Gain and Phase Margins of SISO Systems
from Modified Root Locus Plots
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This paper promotes graphically based
methods for determining the gain margin and
phase margin of linear time-invariant single-
input, single-output control systems. The gain
margin can be found from a graph showing
the angle of each closed-loop system
eigenvalue in the complex plane as a
function of real gain. At any constant real
gain, the phase margin can be identified from
a graph of the angle of each closed-loop
system eigenvalue in the complex plane as a
function of gain angle. The proposed
methods do not require frequency calcula-
tions, and highlight the importance of root
sensitivity, with the practical design guideline
of not selecting control gains that place
eigenvalues near break points.

Classical Presentation of
Relative Stability

In the design of control systems one is
interested in relative stability as well as
absolute stability. Although as Bellman has
stated "there is no stability to the definition
of stability," a system can be considered
absolutely stable if a transient oscillation
decays and ultimately vanishes. A system on
the border of absolute instability is prone to
oscillations that continue for a long time. The
overshoot and settling time for step inputs
may be excessive, degrading the performance
of the system. Furthermore, systems operat-
ing near marginal stability may be driven to
instability by sensor noise, disturbances, and
modeling errors. Thus, a system must be
relatively as well as absolutely stable in
practice, making robustness a paramount
design consideration.

In the time domain, relative stability of a
linear time-invariant (LTI), single-input,
single-output (SISO) control system is
measured by parameters such as the maxi-
mum overshoot and the settling time. In the
frequency domain, the resonance peak can be
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used to indicate relative stability. Alternative-
ly, relative stability can be determined by
means of the Nyquist plot of the loop transfer
function g(s). The proximity of the Nyquist
contour (g(jo) polar plot) to the critical
point, (-1, jO), yields an indication of the
closed-loop system’s degree of stability.

A typical Nyquist plot or open-loop
frequency locus for a minimum phase
transfer function g(s) is shown in Fig. 1. (It
is assumed that g(j®) is a minimum phase
transfer function, so that the portion of the
Nyquist contour that corresponds to s=jw,
0<w<ee, is sufficient for stability analysis.)
Application of the Nyquist encirclement test
shows that the closed-loop system is
absolutely stable. If the loop gain is low, the
Nyquist plot of g(jw) intersects the negative
real axis at a point that is quite far to the
right of the critical point. As the gain is
increased, the intersection point of the
Nyquist contour and the negative real axis
moves closer to the critical point, eventually
passing through it (corresponding to marginal
stability) and then encircling it (indicating
instability).

The gain margin is used to quantify the
distance between the Nyquist contour
intersection of the real axis and the critical
point. In general, if the intersection occurs at
a distance lg(jw,) from the origin, then
multiplying the gain by a factor 1/Ig(jw,)!
makes the closed-loop system marginally
stable. The factor 1/ig(jw,)l is the gain
margin, and the special frequency ®, is the
phase crossover frequency, i.e., the frequency
at the phase-crossover where Zg(jo,) = 180°.
In control engineering, it is more common to
express this factor in decibels (dB) with a

positive gain margin indicating a stable
system. The gain margin, GM, in decibels is
given by

GM = 2010g[1/\g(jmp)|}
~2010g|g(j(np)|

1)

Thus, the gain margin is the number of
decibels by which the magnitude of the open-
loop frequency response falls short of unity
when the phase angle is 180°.

Since the gain margin is a multiplicative
factor on gain, it can be expressed as

GM = 20log(k*/k)
2

where k" is the gain corresponding to
marginal stability, i.e., the gain at the
crossing of the jo axis in the root locus plot.
If the root locus does not cross the stability
boundary for any gain, the gain margin is
infinite.

The phase margin is also a measure of
relative stability. It is the angle by which the
phase of the open-loop frequency response
falls short of —180° when the magnitude is
unity. Thus, the phase margin, denoted as
PM in Fig. 1, is the additional phase lag
required to make the system marginally
stable. The phase margin is the phase at the
frequency w,, the gain crossover frequency,
where the magnitude or "gain" of g(jw) is
unity (0 dB). A positive phase margin
indicates a stable system. (In Fig. 1, the
phase margin for a minimum phase, open-
loop stable system is measured clockwise
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Fig. 1. Nyquist portrait showing conventional definitions of gain margin and phase margin.
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Fig. 2. Feedback block diagram with forward complex gain.
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Fig. 3. Root locus plot of example.

from the negative real axis, with a positive
phase margin denoting stability.)

The phase and gain margins can be viewed
as safety factors in the design specifications.
A useful rule-of-thumb generally applicable
to control systems is that for adequate
closed-loop stability the gain margin should
be greater than 6 dB and the phase margin
should be between 30° and 60° [1]. (The 6
dB limit corresponds to the quarter amplitude
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decay response obtained with the gain
settings given by the Ziegler-Nichols
ultimate-cycle method [2].) Some control
engineers offer more restrictive measures,
suggesting GM = 8 dB and PM 2> 40° or
even > 50°. These values should be viewed
as rough, albeit often useful, working guides.
In general, it is not desirable to make the
margins too large since this corresponds to
low gain systems yielding sluggish designs

that may result in large steady-state errors
[21.

In this paper, the concepts of gain margin
and phase margin are interpreted using an
alternate paradigm, namely the feedback
block diagram of Fig. 2 where the forward
gain is given by k=lklexp(j£k). The gain
margin corresponds to the range |kl can be
adjusted, assuming Zk=0, for the closed-loop
system to be stable. Similarly, the phase
margin corresponds to the range that £k can
be adjusted for a given Ikl such that the
closed-loop system is stable. This perspective
does not involve the calculation of crossover
frequencies, nor does it require Nyquist or
Bode plots for illustrating the gain and phase
margins.

The gain k in (2) is related to the gain
margin under the assumption that the gain is
real. (In any physical system the gain is real.)
An advantage of employing (2) is that it
provides a means to determine the gain
margin from relations linking the gain and
measures of stability. The most popular
graphically-based tool employing gain is the
Evans root locus, in which gain is an implicit
variable. To exploit the relation of (2) we
seek a graphical tool that expresses the
information of the root locus in conjunction
with the gain continuum (as opposed to
discrete tick marks representing gain on the
root locus). Since a key assumption in root
locus theory is that the gain is real, root
locus analysis is limited to calculation of
gain margin and not phase margin. By
generalizing the forward gain to be a
complex quantity with magnitude and phase
angle, it is possible to generate a graphical
tool to determine phase margin. This paper
promotes the use of graphically-based tools
for gain margin and phase margin determina-
tion.

Gain Margin from Angle-Gain Plot

An alternative graphical representation of
the standard root locus plot is to present the
magnitude and angle (phase) of the closed-
loop system eigenvalues in separate graphs
that show the explicit dependency of the
forward real gain k=lklexp(j£k)=lkl, where
Zk=0. These plots, called the magnitude-gain
and angle-gain plots, respectively, have been
proposed [3] as a useful pair of plots for
control system analysis and design. In fact,
they follow from a natural progression of
perspectives of the standard root locus in an
analogous fashion that the Bode plots are an
alternate representation of the Nyquist
diagram. By directly exposing the influence
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Fig. 4. (a) Magnitude-gain plot, and (b) angle-gain plot of example.

Table 1
Results of Gain and Phase Margin Analysis for Example
Ikl kK| GM (dB) PM () o, (rad/s) o, (rad/s)
1.00 0.00781 42.14 88.21° 4.0000 0.0625
9.00 0.0703 23.06 74.29° 4.0000 0.5220
9.48 0.0741 22.61 73.49° 4.0000 0.5803
10.0 0.0781 22.14 72.63° 4.0000 0.6108
100 0.781 2.14 7.29° 4.0000 3.5212
128 1.00 0.00 0.00° 4.0000 4.0000
200 1.56 -3.87 -12.06° 4.0000 4.9445
1000 7.81 -17.86 -44.19° 4.0000 9.4672
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of gain magnitude on the system eigenvalues,
the gain plots enable the designer to select
values of gain corresponding to stable
behavior that meet desired performance
specifications, such as achieving the natural
frequency and damping ratio of interest.
From the angle-gain plot, the range of gains
for which the closed-loop system is stable
can be determined by inspection. The
magnitude-gain plot is also an important
design aid since the slopes of the loci are
related to root sensitivity magnitudes [4].

The expression given by (2) is especially
well suited for determination of gain margin
from the angle-gain plot. In particular, k", the
gain corresponding to marginal stability, can
be determined directly from the angle-gain
plot by noting the angle of any eigenvalue
that maps to a location on the imaginary axis,
i.e., Zs = £90°. Thus, given a design value
of magnitude %, (2) can be used to calculate
the gain margin. From (2),

GM = 20log lk*1-201oglk!

3

indicating that the gain margin is logarithmi-
cally proportional to Ikl.

Gain Margin Example

The open-loop transfer function of this
example is given by

1
g(s) = prrvend

@

It is embedded in the closed loop system of
Fig. 2 with k=lklexp(jO). The root locus is
shown in Fig. 3. As the gain is increased the
real eigenvalue moves deeper in the left half
plane along the real axis whereas the
complex conjugate pair of eigenvalues
crosses the imaginary axis and enters the
right half plane. This behavior is readily
observable in the gain plots of Fig. 4(a) and
4(b). By inspection of the angle-gain plot,
marginal stability is reached at k=k'=128.
From (2), GM = 42.1 - 20 log k dB. At
k=100, GM = 2.1 dB indicating that the
closed-loop system with unity forward gain
can be increased 2.1 dB before the stability
margin is reached. At k=200, GM = -3.88
dB, i.e., the gain must be decreased 3.88 dB
for stability to be reached. The results for
several gain magnitudes are summarized in
Table I. Also shown are the phase and gain

125



crossover frequencies calculated from a
frequency analysis. In the proposed approach
there is no need to compute the phase
crossover frequency to determine the gain
margin.

Phase Margin from Angle-Angle
Plot

By relaxing the constraint that the gain be
purely real, it is possible to graphically depict
the phase margin in a plot showing the angle
of each closed-loop eigenvalue versus the
angle of the gain. The perspective of viewing
the forward gain as a complex quantity can
result in counter-intuitive behavior, e.g., the
possibility of generating system eigenvalues
that do not occur as complex conjugate pairs.

For a complex forward gain of given
magnitude, it is possible to compute and
display the root loci showing the closed-loop
eigenvalue trajectories in the complex plane
as implicit functions of the gain angle.
However, sketching rules are not available
and there is limited, if any, useful informa-
tion for the designer. An alternative graphical
tool is to depict the angle of each closed-loop
system eigenvalue versus the angle of the
gain, Zk, for a given real gain |kl. We have
called this graph the angle-angle plot. The
phase margin can be determined by inspec-
tion of this graph by identifying the smallest
angle of k for which any eigenvalue crosses
the instability boundary, i.e., £90° in the
complex plane.

An angle-angle plot can be generated for a
given gain magnitude. This is analogous to
the angle-gain plot which corresponds to a
single value of the gain angle, namely £k=0.
A popular example of a zero angle varia-
tional magnitude analysis is the Evans root
locus plot where Il only is varied. Thus, it is
possible to produce a family of angle-angle
plots for different values of lkl. Once Ikl is
chosen, a phase analysis is quite important
since gain margin analysis alone does not
suffice for determining stability and robust-
ness [5].

In the angle-angle plot, the phase margin is
available directly without the use of frequen-
cy domain information, i.e., there is no need
to compute the gain crossover frequency for
the forward loop transmission. In addition to
phase margin, the angle-angle plot shows the
phase margin sensitivity from the slopes of
the curves. Large derivatives indicate that the
phase margin is sensitive to angle variations.
Sensitivity information is important when
considering augmenting the system with
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other systems such as low pass filters, or Fig. 5. Angle-angle plots of example for (a) k1=9.00, (b) \k1=9.48, and (c) lkI=10.0.
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when including modeling errors into the
control design [6].

Phase Margin Example

We again consider the system given by (4).
For the phase margin analysis we are
especially interested in Ikl = 9.48 correspond-
ing to the eigenvalue break-point on the root
locus, and gain magnitudes near it (e.g., Ikl =
9.00 and 10.0). The break-point gain has
been isolated to illustrate the corresponding
significant changes in the phase margin
sensitivity. Table I shows the results, and
includes an entry for w, the 0 dB gain
crossover frequency obtained via standard
Bode plot techniques.

Fig. 5(a)-(c) shows the angle-angle plots for
Ikl = 9.00, 9.48, and 10.0, respectively. From
the figure, the phase margin is the angle of
k that causes an eigenvalue to cross the 90°
line. An interesting attribute is the linear
asymptotic behavior of the curves as Zk
increases. A second intriguing feature is the
large slope of the curve near Zk=0° in the
angle-angle plot for |kl = 9.48. This pheno-
menon is expected since the sensitivity of the
system is theoretically infinite at the break-

News

point, and implies that gains placing eigen-
values near the break-points should be
avoided when designing control systems. As
demonstrated in the example, choosing a gain
that is slightly different from the break-point
gain can significantly reduce the sensitivity
of the phase margin.

Closing

This note presents graphically-based
methods for studying relative stability of LTI
SISO systems. The angle-gain plot and the
angle-angle plot are proposed for finding the
gain margin and phase margin, respectively.
The angle-gain plot recasts the information
of the standard root locus in a form that
exposes the explicit functional dependence of
forward gain magnitude on the angle of each
closed-loop system eigenvalue; the angle-
angle plot explicitly relates the forward gain
angle to system eigenvalue angles. Further-
more, the sensitivity of the phase margin is
available and augments classical design
techniques. The proposed methods, recom-
mended for analysis and design of classical
control systems, are useful geometric tools
that do not require frequency analysis. The

proposed framework employs independent
gain and phase axes in plots naturally suited
for determining gain and phase margin,
respectively.
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Fraser Steps Down as Editor

Donald Fraser, founding Editor of the
AIAA Journal of Guidance, Control, and
Dynamics announced the end of his tenure in
the January-February 1992 issue. Dr. Kyle T.
(Terry) Alfried of the General Research Cor-
poration will be the new Editor.

For many years Dr. Fraser was Vice Presi-
dent of the Charles Stark Draper Laboratory
in Cambridge MA. At the end of 1990 he
moved to Washington DC to become the
Deputy Director of Operational Test and
Evaluation (Command, Control, Communica-
tions, and Intelligence) for the Department of
Defense. A year later President Bush
nominated Fraser for the post of Deputy Under
Secretary of Defense for Acquisition, the
number two acquisition official for the entire
Department of Defense. In December his ap-
pointment was confirmed by the United States
Senate, and at that time Fraser decided to step
down as Editor — after serving fourteen years
since the Journal began.
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We wish Dr. Fraser well in his new ac-
tivities.

1991 CDC Proceedings

If you were unable to attend the 1991 Con-
ference on Decision and Control held
December 11-13, 1991, in Brighton,
England, you can still order the Conference
Proceedings. Copies are available at a cost
of $100 for IEEE members and $200 for
nonmembers. The IEEE catalog number for the
Proceedings is 91CH3076-7. To order call
(toll free in the U.S. and Canada) 1-800-678-
IEEE. From other countries call (908) 981-
0060. FAX: (908) 981-9667. Or write: IEEE
Customer Service Department, 445 Hoes
Lane, P.O. Box 1331, Piscataway, NJ 08855-
1331 U.S.A.

In Europe, the Middle East, Africa, or the
U.S.S.R., contact the new Brussels office at
32.2.770.22.42. FAX: 32.2.770.85.05, or
write: IEEE TAB Office, 13, Avenue de I’-
Aquilon, B-1200 Brussels, Belguim.

Control Systems Technology Award

Nominations are open for the IEEE Con-
trol Systems Society Technology Award,
which will be awarded for the fourth time
this year. This award is to be given for
outstanding contributions to control sys-
tems technology, either in design and im-
plementation or in project management. It
may be conferred on either an individual or
a team. The prize is $1000 and a certificate.
Nominations are open to all. The prize is to
be awarded at the IEEE Conference on
Decision and Control. Deadline for nomina-
tions is June 30, 1992. Please send your
nominations, together with supporting
documents, to the Chair of the Technology
Award Committee: Eugene O. King,
Aluminum Company of America, PCMT
Division-Building B, Alcoa Center, PA
15069. Phone: 412-337-3590. Fax: 412-337-
200s.
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