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1 Abstract

This paper presents a unified approach to obtain simultane-
ously the continuous-time and discrete-time state space solu-
tions for the composite state feedback control of singularly
perturbed H, systems. First, the scaled frequency domain
realizations of dynamic systems are developed and then used
to generate the unified Hoo solutions that approach the H so-
lution as the unified Ho, norm design parameter is allowed to
approach infinity. The realizations also account for the non-
orthogonal cost function terms that occur in the unified singu-
larly perturbed slow subsystem. Next, the unified H2 solutions
are provided. Finally, the methodology is then applied to com-
pute the reduced system, composite and full-order controllers
gains for the dynamics of an F-8 aircraft model.

2 Introduction

In the analysis and design of continuous-time (CT) and
discrete-time (DT) control systems, the theory of singular per-
turbations and time scales (SPaTS) has been used as a power-
ful tool for over three decades [1,2]. Hoo-control {3,4], which
has been an active topic of research for almost two decades,
has received the attention of researchers in the theory of SPaTS
[5-7).

The pioneering work by Middleton and Goodwin [8] has
aroused interest in delta(8) systems, especially since these sys-
tems have better finite wordlength characteristics and fewer
conditioning problems in comparison to traditional discrete-
time systems. As sampling frequency increases, the differen-
tial operator is obtained as a limiting case from the §-operator
(that is, the incremental difference operator), thus establishing
a close equivalence with delta-systems. This property has lead
to the use of the difference operator in several areas of modern
multivariable control, including LQR/LQG and H-optimal
control.

In this paper, the state space solution for Hy, composite
state feedback control of the unified singularly perturbed sys-
tems is developed and then applied to the longitudinal dynam-
ics of an F-8 aircraft modcl. Two preliminary problems are ad-
dressed that lead to the general solution of the Hoo state feed-
back control of unified singularly perturbed systems. First, a
set of weighting matrices is established such that the Hz-norm
of the frequency domain system rcpresentation is equivalent to
the time domain linear quadratic cost. Then the unified Hoo
solution is shown to approach the H; solution as the Hoo-norm
design parameter a approaches infinity. Next, a simple trans-
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formation of variables is used to eliminate the non-orthogonal
terms in the cost function that occur in the unified singularly
perturbed problem. Finally, the methodology is applied to
solve the near-optimal state feedback control design problem
for the longitudinal dynamics of an F-8 aircraft. H, and Ho,
solutions are computed for the cases of the full-order control,
reduced order control, and composite control. The reduced
and composite Hoo control solutions are then compared with
the full-order solution. The unified results given here are gen-
erally valid for both the CT case (A = 0) and the DT case
(A #0).

3 The Delta Operator

The approach used here is based on the delta operator (8] de-
fined as
g—1
=T @
where g is the usual forward shift operator and A is the sample
period. Using the unified notation [8], the state space model
obtained is

pw(r) = Apw(r)+ Bou(r) (2)
y(r) = Cow(r) (3)
where,
A = A continuous-time
s As discrete-time
_ % continuous-time A =0
= 6 discrete-time A #0
_ t continuous-time
T = k discrete-time

INSICEE

o0
a k=0 1(8)

continuous-time A =0
sPf(ryar = { }

discrete-time A#O

Note that, for the DT system (2), as A — 0,As — A and
Bs — B.

4 Preliminaries
The basic unified Ho formulation, and the results in system

model realizations [8], are applied to the unified singularly per-
turbed control problem. The transfer function is denoted in
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terms of the state matrices with the notation

Gly) = [A_P]i] =Co(vI - 4,)"'B,+ D, (4)

C, | D,

A Riccati operator, Ric, is introduced as a function that maps
the parameter of a Hamiltonian matrix H, into the positive-
definite solution of a Riccati equation X. Defining a real
Hamiltonian matrix with Q and R symmetric,

g - |1 ABR'B -
0 I+ AA,
A, -B,R'B,
Elabi @)

The corresponding Riccati equation is
0=A,X + A,X + AA, XA, — (B,X(I + AA,)
(R+AB,XB,) Y (B,X(I+AA,))+Q  (6)
The following system realization [4] is then used to develop the

frequency-domain equivalent unified linear quadratic regulator
(ULQR) and the Hoo state feedback problem:

Ap l BIP B2p

G(v) = Cip 0 Di2p
C2p Dy, O

T Pz
wherei:[w]gj:[z} M)
u y

with assumptions
1. (Ap, Byp) is stabilizable and (Ci,, A,) detectable
2. (A,, B2,) is stabilizable and (Cs,, 4,) detectable
3. Dllﬁp{clp Dl2p] = [0 I]

B, , | O
[ ooy |ome-| 7]
The ULQR problem involves determining the state feedback
matrix K2 that minimizes a time domain cost function:

J= %5’3" [a:'(T)Q:c(T) + u'(T)Ru(-r)] dr (8)

with @ = Q' > 0 and R > 0. Next consider,
pz(7) = Apz(1) + Bou(T) )

We now let the transfer function matrix from w to 2z, denoted
by T.w, be represented in terms of the lower linear fractional
transformation F1(G, K). Using an appropriately weighted
system realization, the equivalent frequency domain ULQR
problem can be formulated that determines K, to minimize

J2 =l Tew(7) llz=Il F1(G, K2) |2 (10)

Similarly, the unified Ho, state feedback control problem in-
volves determining Ko, that minimizes

Joo =l Tew(7) lleo=ll F1(G, Koo) lloo (11)

The frequency domain realization for these problems with sys-
tem equation (9) is given by

4, | 1 B,
G(y) = [ Q;ﬂ ] [ 8 ] [ R?” ] (12)
Ia, 0 0

The above system realization contains appropriate weighting
matrices Bi,,Cp, D12, and Dy, such that the transfer func-
tion matrix two-norm is equivalent to the time-domain unified
linear quadratic cost function. The values for the weighting
matrices continue to satisfy assumption 3 in the original prob-
lem statement system realizations. In addition, when the ap-
propriate scaling matrices are used in the H., problem, the
solution approaches the H3 solution as the Hoo-norm bound
a, approaches infinity. The Ho state feedback solution is then

Uoo(T) = Kooz(T)

where
Kew = —(R+AB,KwB,) 'B,Koo(I+AA,)z
Xoo = Ric(Hoo) >0
- , -1
H. = I —A(;lgBlpBlp — By, B3,)
| 0 I+AA,
Ap ;erlpBip - B2PB£;1
| -Q ~A,
H. - |1 -A(xI-B,R'B) ]
I (I +AAL)
A, %I-B,R'B,
| -Q -A,

So as @ — 00, He — Hz as ue — ug for the ULQR prob-
lem. Also the unified Hamiltonian converge towards the CT
Hamiltonian as A — 0 [5].

In assumption 3 the Hy formulation effectively places re-
striction on terms in the cost function. As known in the analy-
sis of singularly perturbed system the slow subsystem involves
the non-orthogonal terms in the cost function. In order to
eliminate this problem a change of variables or other method
is used we consider the analysis with cross products terms.

Consider the following dynamic model and linear quadratic
cost function with the cross-product weighting terms.

px(7) = Az(T) + Bu(T)
(Q-SR™'S")=(Q-SR™'S"Y >0,R=R' >0 (13)
J = 555 [/ (1)Qa(r) + 2 ()Su(r) + v/ (r) Ru(r)] dr

As suggested in [5], a transformation of variables is used to
obtain the solution that minimizes the above cost function.
Then we obtain the H» state-feedback as:

ug(1) = Koz(r) (14)
where

Ka=- [(R + AB,X2B,) " (B, Xa(I + A4,) + S’)] (15)

with
X2 = Ric(Ha)
I AB,R'B, ™
H, = £
0 I+A4,
A, -B,R7'B,
-Q —4,

where A, = A, — B,R™'S' and O = (Q — SR™'S'). The

8scaled frequency-domain realization for the ULQR problem is



then given by

A’p I I,;p B,,R—l/z
= [ @7 0 0
o=l [%] | o] [a]|
[ﬁ, 0 0

The above system realization is such that the transfer func-
tion matrix two-norm is equivalent to the time domain lin-
ear quadratic cost. The realization results in an Heo solution
that approaches the Hs solution as the Hoo-norm bound o
approaches infinity. The general unified Ho state feedback
solution is then

Uoo(T) = Kooz(T) (17)
where
Ko = -[(R+AB,’,X;,B,,)-‘
(By XeolI + ) + )] (18)
with
Xoo = Ric(H)
v
[ A, g,I—BpR”Lj;,]
_Q —A;,

Hence as @ — 00, Hoo — H2, Koo — K> and the unified
Hamiltonian converge towards the CT Hamiltonian as A — 0

[5].
5 Main Results

The previous scaled system realization is now used to formulate
the H and He, control for the unified singularly perturbed
systems. Consider the standard unified singularly perturbed
system model [1],

Original Model:

pxi(r) = Anpexi(r) + Arzpz2(7) + Biu(T) (19a)
exz(r) = A21,71(7) + A22,72(7) + B2pu(r) (19b)
y(r) = Cuzi(r) + Caza(7) (19¢)
Slow Subsystem:
pzs(T) = ApsTs(T) + Bpsus(T) (20a)
ys(T) = Cﬂxs (T) (20b)
where
Apa = Allp - A12pA2_21pA21p
Bys = Bip— AlZpAg_glpBZp
Cps = Clp - Cszz_zlpAQh,
Fast Subsystem:
epra(t) = Aspzs(T) + Baus(7) (21a)
yr(r) = Capzy(7) (21b)

where Ty = T2 — Ts,Uf = U — Us.

5.1 Slow Regulator Subsystem

" The linear quadratic cost function for control based on the slow

output and slow input is defined as:

J =S [y’(r)y(r) + u’(r)Ru(f)] dr (22)

The output feedback y(7) can be separated into slow and fast
components as follows:

Y(7) = Crpx1(7) + C2p%2(7) = yo(7) + y5(7) + 0(e) (23)
Then

Ys(1) = Coszs(7) + Dpsuis(7) (24)
ys(r) = Crzg(7) (25)
where
Cps Clﬁ - CzPA2—2lpA21P
D, = “CZpAz—zlpBZp
Cy = Cy

The cost function for the slow function is:
Jo = %Sgo [mla(‘f )ChaCpso(T) + 2us(T)DpyCosa(T)
+ u;(T)Raus(T)] dr (26)
where
Rps =R+ D,, Dy,

The feedback control shown to minimize the above Hz equiv-
alent cost function is

u2s(T) = K2s24(7) (27)
where
Kae = —[(Rp,+AB;,.X2aBps)_l
(BooXas(I + AAps) + D,',,C,u)] (28)
with
Xos = Ric(Hazs)
meo= 5 0ER] [ g E
(29)

where Aps = Aps — BpsRpsDpsChs and Q, = —Cos(I —
D,sR;} D,s)Ch,. The frequency-domain representation for the
slow subsystem model is then

Ay | I B,s
~1/2 0
Gos(7) = s 0
o= %] | [o] | ee]
T | 0 0

The Ho solution for the general cost function is obtained by
substituting the transformed and scaled system matrices into
the results from [4]. The state feedback control for the slow
subsystem is:

Uoos(T) = KoosTs(T) (30)
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where
Kos = = (Rps+AB;onosBps)—l
(Bos Xoos(I + AAzs) + D;sc,,s)] (31)
with
Xoos = RiC(Hoog)
. = |1 —B(EI-BuR: B, -
R 0 (I+AA,)
A 17 —-1p/
[_Ag arl B"’R”jﬁf*] (32)
s pS

We can easily see that as a — 00, (32) — (29), Xeos —
X25, Koos — Kas. Further, as A — 0 the unified Hoos ap-
proaches the CT Hos results [5].

5.2 Fast Regulator Subsystem

In this subsection the solutions of the H2 and Hoo control are
discussed for the fast subsystem. For the H problem the cost
function for the fast subsystem is:

J = 58 [up(r)ys (r) + up () Rug ()] dr (33)

The feedback control shown to minimize the above is

uzf(7) = Kaszs(7), (34)
where
Koy = —(R+AB;FX2fsz)_1
BapXas (I + AAazy)zy(7) (39)
with
Xz_f = RiC(Hzf) >0
-1
_ I AszR—lBép
Hay = [ 0 I+AAy,
fizzp —B2PR~1B£P
36
[ —Q — b, (36)

where Qs = Q. The cost function for the fast subsystem for
the Ho norm is then defined as:

Joof =l Tzw(7) lloo=Il Fi(G5(7), Koos) lleo

where the state-space realization for the fast subsystem, G¢(7)
is

A2z, | Tass, Bz
1/2
cu=| [ 9] | [o] [ o]
Iay,, 0 0
s pxf
states= [ w |[; outputs=| =z 37
us Yr

The state feedback for the fast subsystem Heo is

Uoof(T) = Koosxs(T)
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where

Kooy = =(R+ABg,XeosB2p) ™ BypXoos (I + AAsy)
Kooy = Ric(Hey)>0

Heo = [ 1 -A(xI-By,R'B,) -

f = 1o I+ AAy,

Az, 21— By,R'Bj,
[ ~C4Cs ~ A, (38)

Similarly for the fast subsystem, as a — oo, (38) — (36),
Xoof — X2, Koos — Kay. Further as A — 0 the unified Hooy
approaches the CT Hooy results.

5.3 Composite Control

The composite control for the H2 and He problem is given as:

u2o(T) = u2s(T) + u2s(7) = K2ss(7) + Koszs(1) (39)
Uooc(T) = Uoos + Uoof(T) = KoosZs(T) + Kooszs(T) (40)

6 Aircraft Control Application

The formulation for Hs, state-feedback control of the unified
singularly perturbed system is now applied to control the lon-
gitudinal flight dynamics of an F-8 aircraft model. The longi-
tudinal dynamics of the aircraft exhibits two-time scale prop-
erties identifiable by the phugoid (slow) mode and the short-
period (fast) mode. Ho, controllers are designed for the lon-
gitudinal axis dynamics of the aircraft for the cases of the
full-order control, reduced control, and composite control.

6.1 Longitudinal F-8 aircraft model

The linearized small-perturbation longitudinal equations of
motion and aerodynamic stability derivations are provided
in [1]. The longitudinal F-8 aircraft model is for a flight condi-
tion of Mach 0.6 (V, = 620fts™") altitude of 20 000 feet, and
angle of attack of 0.078 rad. The state variables are v: velocity
in ft s71); a: angle of attack (rad); ¢: pitch rate (rad s~1); 6:
pitch angle (rad); and the input variable is o: stabilator de-
flection (rad). Here, the slow states are the forward air speed
and pitch angle, while the fast states are the angle of attack
and pitch rate.
With A = 0.25, we obtain the space model from [1] as:

A, = | —0-3053 —0.6536 ]
s = 1.4284 -—-0.1223
A _ [ —0.8646 0.054
126 = 1 _0.1635 0.0134
4 [ -0.0464 0.004 ]
26 = | 00252 ~0.0018 |
A [ —0.4519  0.4029 ]|
26 = | ~1.9387 -03159
[ 13512 —0.2490
Bis = | _16.7794 ] Bas = [ —3.6615 ]
r1 0 1 0
B 0 1 _ 101
Cis = 0 0 C26 = 0 0
0 o 0 0




6.2 Results

We provide the full-order design to provide a baseline for com-
parison with the reduced control and composite control de-
signs. The Hoo responses for the full-order system, composite
control and the appropriate subsystem is shown in Figure 1,2,3
and 4. From Figure 1 and 2 (velocity and pitch angle), we no-
tice that the composite controller does much better than the
reduced order controllers. It is noticed that the slow controller,
is not generally robust as the composite controller. However
for the fast subsystem (Figure 3 and 4) the composite and the
reduced order controller performances are satisfactory. The
reduced and composite closed-loop responses are comparable
with the full-order system.

7 Conclusion

The state space formulation for the Ho, state feedback con-
trol for the unified singularly perturbed system was developed
which includes scaling criteria for an equivalent ULQR and H
costs and transformations to accommodate the non-orthogonal
terms. The formulation involves solving two reduced order
problems and it was used to compute the reduced and com-
posite Hoo controller gains for the longitudinal dynamics of an
F-8 aircraft. The reduced and composite closed-loop responses
were then shown to be comparable with the full-order system.
Here, a single unified method has been developed for a sin-
gular perturbation system replacing the previous two separate
methods for the CT and DT systems. The unified H solution
approaches the H; solution as a approaches infinity.
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Figure 1: Closed-loop response of velocity of the F-8 air-
craft
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Figure 2: Closed-loop response of pitch angle of the F-8
aircraft
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Figure 3: Closed-loop response of angle of attack of the
F-8 aircraft
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Figure 4: Closed-loop response of pitch rate of the F-8
aircraft
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