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ABSTRACT
This paper presents a modified integral sliding surface, slid-

ing mode control law for pneumatic artificial muscles. The cutoff
frequency tuning parameter λ is squared to increase the gradi-
ent from absement (integral of position) to position and higher
derivatives to reflect the more dominant terms in the actuator
dynamics. The sliding mode controller is coupled with propor-
tional and integral action compensation. The control system is
sufficiently robust so that use of an observer and input-output
feedback linearization are not required. Closed-loop control ex-
periments are compared with traditional sliding mode controller
designs presented in the literature for pneumatic artificial mus-
cles. Experiments include the tracking of sinusoidal waves at 0.5
and 1 Hz, tracking of square-like waves with seventh-order tra-
jectory transitions at a rate of 0.2 Hz without and with a steady-
state period of 10 seconds, as well as a step input response. These
experiments indicate that the control law provides similar band-
width, tracking, and steady-state performance as approaches re-
quiring nonlinear feedback and model observation for pneumatic
artificial muscles. Experiments demonstrate an accuracy of 50
µm at steady-state with no overshoot and maximum tracking er-
rors less than 0.4 mm for smooth square-like trajectories.

INTRODUCTION
A pneumatic artificial muscle (PAM) is a type of flexi-

ble fluidic actuator (FFA) that contracts when pressurized
with a working fluid. FFAs transmit mechanical power
through large deformations of elastic or hyperelastic mem-
branes by an energized fluid. They can be built in pro-

late (contractile), oblate (expansion), and helical (twisting)
forms allowing for different modes of translation, rotation,
and bending. A PAM consists of a rubber-like tube encap-
sulated by a fiber braid that has two end caps and contains
the pressurized fluid. One of the end caps allows for a com-
pressed gas (typically air) to flow in and out of the PAM.

Research on PAMs has focused on both nonlinear
modeling and control. A significant body of the research
suggests that nonlinear control approaches can achieve
performance that is not possible with classical control
methods. This paper presents a new sliding mode control
(SMC) approach. It proposes using a squared tuning pa-
rameter λ in an integral sliding surface in a sliding mode
position control law.

BACKGROUND

The first patent on PAMs dates back to 1929 [1]. A
steady interest in PAMs emerged starting in the 1950s,
mostly in the form of patents [2], [3], [4], [5]. Commercial-
ization of PAMs was realized by Bridgestone and Dynacy-
cle with additional patents awarded [6], [7], [8].

The background below provides a concise review of
control approaches used for PAMs including linear control
theory (classical and modern methods) and nonlinear con-
trol theory. This review gives insights to deficiencies that
motivate the control method proposed in this paper.
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Control Approaches for PAMs
Early control approaches for PAMs used experimen-

tal methods to implement position control. Paynter et al.
modeled PAMs, called tuggers, by describing their change
in enthalpy. Paynter used experimental correlations to im-
plement open-loop position control [9], [10]. This approach
was used for applications including vehicle suspension
and engine mount vibration dampening [11].

Caldwell et al. were among one of the first to demon-
strate closed-loop control of PAMs with discrete linear con-
trol theory [12]. In their early work, overshoot of 12% was
shown in experiments and performance was highly sensi-
tive to noise, changes in supply pressure, temperature, and
tube length [12]. Surdilovic et al. demonstrated trajectory
tracking of a PAM robot manipulator with an accuracy of
10 mm using linear control theory [13]. Situm et al. used a
proportional-integral position controller for an antagonis-
tic pair of PAMs, with a steady-state error of 18% from the
set point value [14]. The data were presented as relative
percent errors due to the output signal given as the raw
voltage signal in [12] and [14].

Nonlinear control approaches have shown to improve
motion control performance over classical and modern
control methods for PAMs [15]. Sliding mode control is
one such method, and there is a significant interest this
approach within the fluid power motion control research
community. SMC approaches are desirable due to their
mathematical convergence of the error dynamics to zero
over a given trajectory and ability to compensate for un-
modeled dynamics and physical uncertainties [16].

De Volder et al. illustrated positioning accuracy of +30
µm using proportional integral SMC (PISMC) [17]. Shen
et al. implemented a sliding mode control law on a chem-
ically powered translating pair of antagonistic PAMs [18].
Shen reported tracking errors for sinusoidal trajectories at
0.5 and 1 Hz to be at a maximum 0.75 mm and 1.5 mm, re-
spectively [18]. Lilly et al. reported SMC maximum track-
ing errors of an angular antagonistic pair of PAMs to be
1.15 degrees with a 20 kg payload [19]. Hirano et al. re-
ported a maximum position tracking error of 1.17 mm for
a PAM driven delta robot using a PI computed torque con-
troller [20]. Sardellitti et al. reported torque and stiffness
SMC for an antagonistic pair of PAMs, which resulted in
maximum errors of 0.12 N-m and 0.06 N-m/rad for torque
and stiffness, respectively [21]. Driver et al. reported a
maximum tracking error of 3 degrees when tracking a 20
degree amplitude sinusoid at 1 Hz [22].

Summary and Scope
SMC techniques have proven to be superior over

classical and modern theory methods for pneumatic and

highly nonlinear motion control applications such as FFAs
and PAMs [18], [21], [22], [23]. The 2015 Multi-Annual
Roadmap for Robotics in Europe emphasized that one of the
top scientific needs to realize human-robot interaction is
model-based control of soft actuators [24]. A Roadmap for
US Robotics - From Internet to Robotics also identified that
merging the design of actuator, mechanisms, and control
is necessary for next generation mechanisms and actuators
in robotics [25].

This paper presents a reduced order dynamic model
of a PAM. The PAM model is used to derive a proposed
SMC law with proportional and integral action compen-
sation. The controller is robust, obviating the need to
use observers and input-output feedback linearization.
Tracking experiments for sinusoidal trajectories, square-
like seventh-order trajectories, and a step response are con-
ducted and the maximum tracking errors and steady-state
error are reported.

MODELING
Actuator Dynamics

One configuration of a PAM is made of a rubber tube
encompassed by a helical fiber braid with end caps as il-
lustrated in Figure 1 (top). The length L of the PAM is

L = L0 − x (1)

where L0 is the initial length of the PAM and x is the dis-
placement of the free end of the PAM (positive displace-
ment is towards the fixed end of the PAM). The length L is
also related to the helical fiber length, b, of the braid that
wraps around the rubber tube and angle of the fiber rela-
tive to the primary axis by L = bcosθ. The force from the
PAM from increased internal pressure is a result of the re-
action forces of the braid and rubber tube acting on the end
caps. The free-body diagram is shown in Figure 1 (bottom).
The forces acting on the PAM can be derived using the
principle of virtual work as developed by Gaylord [26] and
then Chao and Hannaford, [27], F =−P(dV/dL). Since the
control volume is a function of actuator length, L, the vol-
ume of the PAM is

V = L(b2 − L2)/(4πn2) (2)

and the force produced by the actuator from the internal
pressure then becomes

F =
P(3L2 − b2)

4πn2 (3)
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FIGURE 1. PNEUMATIC ARTIFICIAL MUSCLE DIAGRAM AND

FREE-BODY DIAGRAM OF MODEL.

In equations 2 and 3, n is the number of turns the fiber
braid wraps around the tube. This force represents the in-
put to the equation of motion from Newton’s second law,

Mẍ + cẋ + µẋP + kx =
P(3L2 − b2)

4πn2 (4)

where k is the stiffness of the actuator material, internal
pressure, and change in geometry, c is the viscous damp-
ing coefficient, µ is the area normalized coefficient of fric-
tion between the fiber braid and the hyperelastic tube, and
M is the mass of the non-fixed end of the PAM. The ac-
tuator stiffness, k, is assumed to be linear. Some models
present Mooney-Rivlin approaches that could be imple-
mented, but are computationally intensive [28].

In state-space form, Equation 4 can be expressed as

(
ẋ1
ẋ2

)
=

 x2

1
M

(
P(3(L0−x1)

2−b2)
4πn2 − cẋ1 − µẋP− kx1

) (5)

The actuator model parameters are listed in Table 1.

TABLE 1. ACTUATOR PARAMETERS.

Parameter Value Parameter Value

M 0.45 kg L0 203.2 mm

c 1.31 N-s/mm b 22.5 mm

n 1 k 254 N/mm

µ 15.1 mm-s D 20 mm

Pressure Dynamics
The pressure dynamics for the PAM are modeled for

the actuator control volume (the internal volume of the ac-
tuator shown in Figure 1) and a proportional flow control
valve. The pressure rate of change of the PAM control vol-
ume is the time derivative of the ideal gas law, giving

Ṗ =
RT
V

ṁ− P
V

V̇ (6)

where R is the universal gas constant for air, T is the abso-
lute temperature of the air, V is the volume of the actuator,
V̇ is the rate of change of volume, and ṁ is the mass flow
rate. The pressure dynamics are assumed to be isothermal
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and the mathematical models are explained in more detail
in [29], [23], [30] and [31]. The mass flow rate is modeled
as isentropic flow through a plate with a small hole (aper-
ture). The mass flow rate is a function of the aperture cross-
sectional area of the spool valve, and the area normalized
flow rate, Ψ, as described by

ṁ = AvΨ (7)

where the aperture area Av is assumed to be linearly pro-
portional to the spool position, that is proportional to the
command signal, u, discussed later. The area normalized
mass flow rate is a piecewise function governed by choked
and unchoked flow regimes that is based on the quotient
of the downstream and upstream pressures, respectively,

Ψ(Pu, Pd) =

{
Ψc

Pd
Pu
≤ Cr Choked

Ψuc
Pd
Pu

> Cr Unchoked
(8)

where Ψc is the choked area normalized mass flow rate de-
fined by,

Ψc =
C1C f Pu√

T
(9)

and Ψuc is the unchoked area normalized mass flow de-
fined by,

Ψuc =
C2C f Pu√

T

(
Pd
Pu

)1/γ
√

1−
(

Pd
Pu

)(γ−1)/γ

(10)

The coefficients C1 and C2 are gas properties, C f is a nondi-
mensional discharge coefficient, γ is the ratio of specific
heats, and Cr is the threshold between choked and un-
choked flow through the valve. For air, Cr is 0.528, C f is
0.2939, and C1 and C2 are

C1 =

√√√√( 2γ

R(γ + 1)

) γ+1
γ−1

(11)

and

C2 =

√
2γ

R(γ− 1)
(12)

For the internal chamber and proportional valve used, Ψ is
governed by

Ψ(P1, Ps, Patm) =

{
Pd = P1, Pu = Psource Av ≥ 0
Pd = Patm, Pu = P1 Av < 0

(13)

where Pd is the downstream pressure, P1 is the actuator
internal pressure, Pu is the upstream pressure, Patm is the
atmospheric pressure, and Psource or Ps is the source pres-
sure. The volume inside the actuator as a function of length
is described in Equation 2 and the time rate of change in
volume is

V̇ =
b2 − 3L2

4πn2 L̇ (14)

In state-space form, the pressure dynamics of the PAM are

Ṗ = ẋ3 =
RTΨKav

V(x1)
u− x3V̇(x1, x2)

V(x1)
(15)

where Kav is the proportional gain relating the input volt-
age and aperture area Av = Kavu, with Kav = 2mm2/V. The
input command voltage is ±2.5 V. The pneumatic system
properties are listed in Table 2.

TABLE 2. PNEUMATIC SYSTEM PARAMETERS.

Parameter Value Parameter Value

Psource 441.3 kPa Av ± 5.000 mm2

Patm 101.3 kPa Cd 0.5898

R 287.1 J kg−1 K−1 C f 0.2800

C1 0.04040 T 273.0 K

C2 1.156 γ 1.400

System Dynamics
The system model in state-space form can be con-

structed by combining Equations 5 and 15, giving

ẋ1
ẍ2
ẋ3

 =


x2

1
M

(
x3(3(L0−x1)

2−b2)
4πn2 − cẋ1 − µẋx3 − kx1

)
RTΨKav
V(x1)

u− x3V̇(x1,x2)
V(x1)

.

(16)
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Research suggests that a third-order lumped parameter
model can predict the dynamic behavior of a PAM [32].
However, valves that are not high performance or long
pneumatic lines can make this third-order model insuffi-
cient. Knowing the order of the model that accurately de-
scribes the system and the desired state trajectory being
controlled, a robust nonlinear control law can be derived,
such as presented by Slotine for a traditional sliding sur-
face, s =

(
d/dt + λ

)m−1e and an integral sliding surface
s =

(
d/dt + λ

)m ∫ e [16].

SLIDING MODE POSITION CONTROL
Traditional SMC approaches for PAMs use an integral

sliding surface, resulting in a 3rd-order sliding surface for
the 3rd-order position tracking control problems. An in-
tegral sliding surface takes on the form s =

( d
dt + λ

)m ∫ e
where m is the order of the differential equations describ-
ing the system to be controlled [16], [23]. Due to a major-
ity of the nonlinearities from the actuator mechanics, it is
proposed that the sliding surface is weighted more so on
the lower order terms in s. To do this, the constant λ is
squared to increase the gradient from absement (integral
of position) to position and higher order terms [33].

s =
(

d
dt

+ λ2
)m ∫

e (17)

Expanding Equation 17 for a third-order system results in
the sliding surface:

s = ë + 3λ2 ė + 3λ4e + λ6
∫

e (18)

Differentiating Equation 18 with respect to time

ṡ =
...
e + 3λ2 ë + 3λ4 ė + λ6e (19)

The equivalent control law can be expressed using Filip-
pov’s equivalent dynamics principle

ueq =
1
ĝ

(
...
x D + f̂ − 3λ2 ë− 3λ4 ė− λ6e

)
(20)

where f̂ and ĝ are model estimation parameters deter-
mined by solving for control input in the third order
model, similar to those presented in [23] and [32]. With a

Lyapunov like function, 1
2

d
dt s2 ≤−η | s |, the robust control

law is determined to be

urb = η | s | sgn
(
s
)

(21)

to keep the scalar s, the sliding surface, at zero. The sgn
is a sign function for s where sgn(s) = +1 if s > 0 and
sgn(s) = −1 if s < 0. To eliminate any chatter from the
high speed switching, a saturation function using the vari-
able φ is introduced to act as a first-order filter, with the
saturation of s/φ being at ±1.

urb = η | s | sat
(

s
φ

)
(22)

Combining the equivalent and robust control laws results
in the 3rd-order, quadratic integral sliding surface, sliding
mode position control law:

u =
1
ĝ

(
...
x D + f̂ − 3λ2 ë− 3λ4 ė− λ6eη | s | sat

(
s
φ

))
(23)

Here we make the assumption that the control law is suffi-
ciently robust such that an observer and input-output feed-
back linearization are not needed. Thus, the SMC becomes

uSMC =
...
x D − 3λ2 ë− 3λ4 ė− λ6eη | s | sat

(
s
φ

)
(24)

Adding proportional and integral action results in a
PISMC law for the PAM,

uPIDSMC = uSMC

(
Kp + Ki

∫
dt
)

(25)

The PISMC tuning parameters determined empirically are
listed in Table 3. The PISMC was tuned by first adjusting
the parameter λ, followed by incrementally increasing η to
achieve the desired track while simultaneously increasing
φ to eliminate chatter. The PI compensator gains were then
adjusted to further improve the response and steady-state
performance.

A first-order low pass filter (FO− LPFco) was used to
filter the measured position signal x into the PISMC; oth-
erwise, significant signal noise would be amplified by the
numerical differentiation in the control law.
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TABLE 3. SMC PARAMETERS.

Parameter Value Parameter Value

FO− LPFco 100 Hz λ 10 Hz

φ 25 mm/s2 η 0.05 mm/s3

Kp 1.3 Ki 0.125

EXPERIMENTAL SETUP
A test fixture was designed and built for conducting

control experiments with artificial muscles as shown in
Figure 2. The PAM is controlled and tested via Simulink

FIGURE 2. EXPERIMENTAL SETUP.

Real-time with a desktop computer using a National In-
struments PCI-6221 Multipurpose data acquisition card
(with 32 pin connector). An Enfield Technologies LS-V05s
proportional pneumatic control valve is used that has a
bandwidth of 109 Hz and exhibits low hysteresis. A volt-
age command signal is sent from the data acquisition card

to an Enfield Technologies D1 proportional linear motor
valve driver. The proportional flow control valve controls
the mass flow rate from the pneumatic pressure source
at the manifold to the PAM or from the PAM exhausted
to atmosphere. Between the valve and the PAM, a NPX
MPX5700GP pressure sensor is used to record the pressure
dynamics. The PAM is connected to a SP2-12 string poten-
tiometer from Measurement Specialties.

RESULTS
Five different tracking experiments were conducted.

The controller was tested following a sinusoidal trajectory
of 1 and 0.5 Hz with an amplitude of 12.7 mm and an offset
of 15.88 mm, as well as a square-like seventh-order polyno-
mial trajectory with an amplitude of 12.7 mm and an offset
of 15.88 mm, at 0.2 Hz transitions between set points, with
no steady state period and a resting period of 0.1 Hz. Fig-
ures 3 and 4 show the tracking of a sinusoidal wave at 0.5
and 1 Hz, respectively.

FIGURE 3. SINUSOIDAL TRACKING AT 0.5 HZ.

The tracking experiment of the sinusoidal wave at 0.5
Hz showed a maximum tracking error of approximately
0.71 mm just past the inflection points of the sine wave
when retracting towards its original length L0. Tracking of
the sinusoidal wave at 1 Hz illustrated a maximum track-
ing error of approximately 1.9 mm at the same locations.

Figures 5 and 6 show the tracking of a continuous
square-like wave with seventh-order polynomial transi-
tions at a frequency of 0.2 Hz, without and with a resting
period of 10 s, respectively.
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FIGURE 4. SINUSOIDAL TRACKING AT 1 HZ.

FIGURE 5. SEVENTH-ORDER TRAJECTORY TRACKING.

Both seventh-order trajectory tracking experiments ex-
hibited tracking errors of 0.38 mm or less. These two exper-
iments also show improved tracking characteristics for the
PAM being pressurized as opposed to depressurized. For
the seventh-order trajectory tracking experiment with a 10
s resting period the approximate steady-state accuracy of
the controller was approximately 50 µm.

The step response of the PISMC for the PAM illustrates
no overshoot yet the actuator achieves sub 100 µm accu-
racy in less than 0.5 s. After 5 s, 50 µm accuracy is achieved.

FIGURE 6. SEVENTH-ORDER TRAJECTORY WITH 0.1 HZ REST

PERIOD TRACKING.

From the phase plane trajectory of the step response this
controller does not follow the typical slope of −λ when in
the sliding mode, as shown in Figure 8.

The maximum tracking and steady-state (S.S.) errors
are listed in Table 4.

TABLE 4. CONTROLLER PERFORMANCE.

Trajectory Max. Error [mm] S.S. Error [mm]

Sine (0.5 Hz) 0.71 –

Sine (1.0 Hz) 1.9 –

7th-Ord. 0.37 –

7th-Ord. w/ Rest 0.38 0.05

Step – 0.05

DISCUSSION
The results of the modified sliding surface PISMC

demonstrate a positioning accuracy of approximately 50
µm, or 20 µm greater than the accuracy reported by De
Volder et al. [17]. The maximum tracking errors for sinu-
soidal waves are less than those reported in the literature
[18], [19]. The controller also shows similar response and
tracking performance compared to SMCs implemented for
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FIGURE 7. STEP RESPONSE AND ZOOMED ERROR.

PAMs that utilize model observation [22], [18], [17], [19],
[15].

Maintaining the performance while eliminating the
need for observers in SMCs may allow for more
widespread use of this control approach. Since this method
is computationally less expensive than traditional SMC ap-
proaches, it may be useful in the implementation of more
complex multi-degree-of-freedom systems, as typical robot
joints using PAMs rely on antagonistic pairs. As a result,
more applications and utilization of PAMs and other simi-
lar FFA devices in robots may be realized.

FIGURE 8. FINITE REACHING AND SLIDING MODE OF STEP

RESPONSE.

CONCLUSIONS
This paper presented a modified sliding surface for a

PISMC. The sliding surface order was determined from ac-
ceptable lumped parameter models that can describe the
dynamic behavior of the PAM. For the five control exper-
iments conducted, the maximum tracking error was 1.9
mm in tracking a sinusoidal wave of 1 Hz, 0.38 mm while
tracking a seventh-order square-like wave, a step response
position accuracy of less than 0.1 mm in under 0.5 s with
no overshoot, and a steady-state position accuracy of 50
µm. The proposed control law gives position control per-
formance similar to traditional SMC methods for PAMs,
without needing an observer and input-output feedback
linearization.
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