheel Forces

Rail Forces

Fig. 8 Wheel and rail forces for two-point contact

WHEELSET
LONGITUDINAL
ZFxT = 0= Foxrr * Foxer T Foxr * Fe (22)
LATERAL
FyT = 0= Faver * Fernr t Tvver T Fover t Twvr t Tovr T Tlat 23
VERTICAL
ZFZT = %= P Y Fozrr * Faozrr t Fozre T Tazr T Fezr TV T %R (29
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ROLL

= = + + + F - F -
z:MXW 0 (FNZLT FCZLT FNZLF CZLF NZR FCZR) a
-(v_ - 2
(VR VL)a (25)
SPIN
IM =0= - + F + F - (F + F tan§
Y, 0=t Foyrm ww{ cver T Tyver T Fezrr t Fnznr il
- + F + - (F + F $§
e Foxer II’w; cver ¥ Tyver T Fegrr t Fzne) B2 ol
- + F + - (F + F S
' Foxr ww{ cvr T Tuyr T Fegr t Fazr) AR R}]
+M + + + + + M
cver ¥ Mover t Movr T % Meznr t Mezrr t Moz®!)
+ 2
Ty (26)
YawW
=0 = - +F -F _a
ZMzw 0 Fexrr * Foxrr ™ Foxr!
- F + P = tan§
v, ¢ wyer T Fovnr! (37Fpptan Sy
+ + F - - (F, + F - r_tand
Fyyrr © Foyrp) (2 7 Tpptan pp) = (Fggp + Foyg) (@ - rptan R)z

M + M + M + M + M + M
CZLT CZLF CZR ¢w( CYLT CYLF CYR)

+ M (27
yvaw

RAIL

LATERAL LEFT

=0=F + F +F + F +F__,
ZFyT NYLT CYLT NYLF CYLF rallL (28)
LATERAL RIGHT
F =0=F + F + F .
z Yon ° NYR CYR rail (29)
L R
Equations (22) - (29) represent eight coupled nonlinear algebraic equations.

In this case the relative wheelset excursion (Yw'YrailL) is fixed at the flange
clearance value (yfc). Assuming Vi, VR, Figt, and M;,, are known, the equations
?an be solved for: Fi, vy FNZLT, FNZLF? FNZB, R, Uyer Yraily- Alternatively,
if V1, VR, yy and Yy are specified, the equations can be solved for: Fer Fraes
FNzrrr Fnzrrr Fnzre O M, awr Yrailg- For the case of rigid rails the wheelset
equations decouple from the rail force equations. The wheelset lateral excur-
sion, yy. equals the flange clearance, ygs. If Vi, VR, Fis¢, and i, are known,
the following variables can be determined from equations (22)-(27):

Fr, Fygur. FNzLF Fgpps & M

The two-point contact model is used to determine the distribution of wheel-
rail forces acting at the tread and flange contact points at the flanging wheel.
For a wheelset negotiating a shallow curve corresponding to "mild" flanging,
the forces at the tread contact point dominate. With tighter curves more severe
flanging develops, and the wheel-rail forces gradually grow at the flange contact
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point and decrease at the tread contact point. This tradeoff in forces from
tread to flange continues with degree curve until all forces act at the flange
contact patch. This would occur for a wheelset negotiating an extremely tight
curve, and would indicate the danger of derailment as the outer wheel rides high

up against the flange. The single-point contact model is appropriate cnce con-
tact occurs at only the flange contact patch.

A useful relationship between the work index, Wy defined in Table I, and
the external forces and moments on the wheelset can be derived by manipulating
the equilibrium equations or by writing a power balance equation, i.e.,

Pin = Pout (30)
Mya
\
. = V- - Ly
Pln [Ft R on] (31)
P =-VW, =-V I [F g +F E M & ]
out 1 L,R CPXi X, CPYi v; CPiSpi
(32)
Noting from equations (12) and (22) that Ft = - I FCXi' equation (30) yields:
L,R
Myaw
W= ¥ F_, B+ —L1=_ - oT (33)
1 L,R CXi. R d

Equation (33) is a useful check to ensure that a correct numerical solution of
the equilibrium equations has been obtained.

In the full vehicle formulation the wheelset yaw moment is not an external
moment and thus equation (33) reduces to that obtained in reference (18), i.e.,

(34)
NUMERICAL METHODS

The numerical solution procedures used to solve the coupled equilibrium
equations of the single-point contact and two-point contact wheelset models are
discussed in the following sections. The procedures assume that the wheelset
lateral excursion and angle of attack, as well as the vertical loads acting on
the left and right wheels are known. By solving the single-point equations,
equilibrium values of lateral. force and yvaw moment are determined as functions
of lateral excursion and angle of attack. For lateral excursions less than and
larger than flange clearance this model is appropriate. For some profiles, this
model is still appropriate at flange clearance, as was discussed above. For pro-
files with steep rolling radius-displacement and contact angle-displacement
functions at flange clearance, the two-point contact model is applicable since
it represents the fact that separate tread and flange contact points actually
exist. Solution of the two-point equations gives the equilibrium yaw moment as
a function of lateral force and angle of attack.

A. Single-Point Contact

For the case of rigid rails, the wheelset equilibrium conditions are speci-
fied by equations (12) through (17), and represent nonlinear algebraic equations
coupled due to the fact that the normal and creep forces depend upon each other.
First, equations (16), (20), and (21) are solved simultaneously for the wheel-
rail contact forces and moments. Then, equations (12), (13), and (17) are used
to define the drawbar force, the lateral force, and the yaw moment, respectively,
needed to maintain the wheelset in equilibrium.

Two nested iteration loops are used to solve simultaneously the spin,
vertical, and roll equations. The inner loop balances the torgue about the
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wheelset rolling axis by adjusting the spin perturbation rate*, é, to satisfy
the spin equation. The outer loop adjusts the vertical component of creep
force at each wheel to satisfy the sum and difference of the vertical and roll
equations. This procedure is continued until vertical force convergence is
achieved, as outlined in the flowchart in Figure 9 and gives the equilibrium
values of all contact forces and moments. The longitudinal, lateral, and yaw
equations are then applied to solve for the equilibrium values of F, Fjat, and
Myaw' respectively.

INPUT: yw,ww,VL,VR,Td,R,a,u.ri(yw) ,5i(yw) ,dbw(yw) ’

NOMINAL CREEP COEFFICIENTS

CALCULATE FNZL' FNZR FROM EQUATIONS (14) AND (15)

| CALCULATE RESULTANT AND LATERAL NORMAL FORCES ‘}

!

l ADJUST CREEP COEFFICIENTS FOR NORMAL FORCES I

[ CALCULATE CREEPAGES: &'s ‘

l

CALCULATE CREEP FCRCES/MOMENTS,
SATURATE AND RESOLVE

SPIN
EQUATION (16)
SATISFIED?

ADJUST

VERTICAL ADJUST

FORCE FCZL'F 7R
CONVERGENCE 2. c
Y
F
CALCULATE Ft' lat’ Myaw FROM
EQUATIONS (12), (13), (17), RESPECTIVELY

END

Fig. 9 Flowchart for wheelset equilibrium with rigid
rails: single-point contact model

A similar routine to solve the coupled wheelset equilibrium equations was
developed by Sweet and Sivak (15) in which the two nested iteration loops are
reversed. It should be noted that the creep forces are quite sensitive to small
&m%sﬂtMsMnmﬁwﬁﬁmr&aé.

The nonlinear wheelset routine has been used to predict equilibrium values
of wheelset lateral force and yaw moment as functions of wheelset lateral excur-
sion and angle of attack. The vertical loads acting on the left and right wheels
are assumed to be known constants, and the rails are modeled as rigid. Mathe-
matically, the functions generated are:

*
A v . L s X .
Q = :?—-+ B, where B is the perturbation from the pure rolling spin
o velocity.
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Flat = 91 Wur %) (35)

Myaw = g2(yw' ww) (36)
For each value of y, and jy, the method determines the Fj,; which must be ap-
plied to obtain lateral equilibrium, and the M5y needed for yaw equilibrium.
By incrementing lateral excursion, while holding angle of attack constant,
families of force-displacement and moment-displacement curves can be generated.

Figures 10 and 11 show examples of such curves for iy, = -1.6° to i, = +1.6°.
The wheel loads are Vi = Vi = 12,500 1b, the coefficient of friction is u = 0.3,
no external drive torgue is applied, and the rails are issumed to be rigid. The
nominal creep coefficients used are half-Kalker values. The test is performed
using a new wheel on worn rail profile on standard gage, as shown in Figure 4,
for the case of very mild curving (R = 10,000 ft).

The effects of creep force saturation and of vertical creep force compon-
ents are exhibited in Figure 10. In the tread region of the profile
(Y < 0.321in), the magnitude of Fj, ¢+ saturates to u x Axle Load (7500 1b)
for large positive and negative angles of attack. On the flange (yy > 0.32 in),
the vertical components of creep force help the left wheel climb the flange for
positive angles of attack. This is due to the contributions of the lateral and
spin creep which tend to 1lift the wheel off the rail. For negative angles of
attack, the vertical creep forces, due to lateral creep, change direction and
tend to press the wheel down harder against the rail, allowing the wheelset to
support a much greater lateral force before derailment occurs.

Figure 11 shows the equilibrium wheelset yaw moment as a function of wheel-
set lateral excursion. For each angle of attack, Myaw is relatively small in
the tread region and large in the flange region. As the wheelset contacts the
flange, longitudinal creep forces saturate very quickly to the adhesion limit
due to the sudden increase in rolling radius difference.

Maximum yaw moment in both the tread and flange regions occurs at zero
angle of attack. As the angle of attack increases in either the positive or
negative direction, Myay decreases. This illustrates the coupling between the
lateral and longitudinal creep forces. For a given level of creepage in a
particular direction, the creep force in that direction is always a maximum
when the creep forces in the other directions are zero.

The maximum lateral to vertical force ratio at the flanging wheel (Fyy/Vy
denoted as L/V) as a function of wheelset angle of attack is shown in Figure 12.
This graph is indicative of the derailment tendencies of the wheelset. The peak
L/V ratio increases significantly for negative i, until it saturates to Nadal's
upper limit (16), given by

+
N e AL -
upper t- utanSL

where (L/V)upper is the largest value that the maximum lateral-to-vertical wheel
force ratio can assume. Similarly, for large positive yaw angles, the maximum
L/V ratio saturates to Nadal's lower limit,

( L ) B tan6L - M (38)
v lower 1+ utanGL
where (L/V)jggey is the minimum value possible. For a flange contact angle of
64°, Nadal's limits predict: (L/V)upper = 6.11 and (L/V)jgyuer = 1.08. These
boundaries are marked in Figure 12. Garg and Weinstock (25) showed that the
slope of the curve between Nadal's limits at intermediate yaw displacements is ap-
proximated by:

*
Appropriate creep coefficients were used for the tread and the flange.
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— Slope Predicted by

Garg and Weinstock (23) .

Maximum L/V Ratio at Flanging Wheel
o~
o
I

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Wheelset Angle of Attack u‘ww(deq)

Fig. 12 Maximum L/V Ratio at Flanging Wheel vs
Wheelset Angle of Attack
(axle load = 25,000 1b; u = 0.3; rigid rails)

This predicts a slope of -6.36/deg which agrees well with the slope obtained
using our method.

To accommodate rail flexibility, the solution technique is to calculate the
net lateral wheel force at each wheel assuming a rigid rail model. Then the
lateral rail displacement at each wheel is calculated according to equations
(10) and (11) and used to compute the effective lateral excursion at each wheel
(yw - Yrailpsr Yw ~ Yrailg)- These lateral excursions are used to update the
wheel-rail contact geometry at the left and right contact points. The net
lateral wheel force at each wheel is then computed, and the process is continued
until convergence is achieved. Even with "soft" rail, convergence occurs rapid-
ly, within several iterations.

The effect of including rail flexibility in steady-state curving studies
is to increase the rail gage. This constant gage spread implies that the rails
accommodate the large lateral wheel forces by moving out. The flexure of the
rails results in greater lateral excursion of the wheelset by up to 30 or 40 per-
cent, but the angle of attack of the wheelset is relatively unaffected. Also,
the steady-state wheel-rail forces are not sensitive to flexure of the rail.

B. Two-Point Contact

For some profiles, two-point contact occurs at the outer (left) wheel when
the net lateral excursion equals the flange clearance. To determine the wheel-
rail forces and moments at the (three) contact patches, assuming rigid rails,
four coupled equilibrium equations must be solved simultaneously: the spin,
vertical, roll, and lateral equations. The lateral equation is then used to
determine the equilibrium values of the contact forces and moments. This implies
that the wheelset lateral force, derived from body and suspension forces, must be
known. Once a solution to these coupled equations is determined, the wheelset
yaw moment needed to satisfy yaw equilibrium is calculated from the vaw equation.
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In a real vehicle, this yaw moment is provided by the suspension forces.

The four coupled equations are solved as before using two nested iteration
loops as shown in Figure 13. The inner loop adjusts the spin perturbation rate,
B, to satisfy the spin equation. The outer loop adjusts the vertical components
of the creep forces at the tread and the flange of the outer wheel and the tread
of the inner wheel to simultaneously satisfy the lateral equation and the sum and
difference of the vertical and roll equations. Once vertical force convergence
is achieved, equilibrium values of all contact forces and moments are known and
the yaw equation is used to calculate the wheelset yaw moment which must act for
equilibrium.

Using this procedure, equilibrium values of wheelset yaw moment as functions
of wheelset lateral force and angle of attack have been generated. The rails are
assumed to be rigid and thus the wheelset lateral excursion is fixed at the flange
clearance. Mathematically,

M = F 0]
yaw g3( 1at'ww) (40)
with Y, = yfc and VL' VR known.
INPUT : yfc'ww'Flat' vL,vR,Td,R,a,u,ri(yfc),Si(yfc),¢w(yfc)

NOMINAL CREEP COEFFICIENTS

!

= =F =
1:‘CZLT FCZLF CZR

F =

NZLF
[
Y

, F FROM EQUATIONS (24) AND (25)
NZLT NZR

I

ICALCULATE RESULTANT AND LATERAL NORMAL FORCES ]

!

l ADJUST CREEP COEFFICIENTS FOR NORMAL FORCES J

)
I CALCULATE CREEPAGES: &'s ]

]

CALCULATE CREEP FORCES/MOMENTS,
SATURATE AND RESOLVE

I CALCULATE F

SPIN ADJUST
EQUATION (26) é
SATISFIED?
CALCULATE FNYLF FROM LATERAL EQUATION (23);
FIND F
RESOLVE TO NZLF
ADJUST

VERTICAL FORCE
CONVERGENCE?

; F ’
1:‘CZL’I‘ CZLF

F F
CZR NZLF

CALCULATE F_, M FROM
t yaw

EQUATIONS (22), (27), RESPECTIVELY

END

Fig. 13 Flowchart for wheelset equilibrium with rigid rails: two-point
contact model
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This function is plotted in Figure 14 for a wheelset with a fixed angle of
attack of Yy, = +0.1° negotiating a 10° curve (i.e., R = 575 ft). Also shown in
Figure 14 is the solution for a single-point contact analysis, obtained by cross-
plotting equations (35) and (36).
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10° Curve
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o -
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o
o
£
-10,000 -~ -
-20,000 1 1 1 ! 1 1
-4,000 -2,000 0 2,000 4,000 6,000 8,000 10,000

Wheelset Lateral Force, F (1b)
lat
Fig. 14 Wheelset yaw moment vs. lateral force
(10° curve; ww = 4+0.1°; rigid rails)

The equilibrium value of wheelset yaw moment predicted by the one-point
contact analysis is larger than the moment calculated using the two-point analy-
sis (for positive yaw moments). The yaw moment needed for equilibrium is equal
and opposite to the yaw restoring moment provided by creep forces. The restoring
moment helps to align the wheelset radially. Thus, the larger the restoring
moment aiding to achieve radial alignment, the smaller the external forces re-
quired for equilibrium. These external forces are due to suspension forces
which restrain the wheelset in a truck. Thus, since the one-point contact
analysis predicts a larger equilibrium yaw moment, it suggests that the suspen-
sion forces needed for equilibrium will be lower than those predicted using the
two-point contact analysis. Furthermore, the difference in yaw moments for
the two analyses diminish with increased angles of attack.

The two-point analysis predicts large longitudinal creep forces in opposite
directions in the tread and flange contact points of the flanging wheel. These
opposing creep forces partially cancel one another. The one-point analysis
predicts a longitudinal creep force at the flanging wheel which is larger than
the net longitudinal creep force predicted using the two-point contact analysis.
This larger longitudinal creep force results in the larger restoring moment.

The two-point analysis predicts lateral forces in opposite directions
in the tread and flange contact points of the outer wheel as well. These
lateral forces are the sum of the lateral components of the creep and normal
forces at each contact point. The fact that the two-point analysis predicts
large opposing contact forces at the flanging wheel is partly responsible for
the significantly higher levels of total work expended as compared to the one-
point analysis. (The total work is defined as in Equation (32)). Figure 15
compares the work at the flanging wheel computed using the one and two-point
analyses as a function of wheelset lateral force. The results of the two-point
analysis show that for large negative values of lateral force all the work is
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expended at the tread contact patch and none at the flange contact patch. As the
wheelset is loaded with more (positive) lateral force the flange contact patch
work exceeds the work at the tread patch. The significant levels of work expended
at the flange contact patch are attributed to large lateral and spin creepages
(due to the large contact angle) and large creep forces which develop. Loading
the wheelset with additional lateral force results in still higher levels of
flange contact patch work, whereas the work at the tread diminishes as the force
distribution shifts to the flange and away from the tread. This will continue
until all the forces, and the work, vanish at the tread, and single-point flange
contact is achieved. Figure 15 demonstrates the marked differences in contact
patch work predicted using the two models.

125 T T T T T T
10° Curve

= o
u;w +0.1

100 - Two-Point

Contact Total

Two-Foint
Conteact Flarge

75

One-Point
Contact

Work (ft-1b/ft)

Two-Point
25 - Contact Tread /; n
0 1 1 Il
-4,000 -2,000 0 +2,000 +4,000 +6,000 +3,20C +10,000

Wheelset Lateral Force, F (1b)
lat

Fig. 15 Work at left wheel vs. wheelset lateral force
(10° curve; Uy = +0.1°; rigid rails)

Rail flexibility is accounted for, as before, by solving first for the net
lateral wheel forces assuming rigid rails. Equations (10) and (11) are used to
calculate the lateral rail displacements, where Fyp = Fyrp + Fypp in equation
(10). The net lateral excursion at the right, yw - Yrailg’ is camputed and used
to update the right contact geometry. It is assumed that two-point contact at
the left wheel is maintained and thus yy - Yraily = Yec- The net lateral wheel
forces are then computed and the procedure is continued until corvergence occurs.
As noted before, for tvpical values of lateral rail stiffness the rail gage and
the wheelset lateral excursion are increased, but the wheelset argle of attack
and wheel-rail forces are not significantly altered.

In the implementation of these wheelset models to more ccmplete analyses
of vehicle steady-state curving the lateral force and yaw moment needed for
wheelset equilibrium are provided by suspension and body forces. The single-
point and/or two-point contact models are then incorporated as subroutines
in a larger vehicle program. Reference (12) illustrates this procedure for
single-point contact, while (26) discusses the full vehicle model using two-point
contact.

CONCLUSIONS

This paper has shown the equation formulation and numerical solution method
necessary to compute the forces, moments, and geometry of a wheelset during
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steady-state curve negotiation. The formulation includes both single-
point and two-point wheel-rail contact. The wheelset models Presented are the

most important elements in any total vehicle model and thus merit such a detailed
discussion.

Typical numerical results for both the single and two-point contact models
were presented and a comparison of their force/moment and related wear index
characteristics was given. It was shown that in general the single-point model
overpredicts the steering capability of the wheelset and underpredicts the amount
of work (wear) done on the flanging wheel.
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APPENDIX A - CREEP FORCE MODEL

The "heuristic" nonlinear creep force model mentioned in the texzt is a
modified Vermeulen-Johnson (3) formulation that includes the effect of spin creep.

The creep forces and moments are initially computed using the Kalker linear
theory (4). At each contact patch, the longitudinal and lateral components of
creep force are:

F! = =-f__&
CPX 33°x
(A-1)
F!' = - -
CcPY f11‘;’-y f125513
and the spin creep moment acting normal to the contact patch is:
M,_ = f_ _§ (A-2)

cp 12°%y ~ f22Esp
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where E Ey and 5 are the longitudinal, lateral, and spin creepages ; respec-
tlvely, in contact patch coordinates. The derivation of these creepages is a
complicated application of kinematics (18,26) . The creepages at the left and
right contact patches are:

a
Ex = 1+ = er (A-3)
L
: a
o TP TTR R (a4)
R
gyL = I ww sec(dL + ¢w) (a-5)
EYR = TP ww sec(6R - ¢w) (A-6)
E_ = -psin(8 + ¢ ) - —— cos (8. + 4 ) (a-7)
SPL L \ R L \
. 1 .
Esp = 931n(6R - ¢w) - R cos(&R - ¢w) (A-8)
R
A9 1 g
where p = = ~——-+ v (For the case of two-point contact at the left

wheel, equations YA—3), (A—S), and (A-7) are the creepages at the left tread and
left flange contact patches when the appropriate rolling radii and contact angles
are used). The derivations of equations (A-3) - (A-8) make use of the ex-
pression for the shift of the contact patch due to Vw- The longitudinal shift of
the contact patch is given by (16).

AXi = riwwtan(éi i-¢w) (2-9)

The creep coefficients £33, f15, f,,, and £33 are functions of the wheel-
rail geometry, material properties, and resulting normal load. They are computed
according to Kalker's linear theory (4). Typically these calculated values are
reduced by 50% to account for discrepancies between field and laboratory test data
due to contaminated rail conditions in the field.

The creep coefficients are functions of the normal load, N, calculated in
the following way:

2/3
N
£ = (=) £
11 NN 11N
_ N
f1o = G 70%,
NN (a-10)
- 4/3
£ = () £
22 NN 22N
2/3
N
£ = (=) £
33 NN 33N
where f; are the nominal values computed for the nominal normal load Ny and

flj are tﬁe values for normal load, N.

The magnitude of the resultant creep force cannot exceed the amount of
available adhesion, uN, at the wheel-rail contact interface. The creep force
saturation is computed according to a modified Vermeulen-—Johnson model in which
a saturation coefficient is determined by:

*
The creepages are the relative velocities between the wheel and rail at the con-
tact patch normalized by the nominal forward velocity.
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F! F' 2 F' 3

ny R 1 R, 1 R
-— + o F!' <
Fl;[(uNl 3(11N’ 27(HN)]forR 3uN
e =
IN for F' > 3uN
P! R
R
(A-11)
where the unlimited resultant creep force is:
2 2
1 - + 1] + v -
FR J(FCPX) (FCPY) (A-12)
The saturated creep forces are then given by:
= ]
Fepx eFepx
(A-13)
F = '
cPY Fepy
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